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 a compact Riemann surface of genus .    X g

Automorphism group  of  leads to covering map 
 branched at  places.

G X
X → X/G r

If  has genus  and those branch points have 
monodromy of order , respectively, then  

X/G h
m1, …, mr
[h; m1, …, mr]

is the signature of the action of  on .G X



Riemann’s Existence Theorem 

A finite group G acts on a compact Riemann surface X of 
genus g >1 if and only if there are elements of the group

a1, b1, …, ah, bh, c1, …, cr

which generate the group, satisfy the following equation, 
h

∏
i=1

[ai, bi]
r

∏
j=1

cj = 1G

Generating vector:  (a1, b1, …, ah, bh, c1, …, cr)



Riemann’s Existence Theorem 

A finite group G acts on a compact Riemann surface X of 
genus g >1 if and only if there are elements of the group

and so that  satisfy the Riemann Hurwitz formulamj = |cj |

g = 1 + |G | (h − 1) + |G |
2

r

∑
j=1 (1 − 1

mj ) .

a1, b1, …, ah, bh, c1, …, cr

which generate the group, satisfy the following equation, 
h

∏
i=1

[ai, bi]
r

∏
j=1

cj = 1G

Generating vector:  (a1, b1, …, ah, bh, c1, …, cr)



Potential signatures are those signatures 
which satisfy the Riemann Hurwitz formula: 

[h; m1, …, mr]

Actual signatures are those which also have a generating 
vector associated to them.

g = 1 + |G | (h − 1) + |G |
2

r

∑
j=1 (1 − 1

mj ) .

For a fixed group …G



With a very small number of exceptions, any signature of the 
form  for  and  is a 
potential signature.

[h; [n1, t1], …, [ns, ts]] ni ∈ $(G) ti ∈ ℤ+

We write  to mean the signature[h; [n1, t1], …, [ns, ts]]
[h; n1, …, n1

t1

, …, ns, …, ns

ts

] .

 is the order set. $(G) = {Ord(g) : g ∈ G} − {1}



Potential signatures are those signatures 
which satisfy the Riemann Hurwitz formula: 

[h; m1, …, mr]

Actual signatures are those which also have a generating 
vector associated to them.

g = 1 + |G | (h − 1) + |G |
2

r

∑
j=1 (1 − 1

mj ) .

Easy to compute.

Hard to compute.



  Example

These are not always the same. 

The signature  is a potential signature for 
 since it satisfies Riemann-Hurwitz for a curve 

of genus 2 and a group of order 9 with elements of 
order 3 and 9.  

But this signature cannot be an actual signature for 
abelian groups.  There’s an issue with the lcm of the .  

[0; 3,3,9]
G = C9

mi



Sometimes they are badly not the same for a fixed group.

  Example

Take  for an odd prime . Then   

is a potential signature for  but there is only 
one element of order 2 in this group. 

That one element certainly doesn’t generate the 
whole group!

q = pn p [0; 2, 2,…, 2
r>4

]

SL(2,q)



Our Question

Which groups only have a finite number of 
potential signatures which fail to be actual 
signatures? 

We say such groups act with almost all signatures 
(or are AAS).



•  the study of the mapping class group   

•  inverse Galois theory 

•  Shimura varieties 

•  Jacobian varieties

Knowledge of automorphism groups and the 
corresponding monodromy has important applications: 



Theorem

The commutator (or derived) subgroup  
contains an element of order every . 

 may be generated by elements of order  for 
each . 
 

[G : G]
ni ∈ $(G)

G ni
ni ∈ $(G)

I.

II.

A group G is AAS if and only if:

 is the order set. $(G) = {Ord(g) : g ∈ G} − {1}



The commutator subgroup  contains an 
element of order every . 

 may be generated by elements of order  for 
each . 
 

[G : G]
ni ∈ $(G)

G ni
ni ∈ $(G)

I.

II.



If II. is false then potential signatures [0; ni, ni, … . , ni

≥4

]

If I. is false then potential signatures  for  
are never actual signatures.

[h; ni] h > 0

are never actual signatures.

The commutator subgroup  contains an 
element of order every . 

 may be generated by elements of order  for 
each . 
 

[G : G]
ni ∈ $(G)

G ni
ni ∈ $(G)

I.

II.



If II. is true then we exhibit generating vectors for any 
signature  for  beyond a certain bound.[h; m1, …, mr] r

If I. is true, we exhibit generating vectors for any 
signature  with  beyond a certain bound.[h; m1, …, mr] h

The commutator subgroup  contains an 
element of order every . 

 may be generated by elements of order  for 
each . 
 

[G : G]
ni ∈ $(G)

G ni
ni ∈ $(G)

I.

II.



ExampleExample

Take a set  and  set of 
generators of order .

{n1, n2, n3} ∈ $(G) {g1, g2, g3}
n3

Say  and  with c1 c2 ∈ G o(ci) = ni .



Example

Take a set  and  set of 
generators of order .

{n1, n2, n3} ∈ $(G) {g1, g2, g3}
n3

Say  and  with 
 Then

c1 = g1g−2
2 g3 c2 = g−1

3 g1g2 ∈ G
o(ci) = ni .

is a generating vector for signature .[0; n1, n2, n3, …, n3

7

]

(c1, c2, g−1
2 , g−1

1 , g3

c−1
2

, g−1
3 , g2, g2, g−1

1

c−1
1

)



Any non-abelian finite simple group is AAS.

Theorem

Non-abelian simple groups all have commutator 
subgroup the full group.

I.

II. Take an element of order . The set of conjugates 
of that element is a set of elements of order  and 
which generate a normal subgroup.  Since simple, 
this is all of G.

ni
ni



Proposition

If a group G is AAS, then it is either a non-abelian 
-group, or a perfect group.p

A perfect group is one where the commutator subgroup is 
the whole group. 

Since the commutator subgroup must contain elements of 
every order in ,  any AAS group must be non-abelian.$(G)



Suppose not a -group:  and  two distinct primes in  p p q $(G)

Since AAS,    is generated by elements of order  which 
means  is generated by elements of order  too.

G p
G/[G, G] p

But  is abelian so   is elementary abelian 
of order  for some .

G/[G, G] G/[G, G]
pk k

Same argument for the prime  implies   is 
elementary abelian of order  for some .   So   
must be trivial, hence  is perfect.  

q G/[G, G]
qℓ ℓ G/[G, G]

G



Not all non-abelian -groups are AAS.p

Proposition

A non-abelian -group of order  and exponent  
 is never AAS.

p pn

pn−1

(the commutator subgroup is too small)



• Certainly all non-abelian -groups of exponent  are AAS. 

• We are working on classifying the -group case.

p p

p



• Certainly all non-abelian -groups of exponent  are AAS. 

• We are working on classifying the -group case.  

• There are perfect but non-simple groups which are AAS.  
For example the two perfect groups of order 960 and one 
of order 1080 are. 

• From Magma:  229 perfect groups up to order 50,000, of 
which 26 are simple, and 86 are non-simple and AAS.

p p

p



Suppose that  is 
an actual signature for a group . Then the following are 
also actual signatures: 

• ,  

• , and 

•  for  odd. 

                 

[h; [n1, t1], [n2, t2], …, [ni, ti], …, [nr, tr]]
G

[h + 1; [n1, t1], [n2, t2], …, [ni, ti], …, [nr, tr]]

[h; [n1, t1], [n2, t2], …, [ni, ti + 2], …, [nr, tr]]

[h; [n1, t1], [n2, t2], …, [ni, ti + 1], …, [nr, tr]] ni

(a1, b1, …ah, bh, c1,1, …c1,t1, …, ci,1, …, cr,1, …, cr,tr)



Suppose that  is 
an actual signature for a group . Then the following are 
also actual signatures: 

• ,  

• , and 

•  for  odd. 

                 

[h; [n1, t1], [n2, t2], …, [ni, ti], …, [nr, tr]]
G

[h + 1; [n1, t1], [n2, t2], …, [ni, ti], …, [nr, tr]]

[h; [n1, t1], [n2, t2], …, [ni, ti + 2], …, [nr, tr]]

[h; [n1, t1], [n2, t2], …, [ni, ti + 1], …, [nr, tr]] ni

(a1, b1, …ah, bh, c1,1, …c1,t1, …, c2
i,1, c−1

i,1 , …, cr,1, …, cr,tr)



For each simple group up to order 10 000, what is the 
largest genus  so that there exists a potential signature 
for a curve of that genus which is, in fact, not an actual 
signature?

g



For each simple groups up to order 10 000, what is the 
largest genus  so that there exists a potential signature 
for a curve of that genus which is, in fact, not an actual 
signature?

g

many

^



For each simple groups up to order 10 000, what is the 
largest genus  so that there exists a potential signature 
for a curve of that genus which is, in fact, not an actual 
signature?

g

Well, at least for covers of ?ℙ1

many

^



PSL(2,7) 210 [0; 2, 2, 2, 3] [0; 2, 2, 2, 4] [0; 2, 2, 2, 2, 2]

  PSL(2,9)A6 ≅ 31 [0; 2, 2, 2, 3] [0; 3, 4, 4]

PSL(2,11) 56 [0; 2, 2, 2, 3]

group g potential, but not actual signatures

PSL(2,16) [0; 3, 3, 5] [0; 2, 5, 5] [0; 5, 5, 5] [0; 3, 5, 5]817

[0; 4, 5, 6]
[0; 3, 4, 4][0; 2, 6, 6]

[0; 5, 5, 5]
[0; 4, 4, 5]

[0; 2, 4, 6]
[0; 3, 3, 5]

[0; 3, 5, 5] [0; 3, 6, 6]

1821 [0; 2, 5, 5]

[0; 5, 6, 6]

[0; 2, 5, 6]
[0; 3, 4, 6]

PSL(2,25) [0; 2, 4, 5]



, and PSL  forA5 (2,q)
q = 8, 13, 17, 19, 23, 27

Every potential signature is an actual signature.

A7 [0; 2, 3, 7]
[0; 2, 6, 6]

3150
[0; 2, 2, 2, ni]
[0; 2, 5, 5]

[0; 2, 5, 6] [0; 3, 3, 4]
[0; 2, 4, 5] [0; 2, 4, 6]

[0; 2, 2, 2, 2, 2]

[0; 2, 3, 8]

[0; 3, 4, 4]

[0; 2, 6, 6]

[0; 3, 5, 5] [0; 4, 4, 4]

[0; 2, 4, 5][0; 2, 4, 6]

[0; 3, 3, 4] [0; 3, 3, 5] [0; 3, 3, 6] [0; 3, 3, 11]
[0; 2, 2, 3, 3]

9900?
[0; 2, 5, 5][0; 2, 4, 8] [0; 2, 5, 6]
[0; 2, 3,11]M11

group g potential, but not actual signatures

[0; 2, 2, 2, 2, 2]

(Potential signature with .)h = 0



The End


