Symmetric surfaces with quasi-platonic PSL(2,q) action
 Preliminary report

S. Allen Broughton - Rose-Hulman Institute of Technology

Loyola University AMS meeting, October 4, 2015

Overview

Overview of sections

- Symmetric Quasi-Platonic (QP) Actions.
- Mirrors of Symmetries.
- Symmetric QP $P S L_{2}(q)$ actions - prior and new results (Macbeath, Singerman, Broughton et. al, Tyszkowska).
Motivations
- Why symmetries? Symmetries are complex conjugations of a surface defined over \mathbb{R}. The mirrors are real curves.
- Why $P S L_{2}(q)$?
simple group, many low genus actions, numerous symmetries, nice group structure, easy calculations.

QP actions - definition

Definition

- The finite group G acts conformally on the closed, orientable Riemann surface S if there is a monomorphism:

$$
\epsilon: G \rightarrow \operatorname{Aut}(S),
$$

where $\operatorname{Aut}(S)$ is the conformal automorphism group of S.

- An action is quasi-platonic if:
- The quotient surface has genus zero: $S / G \simeq P^{1}(\mathbb{C})$.
- The quotient map: $\pi_{G}: S \rightarrow S / G=P^{1}(\mathbb{C})$ is ramified over three points.

Symmetric QP actions - example

- Discuss: QP-action in this picture.
- Explain the term quasi-platonic.
- Show symmetries, mirrors, and separation.

Construction of actions - summary

- Let p, q, r be the reflections in the sides of a (hyperbolic) triangle on the surface with angles $\frac{2 \pi}{T}, \frac{2 \pi}{m}, \frac{2 \pi}{n}$.
- Let $a=p q, b=q r, c=r p$ be the rotations at the corners of the triangle. Define an action by identifying a triple $(a, b, c) \in G^{3}$ with the rotations of the same name.
- We call (a, b, c) a generating (I, m, n)-triple of G. The assignment defines an action as long as the following hold.

$$
\begin{gather*}
G=\langle a, b, c\rangle \tag{1}\\
o(a)=I, o(b)=m, o(c)=n \tag{2}\\
a b c=1 \tag{3}
\end{gather*}
$$

- The genus σ of S satisfies

$$
2 \sigma-2=|G|\left(1-\frac{1}{l}-\frac{1}{m}-\frac{1}{n}\right)
$$

Symmetries and QP actions

Definition

A symmetry or reflection on a surface S is an anti-conformal involution φ of S. A QP action $\epsilon: G \rightarrow \operatorname{Aut}(S)$ is symmetric if there is a symmetry φ normalizing the action of G, namely $\varphi \epsilon(G) \varphi=\epsilon(G)$.

For a symmetric QP action:

- Denote by θ the induced involutary automorphism of G

$$
\theta(g)=\epsilon^{-1}(\varphi \epsilon(g) \varphi)
$$

- Define $G^{*}=\langle\theta\rangle \ltimes G$, and extend the action

$$
\epsilon: G^{*} \rightarrow \operatorname{Aut}^{*}(S)=\langle\operatorname{Aut}(S), \varphi\rangle \text { by } \theta \rightarrow \varphi
$$

Macbeath-Singerman symmetries

- If $\varphi=q$ is a symmetry then automorphism θ satisfies

$$
\theta(a)=a^{-1}, \theta(b)=b^{-1} .
$$

with similar formulas for p and q.

- The reflections p, q, r are sometimes called Macbeath Singerman symmetries.
- The local reflection q extends to symmetry of the entire surface if and only if an automorphism θ, satisfying the above equation, exists.

Types of symmetries

Symmetries come in two types, depending on whether θ is an inner or outer automorphism.

- If θ is inner, then $G^{*} \simeq G \times \mathbb{Z}_{2}$ assuming G is centerless. In this case S has fixed point free symmetries.
- If θ is outer then S has no fixed point free symmetries. If $G=P S L_{2}(q)$ then $G^{*}=P G L_{2}(q)$

Mirrors - definitions

Definition

Let φ be a symmetry or reflection on a surface S.

- The fixed point set \mathcal{M}_{φ} of φ is called the mirror of the symmetry.
- The mirror \mathcal{M}_{φ} is a disjoint union of circles called ovals.
- The symmetry φ is called separating if $S-\mathcal{M}_{\varphi}$ consists of two disjoint mirror image pieces, otherwise it is called non-separating.

Number of ovals

- The centralizer

$$
\operatorname{Cent}_{G}(q)=\{g \in G: \theta(g)=g\}
$$

acts transitively on the ovals of the mirror of q.

- The stabilizer of an oval is dihedral or cyclic (next slide).
- The subgroup of rotations of the stabilizer of an oval can be computed from the edge pattern of the oval (next slide).
- Similar results hold for p and r.
- The number of ovals can be computed using the orbit-stabilizer theorem.

Edge patterns and oval rotations

- Discuss: Show PQR patterns of ovals.
- Describe oval rotation.

Partial edge pattern table

- Four of eight patterns shown.
- $I=2 \lambda+1$ or $I=2 \lambda$
$m=2 \mu+1$ or $m=2 \mu$
$n=2 \nu+1$ or $n=2 \nu$

even exponents	odd exponents	basic PQR pattern	oval rotation
	I, m, n	$P^{+} Q^{+} R^{+}$	$a^{-\lambda} b^{-\mu} c^{-\nu}$
I	m, n	$Q^{+} R^{+} P^{+} P^{-} R^{-} Q^{-}$	$b^{-\mu} c^{-\nu} a^{-\lambda} c^{\nu} b^{\mu} a^{\lambda}$
I, m	n	$Q^{+} Q^{-}$	$b^{\mu} a^{\lambda}$
		$R^{+} P^{+} P^{-} R^{-}$	$c^{-\nu} a^{\lambda} c^{\nu} b^{\mu}$
I, m, n		$P^{+} P^{-}$	$a^{\lambda} c^{\nu}$
		$Q^{+} Q^{-}$	$b^{\mu} a^{\lambda}$
		$R^{+} R^{-}$	$c^{\nu} b^{\mu}$

Fixed point formula

We have two ways of determining separability of mirrors. One way uses fixed point formulas. We first note a fixed point formula for $g \in G$.

Proposition

Fixed point formula for $g \in G$

$$
\begin{equation*}
\left|S^{g}\right|=\left|N_{G}(\langle g\rangle)\right|\left(\delta_{l}(g) / I+\delta_{m}(g) / m+\delta_{n}(g) / n\right) \tag{4}
\end{equation*}
$$

where $\delta_{l}(g)=1$ if g is conjugate to a power of a, and 0 otherwise. Similar definitions for $\delta_{m}(g), \delta_{n}(g)$.

Mirrors - separability - 1

For each pattern B_{i} let $\mathcal{M}\left(\varphi, B_{i}\right)$ be the union of all the ovals in \mathcal{M}_{φ} with edge pattern B_{i}.

Theorem

Suppose a has even order and let h be the involution a^{λ}. Then if q is separating we have the fixed point inequality:

$$
\left|S^{h}\right| \leq 2\left|\mathcal{M}\left(q, B_{1}\right)\right|+\cdots+2\left|\mathcal{M}\left(q, B_{s}\right)\right| .
$$

Theorem

Suppose a has odd order. Then if q is separating we have the fixed point equality:

$$
\frac{\left|N_{G}(a)\right|}{l}=\left|N_{G}(a) \cap \operatorname{Cent}_{G}(q)\right|
$$

Mirrors - separability - 2

Notes:

- If q is separating then all the fixed points of a or h must lie on the mirror \mathcal{M}_{q}. The right hand side of the equations count or estimate the number of these fixed points.
- Typically one proves that symmetries are non-separating by showing that the left hand sides are much larger than the right hand sides.
- The fixed point formulas don't always work.

Mirrors - separability - 3

The second method involves counting triangles.

Theorem

There is an easily implemented computer algorithm that counts all the elements of G^{*} corresponding to triangles lying on one side of the mirror \mathcal{M}_{q}. The mirror \mathcal{M}_{q} is separating if and only if the count terminates with $|G|=\left|G^{*}\right| / 2$ elements.

Prior results

Theorem

(Macbeath) Every quasi-platonic action of $P S L_{2}(q)$ has Macbeath-Singerman symmetries.

- (Broughton et al.) The symmetries of Hurwitz actions have been completely characterized. All symmetries with non-empty mirrors symmetries are non-separating. Trace arguments in $S L(2, q)$ are used.
- (Tyszkowska)There is a Harnack like theorem describing the maximum number of ovals of a Macbeath-Singerman symmetry of a $\operatorname{PSL}(2, q)$ action. The oval rotations and trace arguments are used.

Easy results

- (originally proven in Broughton et al. for Hurwitz actions) The Macbeath Singerman symmetries are all conjugate. Therefore every mirror has ovals of each pattern type.
- If q is not divisible 3 and $q>7$ then all of the Macbeath-Singerman symmetries for hyperbolic (2,3, n) and $(3,3, n)$ actions are non-separating.

Conjectures

Conjecture

All Macbeath-Singerman symmetries of $P S L_{2}(q)$ are non-separating.

See next slide.

Sample results

Show tables of Symmetric QP-actions

Computational Tools

We used Magma to compute all the results shown. For faster computation and for general results we can try traces in $S L_{2}(q)$ as follows (see Broughton et al, Glover-Sjerve and Tyszkowska).

- For each possible order n of an element in $u \in P S L_{2}(q)$ there is a universal polynomial $f_{n}(\tau) \in \mathbb{Z}[\tau]$ such that $\operatorname{ord}(u)=n$ if and only if $f_{n}(\operatorname{Tr}(U)=0$ for any covering element of u.
- The trace of any word in A, B, C can be easily computed as a polynomial in $\{\alpha, \beta, \gamma\}$. In particular this can be done for oval rotations.

Any Questions?

References

- S.A Broughton, E. Bujalance, A.F. Costa, J.M. Gamboa, G, Gromadzki, Symmetries of Riemann Surfaces on which PSL(2, p) acts as a Hurwitz automorphism group, J. Pure Applied Algebra 1996) pp. 113-126
- H. Glover \& D. Sjerve, Representing $P S L_{2}(p)$ on a Surface of Least Genus, L’Enseignement Mathématique, Vol. 31 (1985), pp. 305-325.
- H. Glover \& D. Sjerve, The Genus of $P S L_{2}(q)$, J.reine angew. Math, Vol. 380 (1987), pp. 59-86.

References - continued

- A.M. Macbeath, Generators of the Linear Fractional Groups, Proc. Symp. Pure Math. Vol. XII, Amer. Math. Soc. (1969), pp. 14-32.
- D. Singerman, Symmetries of Riemann surfaces with large automorphism group, Math. Ann. 210, (1974) 17-32.
- E. Tyszkowska, On Macbeath-Singerman Symmetries Of Belyi Surfaces with PSL $(2, p)$ as Group of Automorphisms, Central European J. of Math. (2003) pp.208-220

