
Transmission Line Circuits

_____________________________________________________________________________________________________

9.1 - Introduction

The primary function of transmission lines is to convey signals from one fixed location to another. But while doing so, other characteristics are often exploited. Quite often, the efficiency in the delivery of power to the load is important. Filtering action that passes or blocks certain frequencies is another useful function of transmission lines. In many high frequency applications, transmission lines operate more nearly as ideal circuit elements than conventional lumped components. This chapter will investigate a several of the more common or important applications of transmission lines. Unfortunately, this is just a sampling of potential uses. You will discover many more in advanced courses or while at work as an engineer. I hope that you will devise a few clever schemes of your own along the way.

9.2 - Matching Concepts

The efficient transmission of power from a source to a load is crucial in most steady-state transmission line applications. Often the power levels are so low that thermal noise generated within the circuits is as large as the signal. Consequently, it is vital that as much power as possible be delivered to the load. With lossless transmission lines, there is no loss within the lines and the net power into one end of a line must exit the other end.

As in circuits, maximum power transfer occurs when ZIN=ZS* where ZIN is the input impedance seen by the source “looking” into the transmission line to which the load is attached and ZS* is the complex conjugate of the source Thèvenin impedance. The source delivers its available power to the input of the line. All of this power propagates through the lossless line and is delivered to the load. The purpose of all matching schemes is most simply to transform the load impedance ZL to ZIN=ZS*.

This conjugate match condition holds at every point on a lossless line. This is succinctly stated as on a conjugately matched, lossless transmission line, the impedances seen looking to the right and to the left at every point on the line must be the complex conjugates of each other. Mathematically this means that ZLEFT=ZRIGHT* and YLEFT=YRIGHT*. In addition for real ZC the reflections coefficients are related as (LEFT=(RIGHT*, also.

When the source has only a real impedance (as with most commercial generators), ZS=real. Moreover, the line impedance is often matched to the source, ZC=ZS. In this case, conjugate matching occurs when ZIN=ZS*=ZS=ZC with (IN=0 and VSWR=1. However, when a source with a complex impedance is used, e.g., the output impedance of a transistor, ZIN=ZS*(ZC, a complex value for which (IN(0 and VSWR>1. This is not a match as described in earlier chapters since (IN(0. For transients, (IN=0 is useful since it prevents reflections and preserves the waveshape. But, for steady-state waves with complex loads and sources, (IN(0 is necessary for maximum power transfer.

Different matching designs are based upon achieving this conjugate condition at different points along the line. The choice of different line locations leads to different designs. Which design is used depends upon the type of circuit, the environment, and the preferences of the designer. Nevertheless, they all have one common goal--to transform the two terms of impedance, RL and jXL, to RIN=RS and jXIN=(jXS. This procedure requires two variable factors in the matching circuits. Matching circuits are commomly called tuners, a term which we will use hereafter. This comes from the fact that the real and reactive parts of the load are “tuned” from original values to proper matching values. The following sections of this chapter will look at a wide variety of matching methods.

9.3 - Quarter-wave Transformer

When the load and source impedances are real, the tuner can be very simple, for example just a section of line in cascade with the load. The two variable factors in a single transmission line are its characteristic impedance, ZC, and its length, d. When the line length is chosen as d=(/4, the input impedance is given by
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For conjugate match with ZIN=ZS*=ZS, the characteristic impedance of the quarter wave tuner is given by ZC=((ZSZL), the geometric mean of the source and load impedances. With ZC known, the load impedance can be plotted on the Smith chart. A rotation of this point by 180( CW corresponds to moving toward the source by (/2 to the point of the input impedance of the quarter wave section. The impedance at this point corresponds to the admittance of the load so that the input impedance of a quarter wave transformer when normalized with respect to ZC of the transformer is the same as the normalized load admittance.

This method looks very attractive, but hidden in its simplicity is the difficulty in finding or adjusting the characteristic impedance, ZC, of coaxial and twisted pair transmission lines. However, It is especially well suited to microstrip and stripline transmission lines where ZC is related to the width of the ungrounded conductor. 

This matching scheme may appear as “magic” since just choosing the proper line can reduce the reflection coefficient and VSWR at the input of the tuner to zero. This means that all of the power incident at the input of the line is delivered to the load. It seems even stranger that this is accomplished by establishing a non-zero VSWR within the quarter-wave section. A closer view of the quarter-wave transformer reveals important details about steady-state matching.

Within the quarter wave line with a characteristic impedance of ZC=((ZSZL) the load presents a reflection coefficient of
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with a standing wave ratio of
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An incident voltage of 1(0o at the input of the quarter-wave line becomes 1(90o at the load. When ZL>ZC, (L=|(L|>0 so that the reflected voltage at the load is |(L|(90o so that VLOAD=(1+|(L |(90o). The reflected voltage at the input is |(L|(180o=(|(L| so that the input voltage is VIN=1(|(L|<VLOAD. Similarly, the load current is ILOAD=(1(|(L|(90o)/ZC and the input current is IIN=(1+|(L|)/ZC>ILOAD. Since the input voltage is less than the load voltage and the input current is greater than the load current, the input impedance is less than the load impedance and is given as


[image: image4.wmf]SL

C

INL

INC

INL

L

S

S

ZZ

Z

V1||

ZZ

I1||VSWR

Z

Z

Z.

-G

====

+G

=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (9.4)

In a like manner, when ZS>ZL the input voltage is greater than the load voltage and the input current is less than the load so that the input impedance is greater than the load impedance according to
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In both cases, the 180o round trip phase shift combined with the proper choice of characteristic impedance produces the desired impedance transformation and a match at the input of the quarter-wave line.

Since ZIN=ZS*=ZS at the input of the quarter-wave line, there is no reflected wave back toward the source from the quarter wave line. However, since there is a standing wave within the quarter-wave line, there must be a non-zero reflection coefficient within the line. These two facts seem to be contradictory. In fact, these two facts are consistent, but represent two different viewpoints. Since the load impedance is not equal to the characteristic impedance of the quarter wave line, there is a reflection coefficient there. As shown in Equation (9.2)

, this reflection coefficient is calculated with respect to the characteristic impedance ZC of the quarter wave line. The incident and reflected waves within the quarter wave line combine to produce the input impedance ZS. This input impedance appears matched to the source and will produce no reflections when it is attached to a line with characteristic impedance ZS. Calculation of the latter reflection coefficient is made with respect to the characteristic impedance ZS. (Note that the line ZS used to calculate the reflection coefficient of the input impedance can have any length including zero.) These two views give different reflection coefficients because they are calculated with respect to different characteristic impedances, one inside the tuner, one outside. 

Though reflection coefficients are a useful way to describe the conditions on a transmission line, they are referenced to a particular impedance level and change as the reference impedance is changed. On the other hand, impedances do not change regardless of the characteristic impedance. For this reason both views are correct—there is no reflected wave at the input of the quarter wave transformer because standing waves are established within the line which adjust the input impedance to exactly the proper matched value.

The use of reflected waves to alter the impedances on transmission lines is a fundamental principle in matching transmission line circuits. Within a tuner standing waves exist to alter the impedances, but these effects all combine at the input of the tuner to produce a match. For real sources, this means no reflected power from the tuner back to the source, for complex sources, a conjugate match.

As a matter of interest, quarter wave transformers are often used in optical equipment. In order to provide a good transfer of power from the incident optical wave in air to the lens, a quarter wave transformer is used. The TEM optical waves behave similarly to transmission line TEM waves. Instead of characteristic impedance, wave impedance is used to in calculating the properties of the quarter wave material according to ((/4=(((AIR(LENS). For non-magnetic materials with (=(o this equation becomes ((/4=(0((RLENS. To make the coatings work over the range of optical frequencies, multiple quarter wave transformers are used. The presence of these coatings is observable as the bluish appearance of lenses viewed from an oblique angle. These coatings enable the optical device to capture all of the incident light, especially important for “night vision” or low light-level applications.

Example 9.3-1: Calculate the characteristic impedance of a quarter wave transformer used to match a 100 ( load to a 50 ( line. From Equation 8.1 the required characteristic impedance is ZC=([(50)(100)] =70.7 (. This characteristic impedance is not available in coaxial line, but 73 ( and 75 ( coax lines are. Of course the line is (/4 long.

Example 9.3-2: Calculate the required permittivity and thickness of a quarter wave lens coating for a quartz lens operating at 60 (m wavelength. Since (RWUARTZ=8.5 and (RAIR=1, the coating material must have (RCOATING=(8.5=2.92. The thickness is d=(/4=15 (m.

9.4 - Quarter-wave Transformers and a Single Reactive Element

Quarter-wave transformers provide one method for matching complex loads to real sources as well. The addition of a single reactive element can make the load real with the resultant real component matched to a real source with a quarter wave transformer. Consider a load ZL=20(j30 ( for discussion of this procedure.

One method is to place an inductive reactance of jX=30 ( in series with the load to give a combined impedance of ZL+jX=20(j30+j30=20 (. A quarter wave transformer of ZC=([(20)(50)=31.6 ( will match this combination to a 50 ( source.

Alternatively, a parallel inductive reactance jX=j43.3 ( that corresponds to an inductive susceptance of jB=(j0.0231 S cancels the imaginary component of the load admittance, YL=1/ZL=0.0154+j0.0231 S. The remaining conductance 0.0154 corresponds to a resistive component of 65 ( that can be matched to a 50 ( load with a quarter wave transformer of ZC=([(65)(50}]=57 (. These two designs are shown in Figure 9.1.






Figure 9.1 - Two Matching Schemes for a Complex Load and a Real Source.

A somewhat more complicated, but equally valid method, is to connect the load directly to the quarter wave transformer. The load is transformed to an input impedance of ZIN=ZC2/ZL=ZC2YL=RIN+jXIN. The real part must be set equal the source resistance by the choice of ZC; the imaginary part can be canceled by a series reactive element. Alternatively, the input admittance can be expressed as YIN=ZL/ZC2=(20(j30)/ZC2=GIN+jBIN. The real part is set equal to the source conductance by the choice of ZC; the imaginary part is canceled by a shunt susceptive element.

In the impedance approach, the load ZL=20(j30 ( is transformed to ZIN=ZC2/(20(j30)=ZC2(0.0154+j0.0231). Since RIN=50=0.0154ZC2, ZC=57 ( is required. This results in jXIN=(57)2(0.0231)=j75.1. The cascade connection of a series capacitive reactance of (j75.1 with the input of the quarter wave line will produce the match.

The admittance approach gives YIN=(20-j30)/ZC2 which leads to 20/ZC2=YS*=0.02 requiring ZC=31.6 (. A capacitive susceptance of jB=j30/(31.6)2=j0.03 S must be added in parallel with the input of the quarter wave transformer to complete the match. These two designs are shown in Figure 9.2.

These first two solutions require inductive elements because the capacitive nature of the load is canceled prior to the impedance transformation by the quarter wave transformer. A second set of two solutions requires capacitive elements because the load is transformed before the imaginary term is canceled. Since a quarter wave transformer moves the load to the opposite side of the Smith chart, this transforms inductive loads to capacitive and vice-versa. These examples show that there are a number of options from which to choose the one that best fits the situation.







Figure 9.2 - Two Input Matching Scheme for a Complex Load and a Real Source.

A different sort of problem results from lumped reactive elements that become less ideal with increased frequency. This is mainly due to increased losses with increased frequency producing a response that is difficult to model. On the other hand, open-circuited and short-circuited transmission lines, hereafter called stubs, can provide any desired value of reactance or susceptance with insignificant losses. Consequently, transmission lines are a frequent choice to realize reactive impedances or susceptances at high frequencies.

To illustrate this technique, consider the load ZL=20(j30 ( connected to the 57 ( quarter wave transformer at of Figure 9.2a. A series reactance of (j75.1 ( in cascade with the input of the transformer is required for a match to the 50 ( source. Open-circuited lines are capacitive for lengths less than (/4 with an input impedance of ZINSC=(jZC/tan(d. Choosing the common value of ZC=50 (, we calculate the required line length from tan(d=50/75.1=0.666 as d=(tan-1[0.666])(/2(=0.09(. The two leads of the line are connected in series with the quarter wave line as shown in Figure 9.3a. Note that this configuration presents a problem when coax line is used as the outer conductor of the stub is ungrounded, an undesired connection. This problem doesn’t occur with a twin lead or twisted pair lines where both lines are usually ungrounded.

A more suitable configuration for a coaxial or microstrip line is the design of Figure 9.2b where a shunt susceptance of j0.03 S is in cascade with the input of the transformer. This allows one side of the stub to be grounded. Solving YINSC=jYCtan(d for the length of a 50 ( line, we find d=tan-1(0.03/0.02)(/2(=0.156(. This design is shown in Figure 9.3b.

In a similar way, inductive elements can be realized with short-circuited lines of length less than (/4. The input impedance is ZINSC=jZCtan(d for short-circuited lines and ZINOC=(jZC/tan(d.






Figure 9.3 - Matching Scheme using Transmission Line Stubs.

These examples show just a few of the many possible ways, limited only by the imagination of the designer, to achieve a match. Use the principles described in this section to help you devise some new methods.

A final word of caution, these designs are valid only at a single frequency. The behavior of a particular design at other frequency has not been a concern in this section. Analysis or simulation using SPICE or transmission line analysis software is needed to show the tuner’s frequency response.

9.5 - Single Susceptance Tuners

The difficulty of fabricating transmission lines with arbitrary characteristic impedance greatly restricts the use of quarter-wave transformers especially for coaxial lines. An alternate, more general strategy is described in this section. This approach is known to transmission line folks as the single stub tuner or single susceptance tuner (SST). This discussion will be limited to the use of shunt or parallel stubs since this approach will work for coax and microstrip lines.

The basic idea of this approach is to attach the load in cascade with a section of line of proper length to transform the real part of the line’s input admittance to the source resistance. An appropriate susceptance is added in parallel to cancel out the line’s resulting input susceptance. Though this method is easily accomplished with computers, the Smith chart provides an additional graphical view of the process, hopefully adding insight to the design process. The Smith chart approach will be emphasized here. In describing this procedure we will match the load of ZL=20(j30 ( to the source with ZS*=50 (.

Using the readily available ZC=50 ( for the line and the stub, we normalize the load to zL=(20-j30)/50= 0.4-j0.6 which is plotted as point A on the Smith chart shown in Figure 9.4. Its admittance, yL=0.769+j1.154, is diametrically opposite the load at point B. The length of line to be added between the load and the stub is determined by the CW rotation, i.e., toward the generator, that produces a match for the input conductance of the line, i.e., yL=1(jbL. The load point moves on a constant VSWR circle with this rotation. The required susceptance at the input of the line must lie on the constant conductance circle of radius 1. The intersection of the constant conductance and constant VSWR circles occurs at the two solutions for the line length. The shorter length of line, dSHORT=(0.173(0.163)(=0.01(, produces a normalized input susceptance of yL=1+j1.35 at point C. The longer length of line, dLONG=(0.321(0.163)(=0.158(, produces an input susceptance of yL=1(j1.35 at point D. Note that the two solutions have equal and opposite values of susceptance since the VSWR circle symmetrically intercepts the g=1 circle. This offers a degree of freedom to choose capacitive or inductive susceptance to cancel the remaining susceptance at the input of the line.

The first solution at point C requires a normalized susceptance of (j1.35 to cancel the +j1.35 input susceptance of the line. This can be realized with a lumped inductor with a value determined by 1/(L=1.35YC or L=1/1.35(YC=0.58 (H for operation on a 50 ( line at 100 MHz. Note that the normalized admittance was converted back to Siemans, the units of inductive susceptance. A more nearly ideal inductance can be realized with a shorted stub such that 1.35YC=1/ZCtan(d which requires d=tan-1(1/1.35)/2( =0.101(. An alternate method to calculate the stub length is to use the Smith chart directly. The admittance of a short circuit is on the rightmost point of the horizontal axis. As this point is rotated CW toward the source the susceptance becomes decreasingly negative. The required length of the stub to cancel +j1.35 susceptance is found at the distance of the point where the input susceptance of the stub is (j1.35.

This corresponds to (0.351(0.25)(=0.101(. Of course, any n(/2 added to the line lies at the samepoint and is a valid solution. Shorter line lengths are usually more desirable in tuners as we will discuss later. The two inductive designs are shown in Figure 9.5.


[image: image6.wmf]D

A

C

B


Figure 9.4 - Smith Chart procedures for SST Design.






Figure 9.5 - SST Designs with Inductive Susceptances.

The second possible solution corresponds to the input admittance of the line at point D in Figure 9.4. This requires a capacitive susceptance of j1.35 to cancel the input susceptance of the line. Using similar procedures as in solution for point C, we find that a lumped capacitance defined by (C/YC=1.35, or C=1.35YC/( =43 pF for 100 Mhz and 50 (. Lumped capacitors are relatively low loss and adjustable models are available for manual “tweaking” by an operator. Alternatively, an open-circuited stub will have a capacitive susceptance and can be used to provide the necessary +j1.35 to achieve the match. The required stub length is calculated according to 1.35YC=tan(d/ZC or d=tan-1(1.35)/2(=0.149(. The admittance of an open circuit lies on the extreme left hand side of the horizontal axis. This point is rotated a distance of (d to the required admittance j1.35; this gives a stub length of d=(0.149-0)=0.149(. The two capacitive designs are shown in Figure 9.6.
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Figure 9.6 - SST Tuners with Capacitive Susceptances.

In summary, the single susceptance tuner is achieved by attaching the load to a length of line that transforms the load admittance along a constant VSWR circle to the points of input admittance of 1(jbIN. A parallel susceptance, in lumped element or transmission line form, with a susceptance of -(jbIN is added in parallel to the input of this line match the load to the real source.

9.6 - General Matching Principles

We could delve into a variety of other tuners designs. But, they are based upon two rather general principles. Firstly, the length of a line in cascade with a load can be chosen so that load admittance is transformed (along the constant VSWR circle through the load) so that the real part of the input admittance of the line has the desired value. Secondly, the total susceptance at the input of the line is adjusted by the additional susceptance of a lossless stub in parallel with the input to this line. These two principles will guide you through all tuner design procedures. We will not cover them further in this textbook.

Finally, a few words about performance of tuners over a range of frequencies. All of the designs above are for a single frequency. The definition of bandwidth for a transmission line circuit is usually stated in terms of the maximum allowed |(IN| or VSWR. There is no general equation that predicts the performance of all tuners over a range of frequencies. The |(IN| or VSWR of each tuner must be calculated and plotted over a frequency range to determine the tuner bandwidth. In general, the shorter the line lengths in the matching circuit, the greater the bandwidth. This is due to the variation with frequency of phase differences of the incident and reflected waves. A perfect match is achieved at the center frequency. For all other frequencies there is a phase difference which is related to exp[-j2((d]=exp[-j2((d/vP]. This expression shows that larger d gives greater phase difference for a given change in frequency from the design frequency. The larger the d, the smaller the frequency range over which an acceptable match can be achieved.

9.7 - Conjugate Matching

The tuners discussed so far have matched a complex load to a real source that equals the line impedance ZC. More typically, the source is complex with a real part that is unequal to ZC. This situation typically occurs when the source is a transistor output. Fortunately, this is not a big problem since the concepts used earlier still work in this case. Firstly, the input conductance is set equal to the desired value, GIN=GS(YC. Secondly, the input susceptance is not set to zero, but to some finite value, opposite in sign to the source susceptance, i.e., jBIN=(jBS. The general principles remain unchanged—the insertion of a line in cascade with a load changes both the real and imaginary parts of the load admittance; a stub in parallel will alter the susceptance only. The desired input admittance is no longer at the center of the Smith chart, i.e., (IN=0, rather at some complex value where YIN=YS*.

As an example consider matching zS=1+j1 to zL=2(j2. To obtain a conjugate match, either we can add something to the source to make it look like at zL*=2+j2 or we can add something to the load to make it look like zS*=1(j1. Let’s try adding something to the load with an SST type approach to make it look like zS*=1(j1. As before, we work with admittances, yS=0.5(j0.5 and yL=0.25+j0.25, so that we can use parallel elements.

First, add a length of line d1 by moving along the dashed constant VSWR circle in the direction of the arrow to transform gL from 0.25 to the required 0.5=gS. From the Smith chart of Figure 8.7 the line length between the two radials is found to be d1=0.093( and produces yIN(=0.5+j0.97. Since the input admittance must equal the conjugate of the source admittance, yIN=ySTUB+yIN(=yS*, then yTUB=(0.5+j0.5(0.5(j0.97=(j0.47. Using a short-circuit stub, we find from the Smith chart that a length of stub d2=0.18( gives the required susceptance in parallel with the cascade line to produce the required 




Figure 9.7 - Conjugate Matching Method.

conjugate matching. The resulting tuner is shown in Figure 9.8. As with previous tuner designs, there is another possible solution using the other intercept of the g=0.5 conductance stub. The design of this tuner is left to you.
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Figure 9.8 - Conjugately matched Tuner.

An alternate design might be to put an SST type of tuner on the generator such that it looks like yL*. To do this we need to move CW along a constant VSWR circle from yS=0.5(j0.5 via a line length d1 to the g=0.25 conductance circle. However, this is impossible since the g=0.5 conductance circle upon which yS lies is located entirely within the g=0.25 conductance circle. The VSWR circle will never intersect the g=0.25 conductance circle. The largest value of conductance which can be achieved by a cascade section of line is g=0.38, see Figure 9.7. This illustrates the fact that there may be “forbidden regions” with some designs to which loads cannot be matched. If this occurs, try another approach.

9.8 - Attenuators

The reduction of reflected signals due to lossy elements is exploited by devices called attenuators. As the name implies, attenuators reduce signals, but more importantly, they make a bad mismatch “look” much more like a matched load. This is especially important for some devices which require a low VSWR, but which do not suffer due to a reduction in signal strength.
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Figure 9.9 - Pi and Tee Attenuators.

There are two standard forms for attenuators, pi and tee, as shown in Figure 9.9. Attenuators are usually specified in terms of the signal reduction that they cause when they are inserted in cascade with a matched load. This is often called the insertion loss. By proper choice of components an attenuator in a circuit will cause only a negligible reflection when terminated by ZC. The procedure for designing an attenuator is to consider the series resistance of the attenuator as a resistance/length and the shunt conductance as conductance/length. The square root of their quotient must equal ZC in order to match the characteristic impedance of the line,
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The amount of attenuation is the other equation that governs the design of attenuators. Attenuators come in a set of rather standard values, 3 dB, 10 dB, and 20 dB.

The main function of attenuators is to reduce the reflection seen by sensitive components by “padding” them with an attenuator, alternatively called a pad. Of course this reduces the signal strength of the incident signal by the attenuator rating as well. A short circuit or an open circuit will cause the greatest mismatch, but the lossy nature of the attenuator reduces this significantly. For example, consider that any load on the exterior of the Smith chart has |(|=1 and VSWR=(. With a cascade insertion of 10 dB attenuator this is reduced to a VSWR=1.2. This can be calculated by usual circuit calculations or by using the attenuation scale on the Smith chart. Loads of lesser VSWR are brought even closer to a match by attenuators.

Example 9.7-1: Calculate the resistance values for a 10 dB Pi attenuator to be used with a 50 ( transmission line. The attenuation is calculated with the line impedance attached as a load as shown below.





The input impedance of the attenuator with 50 ( attached should be 50 (. This provides one design equation of 
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. From these two equations the required resistances are found as RSHUNT=96.2 ( and RSERIES=71.2 (.

Example 9.7-2: Verify the performance of a 3 dB Pi attenuator. Using the calculation procedure of Example 9.7-1 we find the values of RSHUNT=291.4 ( and RSERIES=17.7 (. The voltage division of the attenuator is 
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 as it should be. The input impedance is 
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 as expected. The 3 dB pi attenuator works properly!

9.9 - Distortionless Lines

Preservation of the envelope of signals propagating on a transmission line is very important for their accurate detection at the load. Mathematical analysis shows that there is a condition for which a line can transmit a signal without waveshape distortion during propagation. (Recall that reflections due to mismatches can also cause distortion.) Consider that the signal v(t) with a Fourier transform V(() propagates down a line according to
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When ( is independent of frequency this transforms back to the time domain as
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the original signal delayed by z/vP and reduced in amplitude by exp[-(z] (remember Fourier transforms?). What conditions are necessary to make ( independent of frequency? Consider that when (and only when) R/L=C/G then ( becomes
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which makes ( independent of frequency. Thus, the condition for a distortionless line is that
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Usually L is too small for this to be true due to the very small value of G. Though any adjustment of the parameters to bring about the conditions of Equation 

(9.10)

 is possible, it would be foolish to increase G to make the line distortionless as it would increase ( as well. Instead L can be increased, not by altering the line, but by adding lumped inductors in series with the line at intervals that are much less than a wavelength. Since the intervals are so small, the telegrapher’s equations remain essentially true and the line has been made distortionless. In the days when analog long distance telephony used wire transmission lines across the country, the lines were periodically (with respect to z) “loaded” with series inductance to make the lines distortionless without adding attenuation. Otherwise, the telephone conversations were objectionably distorted.

Example 9.8-1: A transmission line has R=0.1 (/km, L=1 (H/km, C=0.111 nF/km and G=5 (S/km. Calculate the lumped inductance to be added to a line to make it distortionless. From Equation 9.10 we find that LREQUIRED=0.1(.111x10-9)/5x10-6=2.22 (H/km is the required inductance/meter for a distortionless line. For audio operation of this line for which the highest frequency is about 3 kHz, the shortest wavelength is 10 km. With a 1.11 (H series inductor added every 0.5 km the wave would see these added inductors as essentially distributed since they are only 0.1( apart.

9.10 - Directional Couplers

The slotted line is used to detect the total voltage on a transmission line and from the spatial distribution of the voltage, we can find the VSWR and |(L|. But it would be more convenient and useful if we could determine the forward and reverse waves directly. A device that will do this is called a directional coupler. There are many designs for directional couplers; we will look at a particularly simple one. Consider the circuit shown in Figure 9.10 where a lumped element resistive network has been inserted in cascade with a line with ZC.




Figure 9.10 - Directional Coupler.

The voltage across each of the series resistors is expressed in terms of the line current as
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The shunt resistors are chosen so as to make a voltage divider that gives
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From these relations we solve for VFOR as
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If we choose RSER/ZC=R1/(R1+R2) then the V( term vanishes and
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With RSER/ZC=R1/(R1+R2), V( is expressed as
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The voltages VFOR and VREV can be measured directly and give instantaneous values for the forward and reverse voltages, respectively. VSWR and |(L| can be calculated as
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Best operation is achieved when the directional coupler has the same characteristic impedance as the line, i.e.,



[image: image25.wmf](

)

SER12C

2RRRZ

+=

,
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (9.17)

so that it doesn’t introduce any reflections due to impedance mismatch. Combining Equation (9.17)

 and RSER/ZC=R1/(R1+R2), we can solve for R1 and R2 under the condition of matched to give
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The smaller the value of RSER, the less attenuation introduced by the directional coupler. But, if it is too small VRSER may be too small. With RSER=1 ( a directional coupler matched to a 50 ( line requires R1=25 ( and R2=1225 (.

Example 9.9-1: Calculate the resistors for a directional coupler to be used on a 300 ohm line. For a reflectionless directional coupler use Equations (9.18)

. There is no choice in the selection the first resistor R1=150 (. For convenience, let’s use RSER=1 ( which leads to R2=300(300(1)/2=44.85 k(.

We have just touched the surface of transmission line circuits. If you work with transmission lines at high frequencies you will discover many more interesting applications. Maybe a wireless or microwave course is what you need.
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