◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Symmetric surfaces with quasi-platonic PSL(2,q) action Preliminary report

S. Allen Broughton - Rose-Hulman Institute of Technology

Loyola University AMS meeting, October 4, 2015

Overview	Symmetric QP-actions	Mirrors 0000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions
Overview			

Overview of sections

- Symmetric Quasi-Platonic (QP) Actions.
- Mirrors of Symmetries.
- Symmetric QP PSL₂(q) actions prior and new results (Macbeath, Singerman, Broughton et. al, Tyszkowska).

Motivations

- Why symmetries? Symmetries are complex conjugations of a surface defined over ℝ. The mirrors are real curves.
- Why *PSL*₂(*q*)?

simple group, many low genus actions, numerous symmetries, nice group structure, easy calculations.

Overview	Symmetric QP-actions	Mirrors 0000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions
QP actions and syr	nmetric QP actions		
QP action	ons - definition		

Definition

• The finite group *G* acts conformally on the closed, orientable Riemann surface *S* if there is a monomorphism:

$$\epsilon: \mathbf{G} \to \operatorname{Aut}(\mathbf{S}),$$

where Aut(S) is the conformal automorphism group of S.

- An action is quasi-platonic if:
 - The quotient surface has genus zero: $S/G \simeq P^1(\mathbb{C})$.
 - The quotient map: π_G: S → S/G = P¹(ℂ) is ramified over three points.

Overview	Symmetric QP-actions ⊙●○○○○	Mirrors 0000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions
QP actions and symmetric C	QP actions		

Symmetric QP actions - example

- Discuss: QP-action in this picture.
- Explain the term quasi-platonic.
- Show symmetries, mirrors, and separation.

Overview	Symmetric QP-actions	Mirrors 0000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions
QP actions and symmetric C	QP actions		

Construction of actions - summary

- Let p, q, r be the reflections in the sides of a (hyperbolic) triangle on the surface with angles $\frac{2\pi}{l}, \frac{2\pi}{m}, \frac{2\pi}{n}$.
- Let a = pq, b = qr,c = rp be the rotations at the corners of the triangle. Define an action by identifying a triple (a, b, c) ∈ G³ with the rotations of the same name.
- We call (*a*, *b*, *c*) a generating (*I*, *m*, *n*)-triple of *G*. The assignment defines an action as long as the following hold.

$$\boldsymbol{G} = \langle \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \rangle \tag{1}$$

$$o(a) = I, o(b) = m, o(c) = n$$
 (2)

$$abc = 1$$
 (3)

• The genus σ of *S* satisfies

$$2\sigma - 2 = |G| \left(1 - \frac{1}{l} - \frac{1}{m} - \frac{1}{n} \right)$$

Symmetric QP-actions

Mirrors

Symmetric *PSL*(2, *q*) actions

QP actions and symmetric QP actions

Symmetries and QP actions

Definition

A symmetry or reflection on a surface *S* is an anti-conformal involution φ of *S*. A QP action $\epsilon : G \to \operatorname{Aut}(S)$ is symmetric if there is a symmetry φ normalizing the action of *G*, namely $\varphi \epsilon(G)\varphi = \epsilon(G)$.

For a symmetric QP action:

• Denote by θ the induced involutary automorphism of G

$$\theta(g) = \epsilon^{-1}(\varphi \epsilon(g) \varphi).$$

• Define $G^* = \langle \theta \rangle \ltimes G$, and extend the action $\epsilon : G^* \to \operatorname{Aut}^*(S) = \langle \operatorname{Aut}(S), \varphi \rangle$ by $\theta \to \varphi$.

Overview	Symmetric QP-actions	Mirrors 0000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions
QP actions and symmetric C	P actions		

Macbeath-Singerman symmetries

• If $\varphi = q$ is a symmetry then automorphism θ satisfies

$$\theta(a) = a^{-1}, \ \theta(b) = b^{-1}.$$

with similar formulas for p and q.

- The reflections *p*, *q*, *r* are sometimes called Macbeath Singerman symmetries.
- The local reflection *q* extends to symmetry of the entire surface if and only if an automorphism θ, satisfying the above equation, exists.

Overview	Symmetric QP-actions	Mirrors 0000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions
QP actions and syn	nmetric QP actions		
Types of	fsymmetries		

Symmetries come in two types, depending on whether θ is an inner or outer automorphism.

 If θ is inner, then G^{*} ≃ G × Z₂ assuming G is centerless. In this case S has fixed point free symmetries.

(ロ) (同) (三) (三) (三) (○) (○)

If θ is outer then S has no fixed point free symmetries. If
 G = PSL₂(q) then G^{*} = PGL₂(q)

\sim			
1	r۱		٨Λ.
\sim	I V	-	٧V

Symmetric QP-actions

Mirrors

Symmetric *PSL*(2, *q*) actions

(日) (日) (日) (日) (日) (日) (日)

Mirrors

Mirrors - definitions

Definition

Let φ be a *symmetry* or *reflection* on a surface *S*.

- The fixed point set M_φ of φ is called the mirror of the symmetry.
- The mirror \mathcal{M}_{φ} is a disjoint union of circles called *ovals*.
- The symmetry φ is called separating if S M_φ consists of two disjoint mirror image pieces, otherwise it is called non-separating.

Overview	Symmetric QP-actions	Mirrors ○●○○○○○○	Symmetric <i>PSL</i> (2, <i>q</i>) actions
Mirrors - ovals			
Number	of ovals		

The centralizer

$$\operatorname{Cent}_G(q) = \{g \in G : \theta(g) = g\}$$

acts transitively on the ovals of the mirror of q.

- The stabilizer of an oval is dihedral or cyclic (next slide).
- The subgroup of rotations of the stabilizer of an oval can be computed from the edge pattern of the oval (next slide).
- Similar results hold for *p* and *r*.
- The number of ovals can be computed using the orbit-stabilizer theorem.

)verview	-			
	r h	rs1	\sim	
	C 7 V	ιv		v٦

Symmetric QP-actions

Mirrors

Symmetric *PSL*(2, *q*) actions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Mirrors - ovals

Edge patterns and oval rotations

- Discuss: Show PQR patterns of ovals.
- Describe oval rotation.

Overview	Symmetric QP-actions	Mirrors 0000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions
Mirrors - ovals			

Partial edge pattern table

• Four of eight patterns shown.

•
$$l = 2\lambda + 1$$
 or $l = 2\lambda$
 $m = 2\mu + 1$ or $m = 2\mu$
 $n = 2\nu + 1$ or $n = 2\nu$

even	odd	basic PQR pattern	oval rotation
exponents	exponents		
	<i>I</i> , <i>m</i> , <i>n</i>	$P^+Q^+R^+$	$a^{-\lambda}b^{-\mu}c^{- u}$
1	<i>m</i> , <i>n</i>	$Q^+R^+P^+P^-R^-Q^-$	$b^{-\mu}c^{- u}a^{-\lambda}c^{ u}b^{\mu}a^{\lambda}$
<i>I</i> , <i>m</i>	n	Q^+Q^-	$b^{\mu}a^{\lambda}$
		$R^{+}P^{+}P^{-}R^{-}$	$c^{- u}a^{\lambda}c^{ u}b^{\mu}$
I, m, n		P ⁺ P ⁻	$a^{\lambda}c^{ u}$
		Q^+Q^-	$b^{\mu}a^{\lambda}$
		R^+R^-	$c^ u b^\mu$

Overview	Symmetric QP-actions	Mirrors ○○○○●○○○	Symmetric <i>PSL</i> (2, <i>q</i>) actions				
Mirrors - separability							
Fixed po	int formula						

We have two ways of determining separability of mirrors. One way uses fixed point formulas. We first note a fixed point formula for $g \in G$.

Proposition

Fixed point formula for $g \in G$

$$|S^{g}| = |N_{G}(\langle g \rangle)|(\delta_{I}(g)/I + \delta_{m}(g)/m + \delta_{n}(g)/n)$$
(4)

where $\delta_l(g) = 1$ if g is conjugate to a power of a, and 0 otherwise. Similar definitions for $\delta_m(g)$, $\delta_n(g)$.

Overview	Symmetric QP-actions	Mirrors 00000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions
Mirrors - separability			

Mirrors - separability - 1

For each pattern B_i let $\mathcal{M}(\varphi, B_i)$ be the union of all the ovals in \mathcal{M}_{φ} with edge pattern B_i .

Theorem

Suppose a has even order and let h be the involution a^{λ} . Then if q is separating we have the fixed point inequality:

$$\left| S^{h} \right| \leq 2 \left| \mathcal{M}(q, B_{1}) \right| + \cdots + 2 \left| \mathcal{M}(q, B_{s}) \right|.$$

Theorem

Suppose a has odd order. Then if q is separating we have the fixed point equality:

$$\frac{|N_G(a)|}{l} = |N_G(a) \cap \operatorname{Cent}_G(q)|$$

\sim				
· 1\/	αrr	114	au	1
$ \sim $	<u> </u>	V I V	- V	v

Symmetric QP-actions

Mirrors

Symmetric *PSL*(2, *q*) actions

(日) (日) (日) (日) (日) (日) (日)

Mirrors - separability

Mirrors - separability - 2

Notes:

- If q is separating then all the fixed points of a or h must lie on the mirror M_q. The right hand side of the equations count or estimate the number of these fixed points.
- Typically one proves that symmetries are non-separating by showing that the left hand sides are much larger than the right hand sides.
- The fixed point formulas don't always work.

Overview	Symmetric QP-actions	Mirrors ○○○○○○●	Symmetric <i>PSL</i> (2, <i>q</i>) actions
Mirrors - separabili	ty		
Mirrors	- separability - 3		

The second method involves counting triangles.

Theorem

There is an easily implemented computer algorithm that counts all the elements of G^* corresponding to triangles lying on one side of the mirror \mathcal{M}_q . The mirror \mathcal{M}_q is separating if and only if the count terminates with $|G| = |G^*|/2$ elements.

(日) (日) (日) (日) (日) (日) (日)

Overview	Symmetric QP-actions	Mirrors 0000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions ●○○○○○○	
Some results and conjectures				
Prior results				

Theorem

(Macbeath) Every quasi-platonic action of $PSL_2(q)$ has Macbeath-Singerman symmetries.

- (Broughton et al.) The symmetries of Hurwitz actions have been completely characterized. All symmetries with non-empty mirrors symmetries are non-separating. Trace arguments in SL(2, q) are used.
- (Tyszkowska)There is a Harnack like theorem describing the maximum number of ovals of a Macbeath-Singerman symmetry of a *PSL*(2, *q*) action. The oval rotations and trace arguments are used.

Overview	Symmetric QP-actions	Mirrors 0000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions ○●○○○○○	
Some results and conjectures				
Easy results				

- (originally proven in Broughton et al. for Hurwitz actions) The Macbeath Singerman symmetries are all conjugate. Therefore every mirror has ovals of each pattern type.
- If q is not divisible 3 and q > 7 then all of the Macbeath-Singerman symmetries for hyperbolic (2, 3, n) and (3, 3, n) actions are non-separating.

(日) (日) (日) (日) (日) (日) (日)

Overview	Symmetric QP-actions	Mirrors 0000000	Symmetric $PSL(2, q)$ actions	
Some results and co	njectures			
Conjectures				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conjecture

All Macbeath-Singerman symmetries of $PSL_2(q)$ are non-separating.

See next slide.

Overview	Symmetric QP-actions	Mirrors 0000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions	
results				
Sample results				

Show tables of Symmetric QP-actions

Overview	Symmetric QP-actions	Mirrors 0000000	Symmetric <i>PSL</i> (2, <i>q</i>) actions
results			
Comput	ational Tools		

We used Magma to compute all the results shown. For faster computation and for general results we can try traces in $SL_2(q)$ as follows (see Broughton et al, Glover-Sjerve and Tyszkowska).

- For each possible order *n* of an element in *u* ∈ *PSL*₂(*q*) there is a universal polynomial *f_n*(*τ*) ∈ ℤ[*τ*] such that ord(*u*) = *n* if and only if *f_n*(*Tr*(*U*) = 0 for any covering element of *u*.
- The trace of any word in *A*, *B*, *C* can be easily computed as a polynomial in {α, β, γ}. In particular this can be done for oval rotations.

done

Symmetric QP-actions

Mirrors 00000000 Symmetric *PSL*(2, *q*) actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Any Questions?

done

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References

- S.A Broughton, E. Bujalance, A.F. Costa, J.M. Gamboa, G, Gromadzki, *Symmetries of Riemann Surfaces on which PSL*(2, *p*) *acts as a Hurwitz automorphism group*, J. Pure Applied Algebra 1996) pp. 113-126
- H. Glover & D. Sjerve, *Representing PSL*₂(*p*) on a Surface of Least Genus, L'Enseignement Mathématique, Vol. 31 (1985), pp. 305–325.
- H. Glover & D. Sjerve, *The Genus of PSL*₂(q), J.reine angew. Math, Vol. 380 (1987), pp. 59–86.

References - continued

- A.M. Macbeath, *Generators of the Linear Fractional Groups*, Proc. Symp. Pure Math. Vol. XII, Amer. Math. Soc. (1969), pp. 14–32.
- D. Singerman, *Symmetries of Riemann surfaces with large automorphism group*, Math. Ann. 210, (1974) 17-32.
- E. Tyszkowska, On Macbeath-Singerman Symmetries Of Belyi Surfaces with PSL(2, p) as Group of Automorphisms, Central European J. of Math. (2003) pp.208-220