Short homology bases for hyperelliptic hyperbolic surfaces

Bjoern Muetzel

Eckerd College, St. Petersburg, FL

March 21, 2022

Short homology bases for hyperelliptic hyperbolic surfaces

Σ

joint work with Peter Buser and Eran Makover

Result

Let S be a hyperelliptic hyperbolic surface S of genus $g \geq 2$.
1.) Then S has almost $\frac{2}{3} g$ homologically independent loops of length smaller than a constant C_{1}.
2.) In the lattice of the Jacobian torus $J(S)$ of S there are almost $\frac{2}{3} g$ linearly independent vectors of length smaller than a constant C_{2}.

Overview

(1) Short loops on hyperelliptic Riemann surfaces
(2) Homology of edges and loops
(3) A pruning algorithm
(4) Jacobian of hyperelliptic surfaces

Short loops for hyperelliptic hyperbolic surfaces

Σ

- A hyperelliptic surface S of genus $g \geq 2$ has a hyperelliptic involution $\phi: S \rightarrow S$.
- The quotient Σ is a topological sphere with $2 g+2$ cone points of angle π.
- These cone points $\left\{p_{i}\right\}_{i=1, \ldots, 2 g+2}$ are the images of the fixed points under the natural projection $\Pi: S \rightarrow \Sigma$.
- We call the p_{i}^{*} as well as the p_{i} the Weierstrass points of S and Σ respectively.

Short loops for hyperelliptic hyperbolic surfaces

- We can find short curves on the sphere Σ by expanding disks around the cone points.
- The upper bounds for the lengths of these curves is due to an area argument.
- We obtain short loops on the surface S by lifting the short curves on Σ.

Short loops for hyperelliptic hyperbolic surfaces

- The curves we obtain on the sphere are either edges or loops.
- An edge lifts to a simple closed geodesic between two cone points on S.
- A loop lifts to a figure-eight geodesic connected to one cone point on S.
- In the latter case we keep one of the loops of the figure-eight geodesic.

Short loops for hyperelliptic hyperbolic surfaces

Σ

Lemma 1 Let S be a hyperelliptic hyperbolic surface, then there exist g non-separating loops $\left(\alpha_{m}\right)_{m=1, \ldots, g}$ attached to Weierstrass points on S, such that

$$
\ell\left(\alpha_{m}\right) \leq 4 \log \left(2 \cdot\left(\frac{g-1}{g-m+2}\right)+2\right), \text { for all } m \in\{1, \ldots, g\}
$$

The median length $\left(m=\frac{g}{2}\right)$ is bounded by $4 \log (6)$ and the $\left(\alpha_{m}\right)_{m}$ are bounded by $4 \log (g+1)$.

Problems

- Can two loops be in the same free homotopy class? Yes.
- Can several different loops together separate the surface? Yes.
- Question: How can we remove unwanted curves?

The graph \mathcal{G} of edges and loops on the sphere Σ

- The curves we obtain on the sphere form a graph \mathcal{G} on Σ.
- The graph \mathcal{G} can have the following connected components:

Homologically independent loops from a subgraph \mathcal{H} of \mathcal{G}

- Let \mathcal{H} be a subgraph of \mathcal{G}, obtained by removing edges or loops, but keeping the vertices / cone points.
- Let $\mathcal{H}^{\#}$ be the corresponding lift, with the modification for the figure-eight loops.

Lemma $2 \mathcal{H}^{\#}$ in S is non-separating if and only if any open connected component of $\Sigma \backslash \mathcal{H}$ contains a simple closed curve Γ that separates $p_{1}, \ldots, p_{2 g+2}$ into two odd subsets i.e. the number of points on either side of Γ is odd.

Pruning algorithm

- Idea 1: Edges are "good", loops are "bad".
- Idea 2: Divide the sphere Σ along loops to get a hierarchical subdivision of regions of Σ.
- Idea 3: Remove curves from bottom to top.

Pruning algorithm

- The worst case is the case of a loop with an edge inside in Σ.
- For this case the ratio of loops to cone points in S is 2:3.

Pruning algorithm

Theorem 1 Let S be a hyperelliptic Riemann surface of genus $g \geq 2$. Then for any $\lambda \in(0,1)$ there exist $\left\lfloor\lambda \cdot \frac{2}{3} g\right\rfloor$ homologically independent loops $\left(\alpha_{k}\right)_{k=1, \ldots,\left\lfloor\lambda \cdot \frac{2}{3} g\right\rfloor}$, such that

$$
\ell\left(\alpha_{k}\right) \leq C(\lambda)=4 \log \left(\frac{6}{1-\lambda}+2\right) \text { for all } k \in\left\{1, \ldots,\left\lfloor\lambda \cdot \frac{2}{3} g\right\rfloor\right\}
$$

Lengths of vectors in the lattice of the Jacobian $J(S)$

By a result of Buser and Sarnak an upper bound on the lengths $\|v\|$ of a vector v in the lattice of the Jacobian torus $J(S)$ of a hyperbolic Riemann surface S can be obtained using collars around non-separating loops.

$$
\|v\| \leq \frac{\ell(\eta)}{\pi-2 \arcsin \left(\cosh (w)^{-1}\right)}
$$

Collar lemma

The Collar lemma for hyperbolic surfaces states that every simple closed geodesic η in a hyperbolic surface S has a collar of at least width W where

$$
W \geq \operatorname{arcsinh}\left(\sinh \left(\frac{\ell(\eta)}{2}\right)^{-1}\right)
$$

The Jacobian $J(S)$ of a hyperelliptic surface S

Combining the length estimates for our curves with the Collar lemma, we obtain

Theorem 2 Let S be a hyperelliptic hyperbolic surface of genus $g \geq 2$. Then for any $\lambda \in(0,1)$ there exist $\left\lfloor\lambda \cdot \frac{2}{3} g\right\rfloor$ linearly independent vectors $\left(v_{k}\right)_{k=1, \ldots,\left\lfloor\lambda \frac{2}{3} g\right\rfloor}$ in the lattice of the Jacobian torus $J(S)$, such that for all $k \in\left\{1, \ldots,\left\lfloor\lambda \frac{2}{3} g\right\rfloor\right\}$:

$$
\left\|v_{k}\right\|^{2} \leq \frac{C(\lambda)}{\pi-2 \cdot \arcsin \left(\frac{1}{\cosh (w(\lambda)}\right)}=D(\lambda)
$$

Summary

Let S be a hyperelliptic hyperbolic surface S of genus $g \geq 2$.
1.) Then S has almost $\frac{2}{3} g$ homologically independent loops of length smaller than a constant C_{1}.
2.) In the lattice of the Jacobian torus $J(S)$ of S there are almost $\frac{2}{3} g$ linearly independent vectors of length smaller than a constant C_{2}.

Thank you for your attention!

