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Lab 8 
 

EXPERIMENTALLY DETERMINING THE TRANSFER FUNCTION OF A SPRING-
MASS SYSTEM 

 

OBJECTIVES 
At the conclusion of this experiment, students should be able to: 

 Experimentally determine the best fourth order transfer function model for the 2 DOF 
system. 

 Collect experimental frequency response data. 
 Understand the significance of the Bode plot for predicting system behavior, and 

determining non-parametric system models. 

DELIVERABLES 
The deliverables of this experiment are: 

A memo style report including, but not limited to the following: 
-introduction, results/discussion, conclusion, and appropriate appendices 
-Show your best fit transfer function, and the location of its poles. 
-A Bode magnitude plot showing the experimental data, and best fit.  An example is 
shown on the last page of this handout, your results may vary significantly. 
-List any suggestions for improving the lab. 
 

THEORY 
By frequency response, we mean the response of a system to a harmonic input.  A linear system 
cannot change the frequency from input to output.  Thus, as we have seen earlier, the output will 
be the a sinusoid of frequency identical to that of the input, only amplified or attenuated, and 
shifted in phase: 
 

PlantG(s)x(t) y(t)
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Figure 1, Physical Meaning of Frequency Response 
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  x t( ) = X sinωt  

 
y t( ) = G jω( )X sin ωt + ∠G jω( )( ) 

 
A Pole-Zero Map is the easiest way to visualize the magnitude and phase of a Transfer Function.  
The figure below shows the pole zero map of the transfer function: 
 

  
G s( ) = s2 + 2.1s + 0.2

s s3 + 3s2 + 93.25s + 91.25( ) 

 
We have drawn the vectors from each pole and zero to the point s = j9.5, which is the 'resonant' 
frequency of the system.   
 

 
Figure 2, Graphical Evaluation of Frequency Response 

 
Note that the magnitude of the transfer function at this point is given as the product of the lengths 
of the vectors from the zeros over the product of the lengths of the vectors from the poles: 
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The transfer function argument (angle) is the sum of the zero vector angles minus the sum of the 
pole vector angles.  In each case the angles are defined as counter-clockwise from a segment 
parallel to the real axis to the vector. 
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The closer a complex pole is to the jω  axis, (less system damping) the higher a resonant peak 
will be.  Likewise, the closer a zero, the lower the 'notch'.   
 
The Bode plot is a mapping of the entire + jω  axis (the entire positive frequency spectrum) 
through the system transfer function to Gain and Phase plots.  We typically plot Gain and Phase 
together on a semilog axis.  The abscissa (x-axis) for the Bode plot is log frequency.  The 
distance between a frequencies 1 and 10, 0.1 and 1, 10 and 100, etc. is termed a 'decade'.  Gain is 
plotted in 'decibels' (dB) where the conversion from magnitude to dB is given by 
 

G jω( ) dB( )= 20log10 G jω( ) 
 

This week in class we are investigating how to determine the Bode plot knowing the system 
transfer function.  In this lab we will explore the inverse problem, that is, knowing the frequency 
response, can we determine an appropriate transfer function?  We will base our transfer function 
estimate on the experimental Bode magnitude plot only.  As illustrated in Fig 2, and Eqn 1, 
without considering the Bode phase plot, the poles and zeros could lie on either side of the jω 
axis (right or left half plane) and we would observe the same Bode magnitude plot.  With this in 
mind, you may find it necessary to arbitrarily change unstable system poles to their stable 
equivalents after tuning your model. 
The system we are trying to identify is a two 
mass, three spring system as shown to the 
right.  The input is a voltage to a DC motor 
connected to a rack and pinion, then directly 
connected to the first mass.  We will neglect 
the motor dynamics.  Since we have some 
insight into the physical characteristics, this is 
a gray box problem, rather than a black box  
problem, where we have no inkling as to what 
connects input to output.   

 

The output is the position of the second mass x2.  From first principles, we would expect the 
system transfer function to be fourth order.  Thus, we begin with the following transfer function, 
and try to identify the unknown parameters. 
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THE ADVENTURE BEGINS 
 
During the adventure you will set out to accomplish the following: 
 
1.  Set up the environment. 
a.  Each station should be set up in 2 DOF mode with two 500g brass masses on each carriage.  If 
your station is not configured properly, ask your instructor to fix it. 
b. Log on to the computer (username=student, password=student) and start the ECP executive 
program under Programs/ECP.  Select Setup/Control Algorithm...  In the dialog box, select the 
State Feedback radio button, and press Implement Algorithm.  Press OK.  Push the black button 
of the ECP control box.  You might hear the system rattle a bit due to sensor noise in the 
feedback loop.   
2. Recording Frequency response data:  For each frequency of interest, do the following steps: 
a.  Select Command/Trajectory...  In the dialog select the Sinusoidal radio button and press 
Setup.  Now select Open Loop Move.  The Amplitude should be set to 0.5v.  Select a frequency 
of interest.  You will need to run the following set of frequencies: [1 2 3 4 5 6 7 8 9 10] Hz 
Set the number of reps equal to 10 times the frequency (in Hz) and click OK.  Click OK on the 
Trajectory Configuration dialog.   
b.  Under Utility, select Zero Position 
c.  Select Command/Execute and press Run. 
d.  Watch the response.  After the Upload successful dialog completes, click OK. 
e.  (Optional)  To look at an individual data set, select Plotting/Setup Plot.  In the dialog, add 
Commanded Position and Encoder 2 Position to the Left Axis, the click Plot Data.  You might 
want to do this for some of the higher frequencies to insure that the system has reached steady 
state. 
f.  Export your data.  Select Data/Export Raw Data...  Browse to a convenient directory, floppy 
disks are recommended for storing this data.  Save as type All files (*.*).  Choose a name with 
meaning, like 'inixx.m' where ini is a group member's initials, xx is the frequency in Hz.  
g.  Repeat for the remaining frequencies of interest. 
h.  You can use Secure FX to move your data to your afs space.  A shortcut is provided on the lab 
computer desktop. 
3.  Analysis: 
a. Each exported data file will have the following format. 
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Each row of the array is a sample and the columns are, respectively: Sample, Time, Commanded 
Pos, Encoder 1 Pos, Encoder 2 Pos, Encoder 3 Pos. 
Change the file so that you have an array assignment.   
 

 
Extract the Encoder 2 Position data and subtract the mean: 
»enc2cm = dat4(:,5)-mean(dat4(:,5)); 

Convert Encoder 2 Postion to centimeters.  The encoder sensitivity is 1604.1 counts/cm.   
»enc2cm = enc2cm/1604.1; 
Now determine the ratio of output to input amplitude.  You might want to plot the data to 
determine where the oscillations have reached steady state.  Output amplitude can then be 
determined by taking the maximum value from several steady state oscillations.  Since the input 
amplitude was specified to be 0.5 volts, we divide by 0.5 to get the ratio of output magnitude 
over input magnitude.  For example: 
Magy(10) = max(en2cm(500:1000))/0.5; 

Note, the array indices in this statement need to be adjusted to that you consider only oscillations 
after the system has reached steady state.  It is probably easiest to do these calculations inside 
each data file.   

b.  Write a top-level script that 1) executes each data file.  2)  Converts the Magy vector to dB, 

and plots the experimental data on a semilog plot.  3)  Uses fminsearch to find the fourth order 

transfer function that best fits the data.  Use a transfer function form with no finite zeros.  You 

should field an initial guess based on where the resonant peaks appear to be in the experimental 
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data.  The system is very lightly damped, so guess each damping ratio to be 0.1.  Reduce the 

transfer function of Eqn (2) to the following form, and use the xi s for your initial guess. 

 G s( ) =
x1

x2s
4 + x3s

3 + x4s
2 + x5s + x6

  

Then put the coefficients of your guess into a column vector to serve as the initial guess for 
fminsearch.  Use the following syntax to run your optimization: 
»options = optimset(@fminsearch) 

»options = optimset(options,'Display','iter'); 

»coeffs = fminsearch(@lab8,x0,options) 

You will need to write a function 'lab8' that computes the sum squared error between 
experimental magnitudes and theoretical magnitudes along the Bode plot.  You are encouraged to 
use the features of the control toolbox, including, in particular, the bode command.  Here are a 
few lines of code to get you started: 
function J = lab8(x) 

num = x(1); 

den = x(2:6); 

sys = tf(num,den); 

ww = 2*pi*[1:10]; % be sure to convert freqs. to rad/sec  

mag = [% put your experimental data here %]'; 

maggie = bode(sys,ww); 

maggie = 20*log10(maggie(:));  % Comparison should be done in 

mag = 20*log10(mag);           % dB for proper weighting 

J = norm(mag - maggie); 

Plot the magnitude of your best fit transfer function, and determine the resonant frequencies.  
(You will need to re-run the bode function with the �best� transfer function coefficients, and use a 
fine frequency vector like ww=logspace(0,2,100)).  Time permitting, try exciting the 
system at the resonant frequencies.  You will probably need to reduce the input amplitude to 0.25 
volts to avoid exceeding the travel limits of the device.  Incorporate this data into your analysis, 
and re-do the numerical fit analysis. 
Check the stability of your tuned transfer function.  If any of the poles lie in the right half plane 
(have positive real parts) you should arbitrarily change the real parts to be negative, and re-
calculate the transfer function.  Be sure to report a stable transfer function as your final answer. 
A sample plot of experimental and theoretical best fit Bode magnitude data is provided below, 
your results may be significantly different depending on which set-up you use for the analysis. 

 



ES205 Analysis and Design of Engineering Systems 
Rose-Hulman Institute of Technology 

 

7 of 7  © 2004 RHIT 

 
Figure 3, Experimental Bode Magnitude Data with best fit theoretical transfer function. 


