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Overview

Sections

1 Overview, motivation and history, some introductory
pictures

2 Triangular (quasi-platonic) group actions on surfaces
3 Symmetries - geometry and algebra
4 Search for symmetries and triangulated unorientable

surfaces
5 Wrap up and questions
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Overview

What are we looking for?

Suppose that
M is closed, unorientable surface which can be
triangulated by (l ,m,n) triangles, and
there is a “substantial” group of isometries of M that
preserves the triangulation.

We wish to construct all (or at least many) such surfaces.
We study S, the (orientation) double covering of M, the
covering group 〈ψ〉, and the lifted triangulation.
Now reverse the process. Find surfaces S, with a highly
symmetric triangulation and a fixed point free
anti-conformal involution ψ that preserves the triangulation.
Then pick M = S/ 〈ψ〉 and compute the automorphism
group of the triangulation on M.
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History and motivation

History

The second author contacted the first author, to see if the
well known of methods classifying triangulated
(quasiplatonic) surfaces could be applied to unoriented
surfaces.
Desired application - next two slides
The answer is yes and it appears that our comprehensive
classification methodology is new. Comprehensive details
and proofs will appear in [2] (under preparation).
There is considerable literature on classification of
symmetries for quasi-platonic surfaces. See some sample
references on slide 43.
Our methodology builds upon those articles.
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History and motivation

Topological quantum codes - 1

For more background on topological quantum computation
see [1].
Topological quantum computation uses a cellular
decomposition or tiling of a compact 2-manifold.
The quantum computer consists of qubits and check
operators as in this table:

cellular component purpose
edges qubits
vertex Xv vertex check operator
face Zf face check operator

The vertex and face check operators only take into account
the qubits, e, incident to a vertex or bounding a face.
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History and motivation

Topological quantum codes -2

Topological quantum code models have grown increasingly
more complex. See [1].

the lattices of squares or hexagons on a torus.
polyominos on a torus.
cell decompositions of the projective plane.
regular tessellations of compact orientable surfaces by
regular polygons - these can be generated from
triangulations of surfaces via dessins d’enfant.

Our current investigation seeks examples of unoriented
surfaces to add to the list.
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Some pictures and examples

The (2,3,5)-tiled sphere - icosahedron

Figure 1: Sphere with (2,3,5) triangulation
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Some pictures and examples

The (2,4,4)-tiled torus

Figure 2: Torus with (2,4,4) triangulation
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Some pictures and examples

The unoriented quotient surfaces

(2,3,5) triangulation on the sphere (slide 7). The antipodal
map

ψ(z) =
−1
z

preserves the triangulation and has no fixed points. We get
a (2,3,5) triangulation on the projective plane.
(2,4,4) triangulation on the torus (slide 8). Reflect a
horizontal torus in a horizontal plane through the equator.
Rotate torus a half turn around a vertical axis through the
center of the donut hole. No point is fixed, though the
triangulation is preserved. The quotient surface is the
bottom half of the torus with two triangulated Möbius band
sewn in with overlap, one for each oval of the bottom half of
the torus.
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Triangulations and tilings

Triangulations in the universal cover

S is a closed Riemann surface of any genus.
U is the universal cover of S, a simply connected geometry
with constant curvature κ.

U = Ĉ, Riemann sphere, κ > 0, genus of S = 0
U = C, Euclidean plane, κ = 0, genus of S = 1
U = H, hyperbolic plane, κ < 0, genus of S ≥ 2

(l ,m,n) triangle: interior angles π/l , π/m, π/n in
counter-clockwise order, l ,m,n integers ≥ 2 (slide 12)
l ,m,n satisfy

1
l

+
1
m

+
1
n
> 0⇔ κ > 0

1
l

+
1
m

+
1
n

= 0⇔ κ = 0

1
l

+
1
m

+
1
n
< 0⇔ κ < 0



Overview and motivation Triangular surfaces and actions Symmetries Symmetry search Wrap up

Triangulations and tilings

Triangulation examples

The (2,3,5)-tiled sphere (slide 7)
The (4,4,3)-tiled hyperbolic plane (disk model)

4−4−3 tiling

Figure 3: Hyperbolic plane with a (4,4,3) triangulation
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Triangulations and tilings

The master tile8 Chap. 2 Kaleidoscopic Tilings
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Figure 2.5 The master tile, reßected images, and group generators

The conjugation action of q on the generators a, b of G induces an automorphism
θ satisfying:

θ(a) = qaq = qaq−1 = a−1, (2.3)
θ(b) = qbq = qbq−1 = b−1 (2.4)

The relation between the group order G and the genus σ of the surface is given by
the Riemann-Hurwitz equation:

2σ − 2
|G| = 1−

µ
1

l
+
1

m
+
1

n

¶
. (5)

It follows that the genus is given by:

σ = 1 +
|G|
2

µ
1−

µ
1

l
+
1

m
+
1

n

¶¶
, (6)

Figure 4: The master tile
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Geometry and algebra of triangulations

More on the master tile

In the figure of the master tile ∆0 and the example
triangulations (slides 12,11):

repeated reflections in the sides of tiles, starting with the
master tile, create a triangulation T in U
p,q, r denote the sides of ∆0 and the reflections in those
sides.
Define

a = pq, b = qr , c = rp. (1)

a,b, c are counter-clockwise rotations centred at R,P,Q,
respectively, and have orders l ,m,n, respectively.
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Geometry and algebra of triangulations

The triangle groups

The full and orientation-preserving isometry groups in U
preserving the triangulation T are the triangle groups

T ∗
l,m,n = 〈p,q, r〉 (orientation-preserving or not), and

Tl,m,n = 〈a,b, c〉 (orientation preserving only).

They have these presentations

T ∗l,m,n =
〈

p,q, r : p2 = q2 = r2 = (pq)l = (qr)m = (rp)n = 1
〉
,

Tl,m,n =
〈

a,b, c : al = bm = cn = abc = 1
〉
.

∆0 is a fundamental domain for the T ∗l,m,n action on U.
the q-kite ∆0 ∪ q∆0 is a fundamental domain for the Tl,m,n
action on U, and the same for the p-kites and r -kites (see
slides 12,11 ).
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Geometry and algebra of triangulations

Uniformization of triangular actions

Let πS : U → S be the universal cover, with group of deck
transformations Π.
Π is a torsion free group of automorphism of U, isomorphic
to π1(S).
Assuming Π < Tl,m,n, then S = U/Π inherits a triangulation
T = T /Π by (l ,m,n) triangles.
Assuming Π / Tl,m,n, then the finite group

GS = Tl,m,n/Π

acts naturally upon S = U/Π as a group of conformal
automorphisms of S that preserves the triangulation T .
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Group actions

Group actions

Aut(S) is the group of conformal automorphisms of S.
A conformal group action of the finite group G on S is a
monomorphism

ε : G→ Aut(S).

Two actions ε1, ε2 : G→ Aut(S) are algebraically
equivalent if and only if

ε2 = ε1 ◦ ω

for some ω ∈ Aut(G).
ε1, ε2 are algebraically equivalent if and only if they have
the same image in Aut(S).
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Group actions

Surface kernel epimorphisms

There is an exact sequence

Π→ Tl,m,n → GS ⊆ Aut(S).

If ε : G→ Aut(S) is an action with ε(G) = GS, then the

exact sequence Π→ Tl,m,n → GS
ε−1
→ G gives a so-called

surface kernel epimorphism

Π→ Tl,m,n
η→ G, (2)

giving us an alternative construction of a triangular action
of G on the surface S = H/Π.
For ω ∈ Aut(G), η, ω ◦ η both define algebraically equivalent
actions on the same surface S = H/Π (same kernel).
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Group actions

Generating triples - 1

Given an action defined by (2), define

a = η(a),b = η(b), c = η(c). (3)

The triple (a,b, c) satisfies

G =
〈
a,b, c

〉
(4)

al = b
m

= cn = abc = 1. (5)

(a,b, c) is called a generating triple with signature (l ,m,n).
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Group actions

Generating triples - 2

The elements a,b, c act by rotations at the corners of the
master tile (slide 12).
The signature is given by

(l ,m,n) = (o(a),o(b),o(c)).

The size of the group G and the genus σ of S satisfy the
Riemann Hurwitz equation

2σ − 2
|G|

= 1− 1
l
− 1

m
− 1

n
. (6)
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Group actions

Geometry of S/G

Define
T = S/G = U/Tl,m,n ' Ĉ.

with quotient maps πG : S → T and πT : U → T .
πG and πT are branched over three points, say {0,1,∞}.
The branch points are the images of vertices of the
triangulations T or T .

T has a triangulation or tiling T , i.e., a system of vertices,
edges, and faces, compatible with T and T . (slide 12)

vertices {0,1,∞}: images of three classes of vertices of
tiles,
open edges {(−∞,0), (0,1), (0,+∞)}: homeomorphic
images of three classes of open edges of tiles, and
open faces {H+,H−}: conformal images of two different
classes of interiors of tiles.
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Geometry of symmetries

What is a symmetry?

(See slide 8 to illustrate the concepts.)
A symmetry ψ of a surface S is an anti-conformal
involution, i.e., ψ2 = Id .
The mirror of ψ is the fixed point set
Mψ = {x ∈ S : ψ(x) = x}.
Mψ is a possibly empty, disjoint set of closed, simple,
geodesic curves called ovals.
The quotient surface S/ 〈ψ〉 is a Klein surface, orientable if
S\Mψ is disconnected (separating symmetry), and is
unorientable otherwise (non-separating symmetry).
If ψ is fixed point free, then S/ 〈ψ〉 is an (unorientable)
Klein surface without boundary.
We shall search for fixed point free symmetries.
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Geometry of symmetries

Questions about symmetries

Assume S has a triangular action of G. We are interested in
finding symmetries that normalize the action of G – and we
shall assume so from now on. Questions that are typically
asked about symmetries are (see refs 43):

1 Are there any symmetries ψ of S normalizing the G action?
2 If so, determine the G conjugacy classes of symmetries.
3 Is the mirrorMψ non-empty, and if so, how many ovals are

there?
4 Is ψ a separating symmetry?
5 Is the automorphism θ(g) = θψ(g) = ψgψ inner or outer?
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Geometry of symmetries

Examples of symmetries

Example
Suppose S is defined by equations with real coefficients. Then
complex conjugation in the ambient space defines a symmetry
of S. The ovals are the components of the real curve.
Specifically, the Fermat curve xn + yn = ±1 has an (n,n,n)
triangulation. The symmetry is fixed point free for even n and
choosing −1 for the right hand side.

Example
Suppose that the local reflection in the side of a tile extends to a
globally defined isometry on S. Then the extended isometry is a
symmetry. See master tile slide 12. The local reflection extends
globally if there is a covering reflection on U that normalizes Π.
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Geometry of symmetries

The quotient symmetry and symmetry type

Assume that the symmetry ψ normalizes the action of G on S.
There is a quotient symmetry ψ on T = S/G.

ψ permutes the branch points {0,1,∞} and preserves T .
ψ(z) = L(z), where L(z) is linear fractional transformation
determined by the permutation of {0,1,∞} induced by ψ.
Here are the possibilities:

Type of ψ permutation Signature ψ(z)

I (0,1,∞) (l ,m,n) z
II.a (1,0,∞) (l , l ,n) 1− z
II.b (∞,1,0) (l ,m, l) 1

z
II.c (0,∞,1) (l ,m,m) z

z−1

(7)
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Geometry of symmetries

Standard symmetries

See slides 12,11 to illustrate the concepts following.
The standard Type I symmetries of a triangular surface are
the reflections ψp, ψq, ψr in the sides of the master tile, if
they exist.
Assume that l = m so that the q-kite is also a rhombus. Let
s be the rhombus bisector, i.e., the perpendicular bisector
of q, which is the line segment from Q to qQ. Then the
reflection ψs, is the standard Type II.a symmetry if it
exists.
Similar definitions apply to the p-kites and r -kites if the
signatures permit.
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Geometry of symmetries

More on symmetries, mirrors, and types

Proposition

A quotient symmetry ψ permutes the vertices, edges, and faces
of T . Hence, by lifting, ψ preserves T . In addition, the mirror of
ψ is a union of tile edges (Type I) or rhombus bisectors (Type II).

Proposition

If a surface S has a symmetry of a given type (Table (7)) then it
also has a symmetry of the same type with a non-empty mirror.

Proposition

Every symmetry with a non empty mirror is G conjugate to a
standard symmetry of the same type.
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Algebra of symmetries

Induced automorphism of a symmetry

Given a symmetry, ψ, the map

θ(g) = θψ(g) = ψgψ (8)

is an automorphism satisfying

θ2 = Id (9)

For convenience, identify (a,b, c) with (a,b, c), the
generating triple of the G-action, via a = ε(a), etc.
With this identification, θ is uniquely determined by the
values θ(a), θ(b), θ(c) which are words in a,b, c.



Overview and motivation Triangular surfaces and actions Symmetries Symmetry search Wrap up

Algebra of symmetries

Standard automorphism formulas

p,q, r - edges of the master tile
s, t ,u - rhombus bisectors – if defined
Automorphisms of the standard symmetries, if they exist,
may be defined in terms of a,b, c by computing the local
action on the master tile (slide 12).

Type symmetry θ(a), θ(b), θ(c)

I ψp c−1a−1c,b−1, c−1

I ψq a−1,b−1,bc−1b−1

I ψr a−1, c−1b−1c, c−1

II.a ψs b−1,a−1, c−1

II.b ψt c−1,b−1,a−1

II.c ψu a−1, c−1,b−1

(10)
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Existence of symmetries

Symmetry existence theorems - 1

Here is the first of two differently stated symmetry existence
theorems. The first theorem was originally stated by Singerman
[3] and assumes that the surface and action are given.

Theorem (Surface and action given)

Let (a,b, c) be a generating triple of signature (l ,m,n) for a G
action on S. Then S has a standard symmetry of Type I or II as
given in Table (10) if and only if there is an automorphism θ of
G satisfying the restrictions in the same Table. The
automorphism θ is unique.
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Existence of symmetries

Symmetry existence theorems - 2

In our second theorem we assume a given G and θ and try to
find a surface S and symmetry ψ.

Theorem (group and involution given)

Let θ be an automorphism of group G satisfying θ2 = Id. Then
there is a surface S with standard symmetry ψ such that θ = θψ
if and only if there is a generating vector (a,b, c) satisfying one
of the formulas in Table (10). The signature and genus are
given by the formulas on slide 19. There may be multiple
solutions (a,b, c) and so the algebraic equivalence class of the
action, the signature, and the genus of the surface may not be
unique.



Overview and motivation Triangular surfaces and actions Symmetries Symmetry search Wrap up

Companion and conjugate symmetries

Companion symmetries

Given two symmetries ψ, ψ′, of the same type, there is a
g ∈ G such that

ψ′ = ψg = ψ ◦ ε(g)

as isometries of S.
We say that ψ, ψ′ are companion symmetries. They may
not be conjugate!
Observe that

1 =
(
ψ′
)2

= ψgψg = θ(g)g

so
θ(g) = g−1.

Since p = qa−1 and r = qb, then ψp, ψq, and ψr are all
companion symmetries.
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Companion and conjugate symmetries

Inverted elements, centralizer, and an action

For θ ∈ Aut(G) satisfying θ2 = 1, define

IG(θ) =
{

g ∈ G : θ(g) = g−1
}

ZG(θ) = {g ∈ G : θ(g) = g}

Note that for h ∈ G

hψgh−1 = ψψhψgh−1 = ψθ(h)gh−1

It is easily checked that h · g = θ(h)gh−1 is a left G action
on IG(θ), equivalent to the conjugation action of G on
symmetries of a fixed type. Call this action θ-twisted
conjugation.
This new action is defined even if ψ does not exist.
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Companion and conjugate symmetries

Finding Type I fixed point free symmetries

Theorem (Type I companion symmetries)

Suppose the triple (a,b, c) defines a triangular action of G upon
S with Type I standard symmetry ψq. Let θ correspond to ψq.
Let O1, . . . ,Ok be the orbits of the θ-twisted conjugation on
IG(θ) .
Then, the conjugacy classes of Type I symmetries on S are in
1-1 correspondence with the orbits O1, . . . ,Ok . The orbits of the
elements

{
1,a−1,b

}
determine the conjugacy classes of

symmetries with fixed points. The remaining orbits, if any,
correspond to equivalence classes of fixed point free Type I
symmetries.
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Companion and conjugate symmetries

Finding Type II fixed point free symmetries

Theorem (Type II companion symmetries)

Suppose the triple (a,b, c) defines a triangular action of G upon
S with isosceles signature (l , l ,n) and Type II.a standard
symmetry ψs. Let θ correspond to ψs. Let O1, . . . ,Ok be the
orbits of the θ-twisted conjugation on IG(θ) .
Then the conjugacy classes of Type II.a symmetries on S are in
1-1 correspondence with the orbits O1, . . . ,Ok . The orbit of the
element {1} determines the conjugacy classes of symmetries
with fixed points. The remaining orbits, if any, correspond to
equivalence classes of fixed point free Type II.a symmetries.
Similar statements apply to Type II.b and Type II.c symmetries,
signature permitting.
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Companion and conjugate symmetries

Automorphisms of M

Proposition (the group Aut(M))

Let G have a triangular action upon S, ψ a normalizing
symmetry, and θ the corresponding automorphism. Then ZG(θ)
acts as a group of automorphisms of the Klein surface
M = S/ 〈ψ〉.

Remark
If θ is an inner automorphism then it is possible that ψ has a
companion symmetry whose automorphism is the identity and
in this case the entirety of G acts as automorphisms on M. This
is not yet resolved.



Overview and motivation Triangular surfaces and actions Symmetries Symmetry search Wrap up

A group first approach

Group and involutions

1 Select a finite group G.
2 Find Aut(G).
3 Find representatives of involution classes in Aut(G):
θ1, . . . , θd .

4 For each θ in the list compute the following and then
complete steps 5 and 6.

IG(θ) =
{

g ∈ G : θ(g) = g−1
}
,

ZG(θ) = {g ∈ G : θ(g) = g} ,
ZαG(θ) = {ω ∈ Aut(G) : ωθ = θω} .

5 Compute the orbits O1, . . . ,Ok of the θ-twisted conjugation
on IG(θ).

6 Construct numbering map on : IG(θ)→ {1, . . . , k}, where
on(g) = j ⇔ g ∈ Ok .
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A group first approach

Type I

1 For a,b ∈ IG(θ) check if (a,b, (ab)−1) is a generating
vector. If so, record in a list.

2 Find representatives of the ZαG(θ) - orbits in the list, this
eliminates duplication.

3 Compute signature and genus for each resulting triple.
4 For each triple compute the following

((on(1),on(a−1),on(b)), {remaining orbit numbers}).

The “remaining orbit numbers” correspond to fixed point free
Type I symmetries.
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A group first approach

Type II

First Type II.a
1 For a ∈ G check if (a, θ(a−1), (aθ(a−1))−1) is a generating

vector. If so, record in a list.
2 Find representatives of the ZαG(θ) - orbits in the list, to

eliminate redundancy.
3 Compute signature and genus for each resulting triple.
4 For each triple compute

(on(1), {remaining orbit numbers})

The remaining orbit numbers correspond to fixed point free
Type II.a symmetries The process for Type II.b and Type II.c is
similar.
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A group first approach

Remarks

Some of the analysis can be worked out by hand: cyclic,
abelian, non-abelian groups of order pq, examples in the
articles on the reference page (slide 43).
We skip θ = Id since this only yields dihedral actions on
the sphere.
There may be some redundancy because of permuted
signatures.
Computations have been done for over 4,000 groups. Lets
look at the record file for Alt(5) (this is another file, not part
of the slides).
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Future work

The methods here can be used for a detailed analysis of
symmetries of n-gonal actions.
The analysis of symmetries can be used to describe the
moduli space of real curves as a subset of the moduli
space of complex curves.
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Q&A

Questions
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Forthcoming works

C.D. Albuquerque, E.B. da Silva, W.S Soares, Quantum
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