
Capacitors

_____________________________________________________________________________________________________

2.1 - Capacitors: A First Glance

The basic function of a capacitor is as a storage element for electric energy. Its configuration is designed to enhance this function. Properly selected materials minimize its power dissipation as well. As you recall from circuits, the terminal behavior of an ideal capacitor is given by
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where IC is the current flowing into the capacitor in the direction of the voltage drop across the capacitor, VC, and C is the capacitance value of the capacitor expressed in Farads and abbreviated as F. Its terminal behavior is more complicated than that of a resistor by the presence of the derivative of voltage. As with resistors, we will investigate the internal, electromagnetic behavior of capacitors to better understand them.

The simplest capacitor configuration has many similarities with that of resistors, see Figure 2.1. Two metallic wire leads provide the connection between a capacitor and the external circuit. Current enters the element at one end through the wire lead and flows directly onto a metallic electrode. An equal current
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Figure 2.1 - Physical Configuration of a Capacitor.

flows from the other electrode out of the capacitor via the other wire lead. Flux-guiding material is located between the two metal electrodes. An insulator serves as the flux guide in a capacitor similar to the conductive material in a resistor. Consequently, the charges that enter the capacitor do not flow to the opposite electrode and leave via the other lead. Instead, they accumulate on the electrode while an equal charge flows from the other electrode out of the other wire lead. This leaves equal but opposite charges on the two electrodes. The use of an insulating flux-guide instead of one that is conductive is the chief reason for the marked difference in behavior between capacitors and resistors.

As with resistors, the electrode-material configuration of a capacitor greatly affects its element value. The flux-guiding material is often chosen to minimize losses and to enhance the capacitor’s energy storage capability as well as its tendency to resist arcing. Usually the entire assembly is hermetically encapsulated to minimize environmental effects on the capacitor’s behavior.

The series resistance offered by the metallic wire leads and electrodes is extremely small and produces a negligible voltage drop in most capacitors. This behavior is most simply modeled by approximating the capacitor leads and electrodes as PECs with no resistance and no voltage drop. The extremely small conductivity of most insulators (see Appendix D) is modeled by approximating the conductivity of dielectric insulators as zero. A further simplification is achieved if the flux guide is assumed to be ideal, i.e., no flux leaks out of the dielectric insulator. This closely models the behavior of many capacitors, especially those for which the spacing between electrodes is very small compared to their linear dimensions. Furthermore, this approximation allows us to employ many of the techniques that we used in the analysis of resistors in Chapter 1. Finally, we will use the same simple configuration for capacitors that we used for resistors. These approximations are realized in the electrical and configuration models shown in Figure 2.2. Two identical, planar PECs of surface area A form the electrodes of the capacitor model. The electrodes are parallel to each other and separated by a height h which is much less than either of the planar dimensions of the electrodes. An ideal dielectric material occupies the region between the two electrodes. This model is known as a parallel plate capacitor.
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Figure 2.2 - Models for Capacitors;

a: Physical model, b: Electrical model.

2.2 - Charges on Electrodes

Conservation of charge requires that the net charge within a volume changes only when current flows into or out of the volume. This is expressed by Equation (1.47) as
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Its application to a capacitor is illustrated in Figure 2.3. The capacitor wire leads carry the only currents that enter or leave the capacitor through the surface S which encloses the entire capacitor. Our experience with circuits shows that the current entering one lead of a capacitor is equal to the current leaving the 
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Figure 2.3 - Charge Conservation in a Capacitor.

other; this means that IOUT=0. If current flows into one lead and out of the other lead of a capacitor, then there is no change in the charge within the capacitor, i.e., dQ/dt=0. Though there is no net accumulation of charge within the capacitor, charge cannot flow from one electrode to another due to the presence of an insulator between the electrodes. Consequently, all of the charge that flows into one lead of the capacitor accumulates on that electrode. Simultaneously, an equal current flows out of the other electrode depleting the charge on it by the same amount as the accumulation on the other electrode. The charges on the two electrodes are equal, but opposite in sign so that their sum is zero and there is no net charge on the capacitor.

The charge on an electrode of the capacitor is obtained by integrating Equation (2.2)

. For the current entering the positive lead of a capacitor, IC, this gives
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Note, the positive sign for the RHS occurs because the current entering the capacitor is negative outward current; this negative sign cancels the negative sign of Equation (2.3)

 expresses this. But, how is this charge distributed on an electrode?
(2.2)

. From circuits we know that a positive current into the positive node results in positive charge accumulating on this electrode; Equation 
Experimental evidence has shown that excess, mobile charges are not contained within the interior of a metal object, but that they reside on its surface. This is due mainly to the fact that like charges tend to repel each other and that a surface distribution allows them to collectively be as far apart as possible. A detailed description of this distribution depends upon the geometry of the metal object. The mathematical challenge of calculating a surface charge distribution will be delayed for a while. The presence of a second electrode affects the charge distribution, also. The mutual attraction of the equal and opposite charges on the two electrode tends to concentrate them on the inner electrode surfaces where they are nearest each other with little or no charge on the outside electrode surfaces.

Let’s apply these fundamental ideas regarding charge distribution to the parallel plate capacitor in Figure 2.2. As a first approximation, assume that the charge is distributed uniformly over the inner surfaces of the electrodes. Any charges that tended to reside on the outer surfaces have been pulled to the inner surfaces by the attractive forces of the opposite charges on the other electrode. Experimental evidence shows this approximation is reasonably accurate (except near the electrode edges) for capacitors when the height h is relatively small compared to the dimensions of the electrodes.

With this charge distribution model, we can picture the charge entering the capacitor through the PEC wire lead and nearly instantly( in a uniform distribution over the inner surfaces of the PEC electrodes. The uniform surface charge density is calculated as
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where Q(to)=0 is assumed for simplicity. The surface charge density is uniform, and time-varying.

Example 2.2-1: The current flowing into a capacitor is given by IC(t)=10cos377t A. The electrodes both have dimensions of 1 cm x 1 cm. Express the charge on the electrodes as a function of time. Assuming uniform charge distribution, express the surface charge density on the positive electrode as a function of time. From Equation 
(2.3)

 the charge on the positive electrode is expressed as  GOTOBUTTON ZEqnNum149747  \* MERGEFORMAT  where the initial charge on the capacitor at t=to=0 is assumed to be zero. We find Q(t)=(10/377)sin377t C on the positive electrode and the opposite on the negative electrode. The surface charge density on the positive electrode is calculated from Equation (2.4)

 as (S(t)=Q(t)/A=(103/377)sin377t C/m2.

2.3 Gauss’ Law

The development of the theory of electric charges and the fields surrounding them involved many physicists and mathematicians. Most notable was an intricate series of experiments conducted by Michael Faraday that showed that the behavior of charges can be described in terms of an electric flux density which emanates from all charges. Faraday found that the total electric flux emanating from a charge is equal to the magnitude of the charge
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This electric flux is not representative of any actual motion. Instead, it can be thought of as fixed lines of flux projecting from the charge and occupying the space around it. Klaus Friederich Gauss introduced the idea of an electric flux density, D with units of C/m2, analogous to current flux density, which emanates from each element of charge. The total flux emanating from a charge can be expressed as
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The electric flux passing through any closed surface is equal to the charge enclosed. This powerful relationship, known as Gauss’ law, provides the connection between charge and total electric flux. The closed surface is often called a Gaussian surface to emphasize this important principle. We can interpret the meaning of Gauss’ law and apply the evaluation techniques to it in the same manner as we did with flux integrals of current density.


Figure 2.4 - Application of Gauss’ Law.

Application of Gauss’ law can be seen with the various charges and surfaces within Figure 2.4. Point charges QA, QB, and QC are the only charges contained within surface S1. Therefore, the total electric flux through surface S1 given by
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Surface S2 contains a volume charge density and point charge QB so the total flux through surface S2 is given by
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Surface S3 contains a surface charge density and point charge QC so the total flux through surface S3 is given by
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Finally, keep in mind that if the total flux out of a surface is zero, it does not mean that there is no charge contained within the surface. Rather, it means that the sum of the charges is zero. Since, we do not know the electric flux density, we cannot evaluate the surface integral for these charge distributions. But, we are able to use the enclosed charge as a means of calculating the total flux emanating from a particular surface.

Example 2.3-1: A spherical volume of radius 10 m contains a volume charge density of (V=(0.1/r) C/m3 and a point charge of (10 C. Calculate the total electric flux emanating from the sphere. Gauss’ law states that the total electric flux emanating from a closed surface is given by the sum of the charges enclosed by the surface, (e=Q. Consequently, 
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Note that even though the volume charge density becomes unbounded at r=0 due to r(1, the differential charge remains finite as dQ=rsin(drd(d(.

Example 2.3-2: Calculate the electric flux that emanates from a closed surface which surrounds the less positive electrode of the capacitor of Example 2.2-1. The electric flux through any closed surface surrounding the negative electrode is equal to the charge on it, (e(Q(t)(((10/377)sin377t C. Note that (e varies with time.

2.4 - Divergence of D

The point-wise behavior of D is expressed through the divergence as it was for J. Since charge never accumulates or depletes anywhere within a resistor, the divergence of J vanishes everywhere, i.e., ((J=0. However, since the net electric flux out of a volume that contains charge is not zero, we should expect that ((D may behave differently therein.

Beginning with Gauss’ law, 
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we evaluate the LHS for an incrementally small volume, following the procedure used for J in Section 1.19, to obtain
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If we consider all the charge within surface S to be volume distributed charge, (V, then as the volume (v contained within S becomes incrementally small the RHS of Equation (2.6)

 becomes
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Since Equations (2.12)

 are equal, the divergence of the electric flux density is given by
(2.11)

 and 
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This is the point form of Gauss’ law. ((D is not identically zero since electric flux lines begin and end upon charge. The existence of (V at a point necessitates that D diverge there and ((D(0.

This form is not valid for surface or line charge densities, i.e., (S and (L, respectively, since they do not vary continuously throughout space as does (V. The complication for these distributions occurs in the evaluation of the RHS of Equation 2.5 which does not contain a (v term. However, the integral form of Gauss’ law is always valid for any charge distribution.

Of course, the divergence theorem of calculus,
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applies in all regions where the derivatives of ((D are finite. This provides an alternative integral for evaluating the charge contained within a surface S.

Due to the tight atom-electron bonds, there is rarely any free charge within dielectrics and so ((D=0 therein. However, free charge on the surface is much more likely. Once charge exists on a dielectric surface, the near-zero value of conductivity prevents it from moving hardly at all. Dealing with this phenomena is discussed with boundary conditions.

Example 2.4-1: Within a region of space the electric flux density is given as D(rar=xaX+yaY+zaZ C/m2. Calculate the electric flux emanating from a unit cube centered on the coordinate origin. Calculation of electric flux is defined as the surface integral of flux density over the surface. For this problem there are six surfaces located at x=(0.5, y=(0.5, and z=(0.5. The integrals are relatively easy and all evaluate as 
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 so that the total flux is 
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. Alternatively, the flux can be calculated by the divergence theorem. First calculate ((D(3. Then integrate throughout the volume of the unit cube to obtain (e=3 C as before. Frequently, though not always, the volume integral is easier than the surface integral.

2.5 - Dielectric Permittivity

The parameter of an insulator that characterizes its dielectric properties is known as permittivity. It is denoted by the symbol ( and has units of Farads/meter (F/m) in the SI system. Permittivity in dielectric material serves a role similar to the conductivity in conductive material; it relates the field intensity to the flux density.

Earlier in this chapter we found that D, a flux density, is present between the two electrodes of a capacitor when they have equal and opposite charges on them. But the presence of these charges also creates E, a field intensity. In a resistor we found that the current flux density and the electric field intensity were related by the conductivity property of the material. In a similar fashion, experiments have shown that the electric flux density and the electric field intensity are related by the permittivity property of the material as
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throughout the dielectric material. In both cases the material constituitive property relates the flux density to the field intensity even though quite different phenomena are involved. We shall later see that a similar consitutitive relationship holds for magnetic fields as well.

To describe the cause and nature of permittivity, we will model the dielectric material as a lattice of neutral atoms. A positive nucleus at the center of the atom is encircled by a “cloud” of negatively charged electrons; the sum of the charges is zero. The atoms have a very “tight” grip on their electrons. In fact, in an ideal dielectric, electrons cannot break away from the central atom. Note how this contrasts with weak bond between atoms and electrons in conductors. In PEC material, the atoms' grip on electrons approaches zero so that current flow occurs without a voltage


Figure 2.5 - Effects of External Electric Field on a

Dielectric Atom; a: without field, b: with field

drop. In the absence on an external electric field, the center of positive charge of a dielectric atom is aligned with the center of negative charge, see Figure 2.5a. But, in the presence of an applied electric field, Coulomb forces displace the positive nucleus ever so slightly in the direction of the electric field; the center of the negative “cloud” is displaced slightly in the other direction, see Figure 2.5b. This displacement polarizes the atom. Though the displacements are extremely small, on the order of 10-17 m for typical dielectrics, the total charge shifted is significant due to the large number of atoms, on the order of 1023 atoms per cubic meter. The displacement converts electrical energy of the electric field into stored mechanical energy within each atom, much like a spring. With the removal of the electric field the charge centers are aligned again and the potential energy is returned to the electric field without any energy loss. The displacement of the charge centers creates an internal electric field directed from the positive charge center to the negative and in opposition to the applied external field. The strength of the opposing field is related to the dielectric properties. The total field between the electrodes, i.e., within the dielectric, is reduced by this opposing field. This opposing field is called the polarization field.

When there is a vacuum between the electrodes, i.e., no dielectric, there is no polarization field and the field between the electrodes is equal to the external field. When a dielectric is present, the field between the electrodes is reduced by the presence of the dielectric. This may be explained by looking at the dielectric material where it contacts the PEC electrodes, see Figure 2.6. Though the charge displacement produces no excess charge within the material, at the boundary with the positive electrode there is a thin layer of negative charge and at the negative electrode, a positive layer of charge. These charge layers on the surface of the dielectric attract an equal charge of the electrode to their vicinity. The dielectric polarization charges cannot combine with the free, surface charges of the electrode since the dielectric charges are bound to their central atoms. However, since they are in such close proximity, their electric fields cancel, thus reducing the internal electric field within the dielectric material.


Figure 2.6 - Polarization Charges at the Dielectric-Electrode Interface.

The permittivity of free space, e.g., a vacuum, is noted as (o and has a value of 8.854 x 10-12 F/m in the SI system. The permittivity of all but a very few dielectrics is greater than that of free space. The common notation to describe the permittivity of dielectric materials is relative permittivity,
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where (R is the ratio of the dielectric permittivity to free space permittivity and is usually greater than one. Frequently, (R is called dielectric constant. Most insulators have dielectric constants in the range 1<(R<10. The dielectric constants for common dielectric materials are given in Appendix D.

There are two distinct shortcomings to this simple model for dielectrics. Firstly, the previous analysis was confined to DC and low-frequency AC fields. As the signal frequency is increased, the permittivity shows resonance and loss effects. However, these shortcomings do not invalidate the primary dielectric property of energy storage. We will leave these more subtle topics for an advanced course. Secondly, we have ignored effects which "strip away” electrons from their central atom. But in fact, every material has a critical value of field strength at which electrons can be stripped away from the parent atom. Usually this is accompanied by an arc and with sudden, catastrophic current flow. This process is known as dielectric breakdown. This field strength is known by several names, critical field strength, dielectric breakdown strength, and dielectric strength, and is denoted by EC. For air at sea level, EC is on the order of 3x106 V/m. Dielectric strengths for several materials are given in Appendix D.

2.6 - Dielectric Boundary Conditions

As we found with conductors, the fields on opposite sides of material boundary are related to each other through the properties of the two materials. The development of this relationship proceeds much as with conductive materials, see Section 1.25.

The conservative nature of the electric field is used again to obtain the tangential boundary condition as obtained earlier as
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and in vector form
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The tangential components of the electric field on both sides of a boundary are the same.

The electric flux density D in dielectrics behaves much as J in resistors where free charge is not present. Free charge rarely exists within dielectric material, but is much more common as surface charge density at a material interface. Such a situation is shown in Figure 2.7. As we did in establishing the boundary conditions on J, we center a short box on the boundary so that the surface charge density remains within the box as its height approaches zero.


Figure 2.7 – Electric Flux Density Boundary           Conditions

Application of the Gauss’ law and the methods of Section 1.25 indicate that flux only emanates from the top and bottom of the box. Analogous to Equation (1.97), we obtain the electric flux out of the box as
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which by Gauss’ law must equal the charge contained within the box. As the height of the box shrinks to zero, the only charge remaining within the box is the surface charge on the boundary given as
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Setting Equations (2.20)

 equal, we obtain the boundary conditions on D as
(2.19)

 and 
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You may see this expressed in a vector format as
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where aN is directed from region 2 into region 1. The normal components of the electric flux density, D, at a boundary are discontinuous by the surface charge density, (S, on the surface.

The occurrence of free surface charge on dielectrics is quite rare; for most dielectric-dielectric boundaries (S=0. When (S=0, we can combine Equations (2.21)

 and D=(E to express both boundary conditions for dielectric-dielectric boundaries either in terms of E or in terms of D as
(2.17)

, 
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We have already seen that a surface charge density resides on the facing electrode surfaces within a capacitor. When region 2 of Figure 2.5 is a PEC electrode then E2=0 within a PEC so that D2=(2E2=0 and DN2=0. Consequently, the boundary conditions for a dielectric-PEC interface become
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where (S is the surface charge density on the electrode. Through the boundary conditions we have now established the relationship between the charge density on the electrodes and the electric flux density at the dielectric-electrode boundary.

Since E2=0 within the PEC electrode, ET2=0. Boundary conditions require that ET1=ET2=0 so that DT1=(1ET1=0. This means that in the dielectric material the E1=(aNEN and D1=(aN(1EN, i.e., the electric field and flux density are perpendicular to the PEC electrode as they are in resistors.

As you recall from Section 1.25, the amount of current flux which “leaked” out of the conductive material was proportional to the ratio of the conductivities of air and of the resistor. The smaller this ratio, the more effectively the resistor functions as an ideal flux guide. The same principle applies to dielectric material. The phenomenon of flux leaking from the dielectric of a capacitor into air is known as fringing. The smaller the fringing field, the more accurate are the assumptions that all the flux is contained within the dielectric. From Equation (2.21)

, we see that DT2=((2/(1)DT1. When the dielectric of the capacitor is taken as region 1 and the surrounding air as region 2, we see that if the ratio (2/(1=1/(R<0.1, then the fringing field is so much smaller than the dielectric field that it can be neglected. For a good flux guide, the larger (R, the better. Unfortunately, 1<(R<10 for most dielectrics, so this condition is not always valid. Nevertheless, we will assume no fringing fields for most capacitors. The significance of the fringing fields is reduced when the spacing of the plates is relatively small compared to the largest dimension of the electrodes. This condition is often met and strengthens our “no fringing” assumption.

Example 2.6-1: A dielectric material with relative permittivity of (R=2 occupies the region for x(0 and is bounded by air at the x=0 plane. The electric field within the dielectric at the boundary is given by E=5aX+5aY(5aZ V/m. There is no surface charge density upon the boundary. Calculate E and D in the air adjacent to the boundary. If the normal to the boundary is defined as aN=aX, then the dielectric region represents region 2 in Figure 2.7 and EN2=5 V/m and ET2=5(2 V/m with a direction of aT=0.707(aY+aZ). In addition DN2=2(o5=10(o and DT2=10(2(o C/m2. From Equation (2.17)

 we obtain ET1=ET2=5(2 V/m with DT1=(oET1=5(2(o C/m2 and DN1=DN2=10(o C/m2 and EN1=DN1/(o=10 V/m. Thus the fields in air are E1=10aX+5(2(0.707)(aY+aZ) V/m and D1=(oE1=10(oaX+5(2(oaT=10(oaX+5(2(o(0.707)(aY+aZ) C/m2.

Example 2.6-2: Consider Example 2.6-1 with the addition of a surface charge density of (S=(5(o C/m2 on the dielectric-air interface. The tangential components are not affected by surface charge density. The normal components satisfy Equation (2.21)

 so that DN1=DN2+(S=10(o(5(o=5(o C/m2. The resultant fields are E1=5(aX+aY+aZ) V/m and D1=(o5(aX+aY+aZ) C/m2. Note that the addition of surface charge density alters only the normal components of the fields.

2.7 - Flux Tubes, Equipotentials and Capacitance

Gauss' law predicts that electric flux density, D, emanates perpendicularly from surface charge, (S, on the 



Figure 2.8 - Flux Tubes and Equipotentials

in a Capacitor.

PEC electrodes of a capacitor into the dielectric material. Since there are no free charges within an ideal dielectric, ((D=0 and D lines begin and end only on the electrodes. Moreover, D lines coincide with E lines and are always perpendicular to equipotentials. Consequently, electric flux is confined to tubes, flux never leaks from nor enters a flux tube. This model of the fields in capacitors is remarkably similar to resistors. Flux tubes begin and end on the electrodes and extend from one electrode to the other. Equipotentials are perpendicular to the flux tubes, see Figure 2.8.

Up to this point we have determined the following features of the fields within a capacitor:


1) Current flow, IC, into the PEC lead deposits charge, +Q, on one electrode. Equal current flow out of the other PEC lead leaves a (Q on the other electrode.


2) These charges, (Q, are assumed to be uniformly distributed on the facing surfaces of the electrodes with a surface charge density of (S = Q/A. 


3) Electric flux density D begins and ends on the electrode surface charge density where there is only a normal component DN=(S.


4) Flux tubes of D extend between the electrodes from one to the other.


5) D is perpendicular to surfaces of constant V.


6) Electric flux density is related to the electric field intensity by D=(E where ( is the permittivity of the dielectric material.


7) The voltage drop between two points is defined as 
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These concepts are now applied to obtain an expression for capacitance.

To obtain an expression for capacitance from Equation (2.1)

,
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the terminal voltage and current of a capacitor are expressed in terms of the internal fields. In Chapter 1 we found that the equipotentials for parallel electrodes of resistors are parallel to the electrodes. Due to the similar geometry, this is true for parallel plate capacitors with closely spaced electrodes as well. For a voltage drop of Vc as shown in Figure 2.8 the voltage is expressed as
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with an accompanying electric field of
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Substituting this into Equation (2.15)

, we obtain
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which leads to an expression for the terminal voltage in terms of the flux density and the physical parameters of the capacitor as
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From Equations (2.24)

, the current into the positive electrode can be expressed in terms of the electrode surface charge density as
(2.4)

 and 
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where the flux density is pointing away from the electrode so that DN=(DZ. The total derivative is applicable since we have assumed that (S and DN are uniform over the electrode surface. If they have vary over the electrode surface, then the partial time derivative should be used. Combining Equations (2.30)

, we obtain
(2.29)

 and (2.1)

, 
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Viola! Equating the third and fourth terms, we have an expression for capacitance in terms of the physical parameters of the capacitor as
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This single value, C, is rather deceptive since it “hides” the complex spatial variations of the internal fields just as R doesn’t reveal all the geometric information of a resistor. This is especially true when we analyze structures with more complicated field distributions. However, the results are accurate and quite useful in circuits where it is much more convenient to deal with scalar calculations only. In arriving at this result, we have made two important assumptions that will not always be true. First, we assumed that the surface charge density on the electrodes was uniform. In fact, it will be slightly larger at the edges of the parallel plate capacitor and even more complicated in other structures. Secondly, we have assumed that the dielectric acts as an ideal flux guide. Keep in mind that capacitors with large electrode spacing, h, compared to the shortest electrode dimension and with values of (R close to unity there is significant leakage flux. Accurate calculations of leakage flux are difficult and are beyond the scope of this text. 

Example2.8-1: Calculate the capacitance of a parallel plate capacitor with electrodes that measure 1 cm x 2 cm and with a teflon dielectric of 0.1 mm thickness. From Appendix D, teflon has (R=2.1 so that (TEFLON=2.1(o=18.6 pF/m. The capacitance is calculated by a straightforward application of Equation 
(2.32)

 as  GOTOBUTTON ZEqnNum579024  \* MERGEFORMAT 
Example 2.8-2: The capacitor of example 2.8-1 has a voltage drop of 10 VDC. Calculate the charge on each electrode, the surface charge density, the electric flux density, and the electric field intensity. The electric field for parallel electrodes is given by Equation (2.24)

. Finally, assuming that the charge density is uniform, the charge on an electrode is calculated as Q=(SA=1.86x10(6(0.01)(0.02)=372 pC, plus on the positive electrode, minus on the negative one.
(2.28)

 as |D|=(|E|=18.6x10(12(105)=18.6x10(7 =1.86 (C/m2. (S=|DN|=1.86 (C/m2 from Equation (2.27)

 as |E|=V/h=10/0.0001=105 V/m. The corresponding electric flux density is calculated with Equation 
2.8 - Capacitance: A closer look

Insight into the principles of a capacitor is gained by integrating with respect to time the third and fourth terms of Equation (2.31)

 to obtain
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Recalling that |DZ|=(S and that the charge is assumed uniformly distributed, we recognize the LHS as the magnitude of the total charge on each of the electrodes. Since the field is uniform, |hEZ|=VC, the magnitude of the voltage drop across the capacitor. These results lead to an alternate definition of capacitance
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where Q is the magnitude of the charge on each electrode and VC is the voltage drop across the capacitor. From this expression we are led to an interpretation of capacitance as a measure of the amount of charge on the electrodes when a one volt drop is applied. This is a very fundamental definition and from it we can obtain Equation (2.34)

 as
(2.1)

 by taking the time derivative and solving for IC. Rewriting Equation 
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we gain additional insight into the behavior of capacitors. An increase in area (accompanied by an increase in capacitance) requires an increase in charge on the electrodes in order to maintain a one volt drop. A decrease in spacing between electrodes (accompanied by an increase in capacitance) requires an increase in charge to maintain the one volt voltage drop. An increase in permittivity (accompanied by an increase in capacitance) requires an increase in charge to compensate for the increase in bound charge at the dielectric-electrode surface and maintain the one volt voltage drop. 

Equation (2.34)

 can be modified to handle cases with non-uniform charge distribution and fields. In general, the magnitude of the charge on an electrode is given by Gauss’ law as
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where the surface S encloses the electrode. The magnitude of the voltage drop is



[image: image43.wmf]C

BETWEEN

ELECTRODES

V

=

ò

E•d

l


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.37)

where the integral follows any convenient path between the two electrodes. Since the capacitance is always positive, we use the absolute values to express capacitance as
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This is of the same form as Equation (1.173).

The capacitance is expressed solely in terms of the electric fields integrated over the geometry of the capacitor. This equation is deceptively simple since determination of E is a major task as E is greatly dependent upon the capacitor geometry as well. This expression may not be especially useful for calculations, but it brings out the importance of the electric field in calculating capacitance. To be exact the surface integral should be integrated over the entire electrode surface. But when the dielectric acts as an ideal flux guide, the contribution of the fields outside of the dielectric will be negligible; the integral can be limited to the surface of the electrode-dielectric interface where the charge is located. This expression is valid whether the charge distribution is uniform or has spatial variation on the electrode.

A somewhat different perspective of capacitance follows from Gauss' law as well: the value of the electric flux emanating from an electrode is equal to the charge upon it. Accordingly, Equation (2.34)

 is modified to
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Capacitance is the ratio of the electric flux through the capacitor to the voltage drop across it.

This view doesn't offer any advantage over other calculation methods. But, when applied to a capacitor that is divided into incremental regions, series-parallel circuit techniques can be used to calculate capacitance, see Figure 2.9.

Figure 2.9 - Incremental Capacitors;

a: Parallel, b: Series.

The incremental flux tube through the shaded region contains a flux ((e. The incremental voltage drop across the shaded region is (V. The fields within this region behave as an incremental capacitor; the flux and equipotentials are mutually perpendicular. Though the flux lines are a continuation of lines from adjacent cells, their behavior is the same as if PEC electrodes with a voltage drop (V were inserted along the equipotentials of the region. This region forms an incremental capacitor that approximates a parallel plate capacitor with an ideal flux guide. Equation (2.39)

 can be used to calculate the capacitance as
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Incremental capacitors in series-parallel combinations fill the region between electrodes. This leads to the curvilinear squares method for capacitance calculations.

There is a remarkable similarity between the fields of resistors and capacitors. Correspondingly, element value calculations for both can be defined in terms of flux concepts as 
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The element values of both elements can be viewed as the flux produced within the element per unit voltage drop across the element. Without a doubt, the nature of the two fluxes are quite different, but the principles of operation and the calculations are the same. In fact, comparing the equations for cylindrical resistors and parallel plate capacitors we observe
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This similarity in the form of capacitance and resistance expressions is valid in general as well. For identical configurations, this relationship is often expressed as
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This suggests that all the methods we learned for resistance calculations can be applied to capacitance as well. As you may have already guessed, inductors will have a similar form too! The reason for identical underlying principles for capacitors and resistors is discussed in the following section.

2.9 - Laplace's Equation Revisited

The fields within dielectric materials satisfy Gauss' law in point form as
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Substitution of D=(E and application of the chain rule leads to
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see Appendix A. Since most dielectric materials are uniform, their spatial derivatives vanish. We will assume the permittivity is constant so that ((=0. In addition, substitution of E=((V leads to
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where the last two terms on the RH side can be rewritten in the form of Poisson's equation
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The voltage depends upon the charge density. In addition, fixed boundary voltages also affect the solution. This inhomogeneous equation is difficult to solve directly. Fortunately, most dielectrics have no free charge, i.e., (V =0, which leads to Laplace's equation
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Fortunately, we already solved this same equation in finding the voltage distribution in resistors. In fact, for identical electrode and flux tube geometry, the spatial distribution of voltages is the same for resistors and capacitors.

2.10 - Electric Energy Storage

The instantaneous power flow into a capacitor is calculated from the circuit concepts by
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where IC is the current flow in the direction of the voltage drop VC. The power delivered to the capacitor is positive when VC2 is increasing; it is negative when VC2 is decreasing; it is zero when the voltage is unchanging. If we think of power as the time derivative of energy, i.e., P=dWe/dt, from Equation (2.49)

 we obtain
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No energy is stored when the voltage drop is zero; the sign of energy is always positive regardless of the polarity of the applied voltage. The process can now be described more completely. While the voltage increases, power is delivered to the capacitor as the energy stored in the capacitor is increasing. While the voltage decreases, the capacitor delivers power back to the circuit as the energy stored in the capacitor decreases. While the voltage is constant, no power flow occurs and the energy stored is unchanged*.

Since the voltage drop is related to the electric field, the energy stored in the capacitor can be expressed in terms of the fields. Equation (2.50)

 becomes
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The electric field occurs twice in this expresssion, so that energy is proportional in some way to the square of the electric field.


Figure 2.10 - Incremental Capacitor

An alternate approach provides more insight into this relationship. Consider the incremental capacitor shown in Figure 2.10. An expression for the incremental energy stored is obtained from Equation (2.50)

 as
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where (v is the volume of the incremental capacitor. The quantity which multiplies (v has units of energy/m3 and represents the stored electric energy density or just electric energy density and is represented as
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It turns out that this is a correct representation for electric energy density anywhere an electric field exists. The total energy stored in a volume can be written as


[image: image60.wmf]2

NN

ii

eeeiii

VOLUMEi1i1

||

WWwvv

2

==

e

=D=D=D

ååå

E


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.54)

where I represents the ith volume. Note that ( and E can vary from throughout the region; their values at the center of each cell are used to compute the energy within that cell. This form is especially good when incremental forms of ( and E are available. When they vary continuously, an integral form is more useful
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Since the main function of capacitors is to store energy, a definition of capacitance based upon energy stored is considered to be more fundamental than the more familiar circuit definition of Equation (2.55)

 as
(2.51)

 and (2.1)

. This can be achieved by combining Equations 
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Optimization methods for calculating capacitance utilize the fundamental principle that the correct solution is that E which minimizes the energy stored for a given voltage drop--that’s nature’s way. This form is preferred for such calculations. But we will defer these more advanced methods to more advanced courses.

Finally, the concept of energy density is often useful when modeling high frequency and microwave circuits. Those regions in which there is a high electric energy density are considered to be capacitive in nature and frequently are modeled by lumped capacitive elements. Equation (2.56)

 is used to calculate this equivalent capacitance.

2.11 - Capacitance Calculations

A variety of concepts and solution methods for calculating capacitance are presented in the previous sections.  In this section they are illustrated by several of applications.

Example 2.11-1: Calculate the capacitance of a 1 m length section of RG58 coaxial cable such as you use in circuits laboratory to connect a circuit to a generator or a meter. From manufacturer’s catalogs or reference data handbooks we find that RG58 cable has a center conductor of about 0.4 mm radius, a polyethylene dielectric of 1.5 mm radius surrounded by an outer copper braid*, see Figure 2.11.


Figure 2.11 - Coaxial Cable

From Appendix D we find (TEFLON=2.1(o=18.59 pF/m. Since the electric fields of the coaxial capacitor and the coaxial resistor both satisfy Laplace’s equation and the same boundary conditions, they are the same as expressed in Example 1.29-1 as 
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 where the voltage drop from the inner to the outer conductors is VO. Direct calculation of capacitance requires the calculation of charge on the electrodes. The charge is related to the surface charge density which is equal to the electric flux density at the surface of the electrode as 
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 From Equation 2.29, the capacitance is given as 
[image: image66.wmf]a

O

Q/m

C/m4.75(18.59)88.4pF/m.

V

===

 The usual parameter to describe the capacitance of a coaxial cable is as capacitance/meter; that’s just what we have calculated.

Alternatively, we could have calculated the surface charge density on the outer electrode as 
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 The charge density is less since the surface area of the outer electrode is greater, but the total charge is the same as it must be.

As a further alternative, we could have calculated the capacitance directly by using the form of the resistance expression of Example 1.29-1 and Equation 
(2.43)

 as  GOTOBUTTON ZEqnNum379195  \* MERGEFORMAT 
Finally, let’s use the energy definition of capacitance, Equation 
(2.56)

, as  GOTOBUTTON ZEqnNum387011  \* MERGEFORMAT 
the same form we obtained before.

Example 2.11-2: Calculate the capacitance/meter of the square coaxial transmission line shown in Figure 2.12 by the method of curvilinear squares. The space between the PEC electrodes is filled with aluminum oxide. From Appendix D, we find that (R=8.8. Using the analogy between conductance and capacitance expressed by Equation 
(2.41)

, we can express the capacitance of each curvilinear square a  GOTOBUTTON ZEqnNum519969  \* MERGEFORMAT  so that the capacitance/meter length for each square is given by C/m=(. Moreover due to the symmetry of the structure, we need only to sketch curvilinear squares for one-eighth of the coaxial cross-section and multiply the result by eight (capacitors in parallel add) to obtain the total capacitance. From the squares shown in Figure 2.12, we find the capacitance is given by 
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Figure 2.12 - Capacitance by Curvilinear Squares.

Example 2.11-3: Calculate the capacitance of the inhomogeneous coaxial capacitor shown in Figure 2.13. The permittivity between the two PEC electrodes varies as 1 cm(((3 cm, (R=2 and 3 cm(((5 cm, (R=1. The boundary between the two dielectrics is located at (DIELECTRIC=b=3 cm. The PEC electrodes are located at (INNER=a=1 cm and (OUTER=c=5 cm, respectively. The capacitor is L=5 cm long.


Figure 2.13 - Inhomogeneous Coaxial Capacitor.

Due to the symmetry of the capacitor, the dielectric-dielectric interface coincides with an equipotential surface. Consequently, the two dielectrics can be treated as two capacitors in series, the capacitance of each calculated according to the equation of Example 2.11-1 of 
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Example 2.11-4: Calculate the capacitance/meter of the coaxial transmission line of Example 2.11-2 by the spreadsheet method. Symmetry can be used advantageously in numeric methods as well; due to the rectangular nature of the spreadsheet it is convenient to use one-fourth of the structure, see Figure 2.14. 


       A          B            C            D          E          F

0.000
0.310
0.641
1.000



0.000
0.299
0.626
1.000



0.000
0.262
0.565
1.000
1.000
1.000

0.000
0.181
0.373
0.565
0.626
0.641

0.000
0.091
0.181
0.262
0.299
0.310

0.000
0.000
0.000
0.000
0.000
0.000

C/m=4*(2*sum(B5:E5)+F5)*8.8*8.854=559.3 pF






Figure 2.14 - Capacitance by Spreadsheet Methods;

a: Geometry; b: Calculations.

 The electric flux in the vicinity of nodes 1, 2, 11 and 16; the calculation is of the form of edge calculations given by Equation (1.154) since the flux at these nodes is all directed from the inner electrode to the outer. Determination of capacitance is based upon the calculation of the electric flux at either electrode in the manner analogous to the calculation of current flux of Equation (1.155). Due to symmetry, the electric flux on the left and bottom surfaces of the electrodes are the same, allowing simplification of the calculation; the calculation equation is shown below the spreadsheet calculations. The results are comparable to Example 2.12-1.

2.12 - Forces and Virtual Work

“Opposite charges attract, like charges repel” is well known to high school physics students. This fundamental principle is at work in capacitors, setting up forces between the two electrodes. The details of this force and its magnitude are the subject of this section.

The energy stored in a parallel place capacitor is calculated from Equation (2.55)

. When ( and E are constant throughout the capacitor, this becomes
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Alternatively, we can evaluate the integral using |D|=Q/A to obtain
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The stored electric energy is expressed in terms of either the voltage drop across the capacitor or the charge on its electrodes.

To determine the force between the two electrodes (call this the electrical force), we perform a virtual experiment in which one electrode is moved an incremental distance. As the electrode is moved, the capacitance, the ratio of Q/VC, and the stored electric energy change. We will consider two separate cases: the charge remains constant (the electrodes are open-circuited so that no charge can be conducted away) and the voltage drop remains constant (the electrodes are connected to a fixed power supply).

For the case of constant charge, we use Equation (2.58)

 for calculations. The mechanical force will add energy to the system that is converted to stored electric energy within the capacitor. But, since there are no losses in the system, the total energy of the system must be conserved; see Figure 2.15. The change in stored electric energy of the capacitor is expressed as
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An increase in spacing will increase the stored electrical energy within the capacitor.

Mechanical energy is added to the system by the external mechanical force, FMECH, as it displaces an electrode a distance (h; the mechanical energy added is calculated from elementary mechanics as
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Since system energy is conserved, the change in stored electrical energy must equal the mechanical energy supplied, i.e., (WMECH=(We. The mechanical energy is calculated by equating Equations (2.60)

 as
(2.59)

 and 
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Since the RHS is positive, the mechanical force is positive in the direction of increasing h. The mechanical force must be exerted because there is an equal and oppositely directed electrical force that tends to pull the electrodes together. This force is expressed by 
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Figure 2.15 - Virtual Work System Model for Constant Charge.

For the case of constant voltage, the procedure is similar, but Equation (2.57)

 is used to represent the energy stored in the capacitor and there is the possibility of electrical energy flow into the system from the power supply, see Figure 2.16. Following the procedure for constant charge, we obtain
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and
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The voltage on the capacitor is kept constant via its connection with a voltage source. But, as the electrodes are separated, the accompanying reduction in capacitance causes charges to flow from the capacitor to the voltage source. This charge flow returns


Figure 2.16 - Virtual Work System Model for Constant Voltage.

some of the capacitor’s energy to the voltage source since the charge flows into the positive terminal of the source. The energy supplied to the system by the voltage source is
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The negative sign confirms that the system returns energy to the power supply. Since energy is conserved, the change in system energy must equal the energy supplied by the mechanical force and the electrical source as



[image: image86.wmf]eMECHS

WWW

d=d+d


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.66)

which is solved to give the mechanical force required to pull apart the electrodes as
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The mechanical force reduces the stored energy within the system as charges leave the capacitor which in turn provides energy to the power supply. As in the constant charge case, the mechanical force is exerted against the electrical force which tends to pull the electrodes together and 
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It is reassuring that Equation (2.62)

 since the force should have no dependence upon which “virtual experiment” we base our calculations. The electrical force depends upon the square of the voltage or the charge and tends to pull the electrodes together. This agrees with our intuition that the opposite charges on the two electrodes tend to attract each other. Actually the forces are between the charges residing on the electrodes, not the electrodes themselves. The fields due to the charges on one electrode exert forces on the charges of the other electrode. These charges are usually electrons that are relatively mobile. However, in most applications the atoms of the metallic electrodes exert a stronger force on the electrons than that of the external field and the electrons are held captive by the atoms of the electrodes. Consequently, the forces on the electrons are transferred to the electrode via the atoms.
(2.68)

 agrees with Equation 
The electric force on an electrode as given by Equations (2.68)

 can be generalized as
(2.62)

 and 
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or commonly expressed as pressure as
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The pressure on an electrode is equal to the energy density at the electrode and tends to pull the electrodes together. There is no tangential component of force or pressure at a dielectric-electrode interface.

The virtual work method reveals the forces at dielectric-dielectric interfaces as well. For case where the electric field is tangential to the interface, see Figure 2.17a, the electric field is the same on both sides of the interface, ET1=ET2=ET, and is unchanged by a shift in the interface. A virtual displacement of the boundary into region 1 results in a change energy given by
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Since E is proportional to V, the same principles used in the constant voltage case as expressed in Equation (2.68)

 leads to 
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pointing into region 2 where wTi represents the energy density of the tangential component of the field in the ith region. The electric pressure tends to push the boundary toward the dielectric having the smaller permittivity.

When the electric field is normal to the boundary, see Figure 2.17b, DN1=DN2=|DN|, and the change in electric energy by a virtual displacement into region 1 is
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Figure 2.17 - Virtual Displacement of Dielectric Boundaries; a: Tangential Field, b: Normal Field.

Since DN1=DN2=|D| is unaffected by a shift in the boundary, this case compares with the constant charge case as expressed by Equation (2.62)

 to give
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where wNi represents the energy density of the field normal to the interface. As before, the pressure tends to push the interface into the region with the lesser dielectric.

Similarly, torques are generated by the forces on electrodes or dielectric interfaces. In addition, this technique will be very helpful in analyzing magnetic devices as well.

Example 2.12-1: Calculate the pressure and the force on the electrodes of a parallel plate capacitor of Example 2.8-2 when 10 V is applied. Since the electric field is constant throughout the capacitor as |E|=105 V/m then the energy density and pressure are given as pe=we=(|E|2/2=18.6(10-12(105)2/2=0.93 nt/m2. The force is given as Fe=peA=0.93(0.0002)=0.000186 nt. Note that 1 nt is the force exerted by gravity on about 0.1 kg mass—about 4 oz. This is a rather small force. A 100 V source applied would still produce a very small force. Larger voltage drops would produce |E|>106 V/m which is getting close to the critical field strength of air with the possibility of causing an arc at the edge of the electrodes.

Example 2.12-2: Two electrodes separated by distance d are immersed in a dielectric fluid with permittivity ( as shown in Figure 2.18. A DC voltage source VS is applied across the electrodes. The fluid has a mass density of (m. Calculate the height z which the fluid between the electrodes is lifted above the level of the surrounding reservoir.


Figure 2.18 - Lifting of a Fluid between two Electrodes.

The electric field between the two electrodes is parallel to the interface between the dielectric fluid and the air. We calculate the interface pressure that tends to lift the fluid as 
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. At the same time gravity is exerting a downward pressure of 
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 where zo is the height of the fluid between the electrodes above the reservoir level. At equilibrium these pressures must be equal which leads to the height of the fluid between the two electrodes as 
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. For a spacing of 1 cm, a source of 100 V and the fluid of distilled water ((m=1 and (=80(o) the height is 
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. This is not very great, but with a voltage of 1000 V this becomes 36 cm, a quite significant lifting effect. Applications of this principle in the micro-gravity conditions of earth orbit increase this effect significantly.

2.13 - Flux Density via Gauss’ Law

There are a significant number of applications in which the dielectric flux guide is not nearly ideal. The electric flux emanating from charges is not confined, but reaches everywhere. In order to handle these situations, we must take a different approach to calculating the electric flux density.

Gauss’ law can be used to find the electric flux density for several common charge distributions. A point charge, as shown in Figure 2.19, is particularly useful. The electric flux density of a point charge has spherical symmetry, i.e., D(r,(1,(1)=D(r,(2,(2), so that it varies only with r, i.e. D=D(r). From Equation (2.6)

, we observe that there is a net outflow of flux lines from the surface S only when it contains charge. As the surface S is made smaller and smaller, the only flux lines out of S are those which begin or end within the region. Since the small sphere encloses only the small point charge, the flux lines emanate outward 


Figure 2.19 - Electric Flux of a Point Charge

from charge itself. Therefore, flux lines begin and end on a point charges and are radially directed outward from it, i.e., D=Dr(r)ar. The directed surface element for the spherical surface S is given by ds=r2sin(d(d(a. Combining these details, we obtain
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Therefore, Dr(r)=QPT/4(r2, so that 
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The flux density of a point charge points directly away from a point charge and shows no dependence upon the material surrounding the charge. But of more fundamental importance, it shows r-2 functional dependence. With this form, the dot product of the flux density and the spherical differential surface element is given by (Q/4()sin(d(d( which is independent of r. Consequently, the flux crossing all spherical surfaces concentric with the point charge, regardless of radius, will be the same, as required by Gauss’ law, since all of the spheres enclose the same point charge. With these facts, we are prepared to find the electric flux density for several other charge distributions.

Example 2.13-1: Consider the radially dependent, spherically symmetric charge distribution shown in Figure 2.20.


Figure 2.20 - Radially-dependent, Spherically-symmetric Charge Distribution.

Two differential volumes of charge, dQA and dQB, are located symmetrically with respect to the z-axis. Due to their differentially small volume, they act as point charges for which Equation 
(2.75)

 as (2.63)

 describes the electric flux density. The two volumes contribute equally to the electric flux density at point P where their combined result is entirely radial; all other components cancel. All of the charges within the distribution can be matched in similar pairs which likewise contribute only radial components of electric flux density at point P. Due to angular symmetry of the charge distribution, the flux density shows no angular dependence. Combining these details we obtain an expression for flux which is similar to Equation  GOTOBUTTON ZEqnNum575384  \* MERGEFORMAT  For r(a, QENC is equal to the total charge within the distribution as 
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 For r<a, the charge enclosed depends upon radius as 
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This example shows that the flux density at radius r for spherically symmetric charge densities is the same as that of a point charge at the center of the distribution and equal to the charge contained within the radius r. The remainder of the charge distribution at radii greater than that of point P cancel out each others effects.

The direct calculation of D from Gauss’ law by this method is possible for three general geometries: (1) spherical geometry with variations of charge density in the radial direction only; (2) infinite cylindrical geometry with variation of charge density in the radial direction only; (3) infinite planar geometry with variations of charge density only in the direction perpendicular to the infinite plane. However, these cases are worth study since they provide prototypical behavior for spherical, cylindrical, and planar configurations that we can compare with similar geometries.

Two conditions must be met to use this method for calculating D. Firstly, the charge distribution must produce a single component of D that is aligned with a coordinate direction of Cartesian, cylindrical, or spherical coordinate system. Typically, this will be a radial component in the spherical and cylindrical coordinate systems or one of the Cartesian coordinates. Symmetry is essential to this procedure. Using the D flux of symmetrically located differential charges, we can determine which components of D exist for given distribution. Secondly, a closed surface must be chosen on which the D is either perpendicular or parallel to the surface. For the perpendicular case, D(ds=Dnda; for the parallel case, D(ds=0. Moreover, D should be constant over the surface so that (DNda becomes DNA. Under these conditions, Gauss’ law becomes (D(ds=DNA=Q from which DN can be calculated.

The calculation of D by this method generally requires a homogeneous media, i.e., there are no variations in permittivity. However, the method is valid in the special case in which permittivity variations occur only in the direction of D. The calculation of E follows directly from these results via E=D/(.
Example 2.13-2: Calculate D for an infinitely long filament of uniformly distributed charge, (L. As shown in Figure 2.21a, the fields are expected to be the same for all angular positions around the filament of charge. When the filament is aligned with the z-axis, this symmetry condition is manifest as no variations of the fields with (. Regardless of the location of the observation point relative to the z-axis, there is an infinite amount of charge extending to infinity in both the (z and (z directions. This means that the observer “sees” the same fields regardless of z-location; there is no variation of the field with z. Therefore, the field varies only with (, the perpendicular distance from the z-axis, see Figure 2.21b. Two differential elements of charge, dQA and dQB, are symmetrically located with respect to the z-location of the field point. All of the charge of the filament can be represented by two similar symmetric charges. They contribute equally to the flux at the field point, but their z-components are oppositely directed and cancel, leaving only a (-component of the field. Up to this


Figure 2.21 – Infinite Filament of Uniform Charge; a: End View, b: Side View, c: Gaussian Surface.

Point we have used differential elements of charge and the symmetry of the problem to show that the flux density has the form D=D((()a(. Now the strategy is to choose a Gaussian surface on which D(ds is constant or zero. Note that D is perpendicular to and constant on the cylindrical portion of the surface that is centered on the z-axis. Furthermore, D(ds=0 on the ends of the cylinder. Consequently a closed cylinder is a good choice as the Gaussian surface, see Figure 2.21c. This choice leads to 
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 which leads to 
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. The electric flux points radially outward from the uniform filament of charge. It’s magnitude varies inversely with (. This functional form follows directly from Gauss’ law. The surface are of a cylinder varies proportionately with ( while D varies inversely with ( so that their product is constant. It follows that the same total flux passes through every concentric cylindrical surface.

Example 2.13-3: A uniform volume charge density, (V, of infinite extent in the x-y directions occupies the region |z|(1. Calculate D everywhere. As before, symmetry is used to determine the direction of the field. In this case use four, equal, differential charges symmetrically-located with respect to the z-axis and lying in the same z-plane, dQA, dQB, dQC, and dQD, see Figure 2.22. It is obvious that the x- and y-components of the electric flux cancel each other, but the z-components are equal and add together. 


Figure 2.22 – Planar Charge Distribution; a: Top View, b: Side View, c: Gaussian Surface.

Moreover, no matter the (x,y) location of the field point, there is an infinite amount of charge extending in the (x and (y directions. Due to the infinite extent of charge, there are no variations of the electric flux with respect to x and y. based upon these considerations of charge distribution and symmetry, we argue that the flux density is of the form D=DZ(z)aZ. The choice of a Gaussian surface is aided by noting that D(ds=DZ(zo)dxdy on z=zo surfaces so that the integral of the flux density becomes DZ(zo)A. In addition, D(ds=0 on surfaces described by x=xo and y=yo. Consequently, a rectangular box with surfaces perpendicular to the Cartesian unit vectors is a good choice as a Gaussian surface, see Figure 2.21c. A final simplification, due to the symmetry of the charge distribution with regard to the z=0 plane, the flux at z=zo>0 is directed in the aZ direction while the flux for z=(zo<0 is equal, but directed in the (aZ direction. First we calculate the charge contained within the region |z|(1 which is given as 
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 which can be solved to give DZ(z)=z(V or in vector form D=DZ(z)aZ. The charge enclosed for |z|<1 varies with z. For |z|>1 the amount of charge enclosed is unchanging with z so that 
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 which leads to 
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. The + sign is valid for z>0, the ( sign for z<0. The electric flux density points upward for z>0 and downward for z<0. The flux increases as z increases for values of 0(|z|(1 since greater charge is enclosed for greater |z|. However the flux is unchanging for |z|>1 since the charge enclosed does not change for z in this range.

These examples provide insight into the behavior of three prototypical geometries—spherical, cylindrical and planar. The fields of spherical geometries vary as 1/r2 and cylindrical as 1/( whereas those due to planar charge distributions are constant. These behaviors are a direct consequence of Gauss’ law. Often many “real” charge distributions are close to one of these geometries. The resulting flux density will be similar to that of the similar prototype. In addition, the form of the behavior usually depends upon the observer’s position relative to the charge distribution as shown in Example 2.13-4.

Example 2.13-4: Consider a long, thin cylindrical structure of length 100 m and diameter of 1 m with a uniform surface charge distribution, (S, over its entire surface. Determine the form of the electric flux density in the mid-plane of the cylinder. For and observer very near the surface, say within 1 mm, the surface “looks” planar so the flux density is nearly constant and is of the form |D|((S. At an intermediate distance, say at a distance of 10 m from the cylindrical axis, the object appears as an infinite cylinder with |D|((L/2((=(S2((0.5)/2((=(S/2(. Finally for far distances say 1000 m, the object appears so small that is behaves as a point charge of 2((0.5)(100)(S with |D|(2((0.5)(100)(S/4(r2=25/r2. D points away from the origin for all three field points.

These applications of Gauss’ law are valid only if the dielectric material is homogeneous. This restriction can be relaxed somewhat to allow permittivities that vary in the same manner as allowed for variations in the charge distributions, i.e., radial for spherical, radial for cylindrical, and axially for Cartesian coordinate systems, respectively. However, throughout this text we will concentrate upon materials that are uniform.

It is quite simple to calculate E from D by the constituitive relationship D=(E. In addition, the voltage (or potential) at a point can be determined by defining the location of a zero potential and then calculating (E(dl. For spherical geometries, the zero or reference potential is defined at r((, i.e., V(()=0. This enables the potential for a spherically symmetric charge distribution to be written as 
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The voltage of a spherically symmetric charge distribution varies as 1/r. For cylindrical geometries, the zero potential is chosen at ((1, i.e., V(1)=0. The potential is given by
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The potential of infinite, cylindrical charge distributions varies according to the ln(. Finally, the zero potential for planar geometries is chosen as the plane of symmetry. As in Example 2.13-3 where the plane of symmetry is z=0, the potential is calculated as
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the potential of a planar charge distribution increases linearly with distance from the surface on which the charge is located. More sophisticated calculations of potential are deferred to a more advanced course.

Example 2.13-5: Calculate the capacitance/meter of twin-lead, TV transmission line with conductors of 2a diameter separated by distance 2d. Neglect the effects of the dielectric spacing material. The diagram of the model for such a transmission line is shown in Figure 2.23.



Figure 2.23 – Twin-lead Transmission Line

This is a challenging problem to solve exactly, but we can obtain an approximate solution with the aid of Gauss’ law. Assume that there are equal and opposite line charge densities on the two PEC conductors, ((L. The charge distributions are not quite uniform since the attraction of the opposite charges tends to produce a slight concentration on the facing surfaces. However, for the electrode spacing d>>a, this effect is minimal. From Gauss; law, the electric field along the y-axis due to the charge on the top conductor is 
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 and the electric field due to the charge on the bottom conductor is 
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. Note that any path between the two conductors can be used for calculating the voltage, so we have chosen the convenient straight line of the y-axis. The voltage drop is found readily as 
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. In general, the capacitance/meter of the twin-lead line is given as 
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 For twin-lead TV transmission line the approximate dimensions are 2a=1 mm in diameter with a separation between wire axes of 2d=1 cm and ((1.2(o which leads to 
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2.14 - Arbitrary Charge Distributions

The unique configuration of the charge distributions of the previous examples allowed us to make many simplifications in the evaluation of Gauss’ law. But, can we calculate the electric flux density for arbitrary distributions of charge? Most definitely, as long as the material surrounding the charges is linear and homogeneous. Most simply, the concept of linearity when applied to fields means that the field with two or more sources present is the vector sum of the fields of the individual sources acting alone. The total electric flux is found by adding the vector contributions of small, differential or incremental volumes of charge, each of which can be treated as a point charge. We will obtain the general form for the charge distribution shown in Figure 2.24.


Figure 2.24 - Electric Flux Density for arbitrary Charge Distribution

The volume charge distribution, located relative to an arbitrary coordinate origin O, varies according to position, i.e., (V=(V(r’). r’ is a shorthand way of indicating the coordinate position (x’,y’,z’) where the subscript s denotes the position of an element of charge, frequently called the source point. The electric flux density is observed at the location P(x,y,z) denoted by r and called the field point. This source-field point notation is commonly used in electromagnetics—r’ and r as the source and field points, respectively

A review of Equation (2.76)

 shows that D associated with a point charge is directed radially outward and decreases as the square of the radial distance between the charge and the observation point. Since it occupies only a differential volume dv’, the differential charge dQ acts as a point charge source. The radial vector from the source point to the observation, or field, point is expressed as
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The differential volume of charge at r’ establishes a differential electric flux at r given by
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where R=|R|=|r(r’|, dv’ is the differential volume at r’, and aR=R/|R| is the unit vector in the direction from the source point to the field point. By integrating the contributions of all differential sources, we can find the electric flux due to the entire charge distribution as
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For numeric evaluation, the incremental form becomes
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where the subscript i denotes the variable for the ith incremental volume. These forms express the vector superposition of "point-like" charges for a known distribution (V. These equations can be modified for surface or line distributions. For surface distributions dQ=(Sda and the flux density is given as
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For numeric evaluation, the incremental form becomes
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For line charge distributions, dQ=(LdL, the flux density is given as
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For numeric evaluation, the incremental form becomes
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Of course Equation (2.83)

 is applicable for point charges where the dQ is replaced by the charge of each point charge
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Equations (2.83)

 assume that the charge distribution is known. More often, the charge distribution is unknown and the voltage differences between various electrodes are known. Advanced methods beyond the scope of this text are used in these cases.
(2.82)

 and 
The compact and simple form of Equations (2.83)

 is deceptive since their evaluation is often rather complicated. The problem is primarily due to aR, the unit vector which points from the source to the field point, has a different direction for each source point. As you might expect, makes things get pretty nasty. Rather than learn a bunch of mathematical tricks for this evaluation, let's look at a single concept which always works--simply decompose aR into its Cartesian components which point in the same direction for all source locations. However, there is a price to be paid for this simplification. There are now three integrals, one for each Cartesian unit vector. The resulting three scalar integrals are additionally complicated due to the functional dependence of aR on each of the Cartesian unit vectors. 
(2.82)

 and 
Finally, calculation of E follows directly from the consitutitive relationship D=(E. As before, this requires that the permittivity is homogeneous.

Example 2.14-1: Calculate the flux density due to a uniform, infinitely-long filament of charge directly by integration. As in Example 2.13-2, the filament is aligned with the z-axis, see Figure 2.25. Moreover, 


Figure 2.25 – Electric Flux Density Calculations for an Infinite Filament.

Since the flux density shows no z-dependence, we find it most convenient to evaluate the flux density at z=0. The field point is located in the z=0 plane at a radius of ( gives r((a(((x2+y2)1/2(cos(aX+sin(aY) (xaX+yaY. The flux density has no angular dependence. The charge is located along the z-axis, r((z’aZ. The distance between the source and field points is R(|R|(|r(r(|([(r(r()((r(r()]1/2([x2+y2+z’2+2r(r(]1/2 ([x2+y2+z’2+2(a((z’aZ]1/2([x2+y2+z’2]1/2. The unit vector aR=R/R=[xaX+yaY(z’aZ]/[x2+y2+z’2]1/2. Combining these factors in Equation 
(2.86)

 we obtain  GOTOBUTTON ZEqnNum818063  \* MERGEFORMAT  The integral of the z-component is an odd function of z’ and as such vanishes over equal and opposite limits. This means that there is no z-component of the flux; all the flux is directed outward from the filament of charge. The integrals associated with the x and y components are even functions of z’ and with similar forms. From tables or via MAPLE the integral is evaluated as 
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 The electric flux density is given by 
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 which agrees with the results found directly by Gauss’ law.

Example 2.14-2: Calculate the field along the axis of a circular disk of radius (=a with uniform surface charge density of (S. For convenience, let’s locate the disk in the z=0 plane centered at the origin, see Figure 2.26.


Figure 2.26 – Electric Flux Density Calculation for a Disk

Let’s approach this problem with direct calculation of D from the charge distribution. The magnitude of the flux of a differential element of charge is given by d|D|=dQ/4(R2. From Figure 2.26 it is obvious that the x and y components os the flux cancel leaving only the z-component which is expressed in terms of the geometry as dDZ=d|D|(z/R)=dQz/4(R3 =z(S(’d(’d(’/4(R3. In the same manner as in Example 2.14-1, r(zaZ, r(=(’a(’, and R=[x’2+y’2+z2]1/2. These details lead to 
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Note that as a((, i.e., the disk becomes a plane, DZ((S/2 as we found earlier for a uniform planar charge distribution. Also, as z gets very large, then DZ(((S/2)(a2/2z2)=(a2(S/4(z2=QS/4(z2 for finite a, the flux density of a point charge.

There is so much more to say about the fields due to charges. But, there is so little time and so many more subjects to study. You can extend your studies by enrolling in advanced electromagnetics courses.
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( No, the charges do not move faster than the speed of light. But for capacitors used in circuits, the time required for the charges to become uniformly distributed is orders of magnitude smaller than circuit time constants. So we treat it as instantaneous.


* This description assumes an ideal dielectric without any losses.


* There are several versions of the RG58/X transmission line where the X indicates the version. We will use specifications that apply nominally to all of them.
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