ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering

M121	

Statics and Mechanics of Materials I

	Exam 1		
	Spring 2010-	2011	
Name:			CM:
Section:			
	Problem 1 (35 pts)		
	Problem 2 (30 pts)		

Be sure to show all work to receive full credit. However, "given" and "find" are not necessary.

Problem 3 (35 pts)

Total

Problem 1 – Short Answer -- 35 points

(a) Point Q has coordinates (2,2,2). A force, \vec{A} , whose magnitude is 70 N, acts at Q along a line toward Point P (5, -4, 0).

i. Write force \vec{A} in Cartesian vector form.

ii. What angle does force \vec{A} make with the x-axis? Give your answer in degrees.

(c) An aluminum bar has the following specifications:

Length	10 in
Diameter	0.505 in
Cross sectional area	0.2 in ²
Modulus of Elasticity	1.0 x 10 ⁷ lb/in ²
Yield Strength	38,000 lb/in ²
Ultimate Tensile Strength	65,000 lb/in ²
Coefficient of Thermal	12.5 x 10 ⁻⁶ /°F
Expansion	

- i. If the bar carries an axial force of 3100 lb, calculate the axial strain.
- ii. Calculate the smallest force which would leave a noticeable plastic (permanent) deformation after unloading.
- iii. What is the smallest applied force which would cause the bar to break?
- iv. If we heat the bar up by 50°F, what is the change in length of the bar?
- (d) A 1/8" diameter wooden dowel is sliced at a 60° angle, and then it is joined with glue. What is the normal stress on the glued plane due to an applied force of 100 pounds?

Problem 2 – 30 points

A window washer uses a system of frictionless and massless pulleys to hoist himself up the side of a building. The ropes in the pulley system are light and inextensible. The window washer has a weight of *W* and the platform on which he stands has negligible weight.

- (a) Find the force with which the window washer pulls on the rope in terms of the weight W.
- (b) Find the tension in Rope 2 in terms of the weight W.
- (c) Find the force the window washer's feet exert on the platform in terms of the weight W.

Problem 3 – 35 points

Three cylindrical bars (I, II, and III) are attached to each other and to a wall at one end, and are loaded as shown below. Sections I and III are hollow with an inner diameter of 20 mm and an outer diameter of 30 mm. Section II has a solid, circular cross-section of an unknown diameter.

- (a) Find the reaction force at the wall.
- (b) Determine the average normal stress in section III.
- (c) If the stress in section II cannot exceed 50 MPa, determine the minimum diameter of the solid cylinder in section II.

