Problem 2 (35 points)

Consider the blocks on the inclined plane shown in the figure. The weights are given in the figure, as is the coefficient of static friction.

- (a) What is the smallest force P that will hold the triangular block in place?
- (b) Now assume that P=225 lb.
 - i. What is the magnitude of the normal force between the triangular block and the inclined plane?
 - ii. What is the friction force (magnitude and direction) between the triangular block and the inclined plane?

 W_b =200 lb W_t =100 lb μ_S =1/3 (For all surfaces)

(ss) (a)

$$\Sigma F_{\gamma} = 0$$
: $N - Psin\theta - (Wb+Wt) COS \theta = 0$ (2)

Solve
$$\Rightarrow P = (W_0 + W_t) \left(\frac{\sin \theta - \mu_0 \cos \theta}{\mu_0 \sin \theta + \cos \theta} \right) = \frac{W_0 + W_t}{3} = 100 \text{ lb}$$

(10) (b) (i) From equation (a)

$$N = P \sin \theta + (W_b + W_t) \cos \theta$$

$$N = 225 \left(\frac{3}{5}\right) + 300 \left(\frac{4}{5}\right) = 135 + 240 = 375 \text{ lb} \qquad | 9^{+}$$

$$(ii) From equation (i)$$

$$F_t = -P \cos \theta + (W_b + W_t) \sin \theta$$

$$F_t = -225 \left(\frac{4}{5}\right) + (300)\left(\frac{3}{5}\right) = -180 + 180 = 0 \text{ lb} \quad | 9^{+}$$

Common mistakes:

(a) Friction force wrong way on FBD, resulting in Pmax =4331b

coso / sin & mistakes -1 each up to -3

using just P= (W++W+) 4s (which = 1001b, sadly) -16

<u>if</u> FBD = 1

(b) if they use Ff = 40N - 5