overview.gif

7. Z-Transform Click for Audio

Overview: In chapter 7 the z-Transform is introduced. This algebraic method introduces polynomials into the analysis of linear systems. Thus the well-known operations of factoring of polynomials, multiplying and dividing polynomials have powerful consequences and interpretations for digital filters. In general, the z-Transform system functions are rational functions-the ratio being a numerator polynomial divided by a denominator polynomial. Of particular interest are the polynomial roots which, in the case of feedback filters, make up the poles and zeros of the filter. In the long run, most properties of digital filters can be restated in terms of the pole and zero locations in the complex z-plane. For example, stability of a filter requires that the poles lie inside the unit circle.

Homework

Labs - MATLAB

Lab 09: Encoding and Decoding Touch-Tone Signals This lab introduces a practical application where sinusoidal signals are used to transmit information: a touchtone dialer. Bandpass FIR filters can be used to extract the information encoded in the waveforms. The goal of this lab is to design and implement bandpass FIR filters in MATLAB, and do the decoding automatically. In the experiments of this lab, you will use firfilt(), or conv(), to implement filters and freqz() to obtain the filter's frequency response. As a result, you should learn how to characterize a filter by knowing how it reacts to different frequency components in the input. [Files]
Lab 10: Octave Band Filtering This lab introduces a practical application where we attempt to extract information from sinusoidal signals - in this case, piano notes. Bandpass FIR filters can be used to extract the information encoded in the waveforms. The goal of this lab is to design and implement several bandpass FIR filters in MATLAB, and use the filtered outputs to determine automatically which note is being played. However, since there are 88 keys on the piano, we will only require the system to figure out which octave the note is in, not the exact note. In the experiments of this lab, you will use firfilt(), or conv(), to implement filters and freqz() to obtain the filter's frequency response. As a result, you should learn how to characterize a filter by knowing how it reacts to different frequency components in the input. [Files]


../../graphics/chirpcov.png Home
McClellan, Schafer, and Yoder, Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. © 2012 Pearson Education, Inc.