| Name                             |              | CM           |  |
|----------------------------------|--------------|--------------|--|
| Instructor/Section (Circle one): | Richards – 8 | Richards – 9 |  |

Mayhew - 8

Mayhew - 9

ES202 Examination III February 9, 2005

| Problem | Points | Score |
|---------|--------|-------|
| 1       | 40     |       |
| 2       | 60     |       |
| Total   | 100    |       |

Show all work for full credit.

One equation/notes page allowed (1 side, 8-1/2 x 11 sheet).

Laptops allowed but no pre-prepared worksheets, etc.

## Problem 1 (40 points)

A siphon is used to drain a hot tub located on the roof of a building that is 30 m high. The siphon tube is suspended 2 m above the top of the water level in the hot tub and extends down to a lower floor (see figure). The diameter of the siphon tube is 3 cm.

Assume NO LOSSES of mechanical energy; water temperature is uniform at 35 °C [  $\rho_{water}$  = 994 kg/m³] and atmospheric pressure is 100 kPa

- (a) When the siphon is operating how are the following pressures related. Fill in the blank with >, =, < or X meaning cannot determine with given information.
  - (1)  $P_2 = P_1$
  - (2)  $P_3 _ P_1$
  - (3)  $P_4 = P_1$
  - (4) Cannot determine with given information
- (b) Find *h* that produces a flow rate of 0.0087 m<sup>3</sup>/sec. (Assume the water stays a liquid throughout the process.)
- (c) Determine the pressure at Point 2, in kPa.
- (d) The water temperature is 35 °C and will "boil" at a pressure of 5.628 kPa. Will the water boil anywhere during the draining process at this flow rate? Support your answer.



## Problem 2 (60 points)

A water fountain is installed at a remote location by attaching a 20-mm-diameter cast iron pipe directly to a water main through which water is flowing at 20°C. The entrance to the cast iron pipe is sharp-edged, and the 20-m-long piping system involves three 90° miter bends without vanes, a fully-open gate valve, and an angle valve with  $K_L = 5$  when fully open. The elevation difference between the supply pipe and the fountain is negligible.



Determine the water main pressure that is required to produce a water velocity of 5 m/s in the cast iron pipe.