PAGE
5

ECE331 Microcomputers (KEH)
Take-home Test #2 – 100 Points Maximum

Due Thursday of Finals Week November 15, 2007 (by 5 PM, Under my office door)
Dept. of Electrical and Computer Engineering

Rose-Hulman Institute of Technology

Name: ___ CM Box:_________

Work this test on separate paper, and then staple your work to the back of this test form. You must sign and date below to affirm the declaration below:

“I hereby declare that all work done on this test is my own, and that I have neither given help to, nor received help from, anyone else.”

Signature: ______________________________ Date: ________________

1) (28 Points, 2 points per blank)
Assembly Language Program: Interrupt-driven White Noise Generator
The hardwired circuit shown below in Figure P1 is a 31-bit right-shift register consisting of D flip-flops FF0 – FF30, whose input is formed by EXCLUSIVE OR-ing the outputs of FF2 and FF30. This sequence generator produces a “maximum length” pseudorandom binary sequence (PRBS) that will not repeat until 231-1 clock pulses have elapsed. The system output may be taken from the output of any flip-flop in the shift register. The (normally closed) PRESET pushbutton is used to start the shift register in the state of all 1’s, since the state of all 0’s is the one state that is not allowed in a maximal length pseudorandom binary sequence generator, and so we must not let this circuit start in the all 0’s state. When clocked at 20 kHz, the sequence will take (231-1)/20000/60/60 = 29.8 hours to repeat itself! Thus the binary output is a rather random sequence of 0’s and 1’s! If this circuit drives a loudspeaker, it will produce white noise that might be used as a sleep aid.

 Figure P1. Pseudorandom Binary Sequence Generator [image: image1.emf]FF30

(31 D FlipFlops Total)

FF30

1

2

3

5

4

Q

D

CLK

PRE

CLR

+5 V

FF2

FF0

1

2

3

5

4

Q

D

CLK

PRE

CLR

20 kHz

Clock

Oscillator

FF1

1

2

3

5

4

Q

D

CLK

PRE

CLR

- - - - - -

PRESET SW

1

2

3

PRBS Sequence Generator (Length = 2^31 - 1) Must be started by hitting preset button since initial state may NOT be 0.

FF2

1

2

3

5

4

Q

D

CLK

PRE

CLR

R1

10 kohm

FF30

(31 D FlipFlops Total)

FF30

12

3

5

4

QD

CLK

PRE

CLR

+5 V

FF2

FF0

12

3

5

4

QD

CLK

PRE

CLR

20 kHz

Clock

Oscillator

FF1

12

3

5

4

QD

CLK

PRE

CLR

- - - - - -

PRESET SW

1

2

3

PRBS Sequence Generator (Length = 2^31 - 1) Must be started by hitting preset button since initial state may NOT be 0.

FF2

12

3

5

4

QD

CLK

PRE

CLR

R1

10 kohm

Below is an assembly-language program written for a Freescale 9S12C32 (specifically for our CSM12C32 module) that emulates this hardwired white noise generator in software as an interrupt routine. The calling program sets up the RTI interrupt to interrupt at a 15.625 kHz rate (instead of the 20 kHz in the hardware circuit above), and it also enables interrupts before it falls into an idle loop. The interrupt routine implements the rest of the system shown in Fig. P1. Note that this software emulation should behave exactly like the hardware system in Fig. P1, except it is clocked at a 15.625 kHz instead of 20 kHz.
Please note that this program is intended to run on our CSM12C32 lab modules, and that these modules employ a 16 MHz ceramic resonator, which sets the OSCCLK rate to 16 MHz. Note from Fig. 4-1 in the S12CRGV4.pdf manual that OSCCLK has nothing to do with the PLL that forms the bus clock, thus the RTI interrupt rate does NOT depend upon the bus clock rate, as set by the PLL.

Each RTI interrupt corresponds to a single clock pulse in the hardwired circuit of Fig. P1. Note that four byte-sized variables (SHR3, SHR2, SHR1, and SHR0) are used to implement the 31-bit shift register, where SHR3 represents FF0 – FF7; SHR2 represents FF8 – FF15; etc. The system output is taken from FF30, and is driven out on I/O pin PM0. If a loudspeaker is connected to PM0, we will hear the broadband white noise as a steady “hiss”.

Fill in the missing blanks in this assembly-language program.

; ECE331 White Noise

; PRBS.ASM - Generates 2^31-1 bit long PRBS (pseudorandom binary
; sequence with a 15.625 kHz clock rate). Uses RTI interrupt.

;

 XDEF WHITENOISE

 ABSENTRY WHITENOISE

 INCLUDE 'mc9s12c32.inc'

 ORG $3800

SHR3: ds.b 1

SHR2: ds.b 1

SHR1: ds.b 1

SHR0: ds.b 1

TEMP: ds.b 1

 ORG $4000

WHITENOISE: lds #$3f00

 bset DDRM,1
bclr PTM,1

;Next two lines simulate depression of PRESET SW in Fig. P1
 movw _____________ ;***BLANK #1 ****
 movw _____________ ;***BLANK #2 ****

;Divide 16MHZ OSCCLK to get
 ;RTI interrupts at 15.625 kHz rate

 movb _____________
 ;***BLANK #3 ****
 bset ​​​​​​_____________ ;***BLANK #4 ****
 movb #$80,CRGFLG ;Clear RTI interrupt flag

 __________________ ;***BLANK #5 ****
loop_here_forever:

bra loop_here_forever

;*********Here ends the main program "WHITENOISE"

WHITENOISEISR:

 CLR TEMP

 BRCLR SHR3,%00100000,FF2NOTSET

 MOVB #1,TEMP

FF2NOTSET: CLRA

 BRCLR SHR0,________________ ;***BLANK #6 ****
 LDAA #1

FF30NOTSET: ___________________________ ;***BLANK #7 ****
 ___________________________ ;***BLANK #8 ****
 ROR SHR3

 ROR SHR2

 ROR SHR1

 ROR SHR0

 ldaa ______________________ ;***BLANK #9 ****
 ___________________________ ;***BLANK #10 ****
 STAA PTM ;Send Bit #30 out to PM0

 ;Relax the RTI interrupt flag
movb ________________
 ;***BLANK #11 ****

 ;***BLANK #12 ****
;**

;* Initialize Reset Vector and TC0 Interrupt Vector *

;**

 ORG $FFFE

 fdb WHITENOISE ;Make reset vector point to
;entry point of WHITENOISE program

 ORG ________________ ;***BLANK #13 ****
 fdb _________________

 ;***BLANK #14 ****

2) (28 points, 2 points per blank) C Language Program: Interrupt-Driven Music Player
Fill in the 11 blanks in the C program below that plays music. The TONE array is loaded with values N = 0 – 24, which represent two octaves of the musical scale: A1, Bb1, B1, C1, Db1, D1, Eb1, E1, F1, F#1, G1, Ab1, A2, Bb2 B2, C2, Db2, D2, Eb2, E2, F2, F#2, G2, Ab2, A3. Furthermore, let the value N = 25 correspond to the special case of silence (a musical “rest”). Let A1 correspond to 220 Hz, then A2 must correspond to 440 Hz, one octave above A1, and A3 corresponds to 880 Hz.

Since the Western musical scale varies in 12 logarithmically-spaced steps between octaves, the frequency of each note in this scale is given by

[image: image2.wmf]12

/

2

220

N

f

·

=

 Hertz, where N = the note number (0 – 25)

The DURATION array is loaded with tone duration values that range from 1 up to 16. Let “1” represent the shortest possible note duration, let’s call it a 16th note, then “2” represents a note that is twice as long (an 8th note), “4” represents a note that is 4 times as long (a quarter note), “8” represents a half note, and “16” represents a whole note. Note that with this scheme, a dotted 8th note, which is 1.5 times the length of a regular 8th note, would be represented by “3”, and a dotted quarter note would be represented by “6”, etc.
Note that the main program is quite short. It calls function music_init() that initializes the timer tick rate, TC0 “output compare” interrupt mechanism, and other important variables and registers, it ends by globally enabling interrupts. Then the main program enters an infinite “idle” (do nothing) loop.
The TC0 interrupt routine music_isr() performs the tasks of fetching the next tone and duration values from the TONE and DURATION arrays, generating the musical tones (as square waves) based upon the information fetched from the TONE array, and deciding how long to generate each tone, based upon the information fetched from the DURATION array.

Fill in all 14 of the blanks in the music program below, so that it repeatedly plays “Dear Old Rose”.

#include <hidef.h>
/* common defines and macros */

#include <mc9s12c32.h>
/* derivative information */

#pragma LINK_INFO DERIVATIVE "mc9s12c32"

#define SONGSIZE 10

//There are 10 notes in this song

void music_isr(void);

void music_init(void);

char getnoteflag, noteptr, note_number;

long int dur_nr_half_cycles;

long int SIXTEENTHNOTE = 300000;

// SIXTEENTHNOTE = nr of timer ticks in a 0.2 sec sixteenth note

int tone_val, dur_counter;

//The “duration” and “tone” arrays below play the "Dear Old Rose" RHIT fight song

const char duration[SONGSIZE]={2, 2, 3, 1, 1, 1, 2, 2, 3, 4};

const char tone[SONGSIZE]={6, 7, 8,10,11,13,15,13,11,25};//End with a rest const int tone_table[25]= {6818, 6435, 6074, _______, 5412, 5108, 4821,
 //(***Blank 1 ***)

4550, 4295, 4054 ,3827, 3612, 3409, 3218,

3037, 2867, _______, 2554, 2411, 2148, 2027,

//(***Blank 2 ***)

2027, 1806, 1705, 1609};

void main(void)

{

music_init();

for(;;);

}

void music_init()

{ getnoteflag = 1;
// Set getnoteflag = 1, so first interrupt will fetch a

// new note from tone[] and duration[] arrays.

 noteptr = 0;

// Make noteptr point to first note (first element)

// in the tone[] and duration[] arrays.

 dur_counter = 0;
// Clear Duration Counter, which counts the number

// of half cycles that a note is played.

 DDRM_DDRM0 = 1;
// Make PTM0 (Bit #0 of Port M) an output.
// (PTM0 is connected to an amplified loudspeaker.)
 PTM_PTM0 = 0;
// Set PTM0 low.

 ____________________ // Set Prescaler to divide bus clock by 8.(***Blank 3***)
// Assume 24 MHz bus clock,
// Thus the Timer Tick time = 8/24E6 = 333.3333 ns

 ____________________ // Turn on timer

(***Blank 4 ***)
 ____________________ // Make TC0 an Output Compare
(***Blank 5 ***)
 TC0 = TCNT + 25;
// Schedule first TC0 interrupt in 25 timer ticks

 ​​​​​​​​​​​​​____________________ // Clear TC0 interrupt flag

(***Blank 6 ***)
 ____________________ // Locally Enable TC0 interrupts
(***Blank 7 ***)
 EnableInterrupts;
// Globally Enable TC0 interrupts

}

// The following interrupt routine is entered when an output compare on TC0
// This TC0 interrupt should occur every half of a note cycle.

void interrupt music_isr()

{ TFLG1 = 1; //Relax TC0 interrupt
 if(getnoteflag == 1)

{

 getnoteflag = 0;

 note_number = ____________ //Look up the number of the next note

 //(***Blank 8 ***)

 if(note_number > 24) note_number = 25;
// If an invalid note number
//(> 24) is entered,

//make it a rest = 25.

 // tone_val = nr of ticks in half cycle of note

 tone_val = _________________ //(***Blank 9 ***)

 dur_nr_half_cycles = ____________*SIXTEENTHNOTE / _____________);

 //(***Blank 10 ***) (***Blank 11 ***)
 // Hint: “SIXTEENTHNOTE” sets the speed at which

 // the musical composition is played. Note 'dur_nr_cycles"

 // is the total number of half cycles in the note that cause that
 // note to be played for the specified note duration.

 dur_counter = 0;

// Reset duration counter

 noteptr++;

// Increment noteptr.

 if(noteptr > SONGSIZE) {___________________;
//(***Blank 12 ***)

 // If song is completed, wrap back to beginning.

}

else

{

 if (note_number < 25) PTM_PTM0 = ~PTM_PTM0; // Toggle PTM0

 dur_counter++;

 // increment duration counter

 if(dur_counter > ___________________) getnoteflag = 1;

 //(***Blank 13 ***)

 // Set getnoteflag = 1 if at the end of the note

}

 ________________________________; // Schedule next TC0 interrupt

 //(***Blank 14 ***)

}

3) LCD Multiplexing (14 points)
a. (1 pts) A custom LCD display for a new product has 500 segments that must be individually controlled (turned on or off). If we choose to use ¼ multiplexing on this display, implying 4 back plane signals are needed, what is the total number of wires (back plane wires plus front plane wires) that must be connected to this display?

 Total # Wires = ____________

b. (1 pt) Repeat Part A for 1/8 multiplexing. Total # Wires = ____________

c. (1 pt) Repeat Part A for 1/16 multiplexing. Total # Wires = ___________

d. (2 pts) For the case of 1/6 LCD multiplexing, there are 6 back plane signals, BP1, BP2, BP3, BP4, BP5, and BP6. Assume that Vcc = 5 V, so the waveform voltage levels are 5 V, 3.333 V, 1.666 V, and 0 V. Sketch one frame of each of the six backplane signals.

e. (2 pts) Sketch one frame of a single front plane signal, FP1, where the segments that pass over BP2, BP4, and BP6 are to be ON, and the remaining three segments are to be OFF.

f. (2 pts) Sketch one frame of the voltage waveform Vseg11, which represents the voltage across the “turned off” segment that lies between FP1 and BP1. (Vseg11 = FP1 voltage – BP1 voltage). Use the FP1 voltage waveform from Part e above.

g. (2 pts) Sketch one frame of the voltage across the “turned on” segment that lies between FP1 and BP2, Vseg12. (Vseg12 = FP1 voltage – BP2 voltage) . Use the FP1 voltage waveform from Part e above

h. (2 pts) For the case of 1/6 LCD multiplexing, find the RMS value of the Vseg11 waveform, which corresponds to the waveform of a turned OFF segment, and also the RMS value of the Vseg12 voltage waveform, which corresponds to a turned ON segment. Hint: Recall that in the class notes, it was shown (in Figure 7.21) that for the case of ¼ multiplexing, the RMS voltage across a segment that is ON is Vrmson = 2.899 V,rms; and the RMS voltage across a segment that is OFF is Vrmsoff = 1.67 V, rms. Show your calculations in the space below.

RMS value of Vseg11 = __________ V,rms RMS value of Vseg12 = _________ V,rms

F. (1 pt) Based upon comparing the results for ¼ and 1/6 multiplexing,

 (a) which multiplexing method requires fewer connections? ___________________

 (b) which multiplexing method yields higher contrast? _____​​​​​​​​​​​​​​​​​______________

4) SCR Crowbar Protection Circuit (4 points)
Recalculate R1 in the SCR Crowbar circuit shown the course notes that will cause the fuse to blow when the power supply voltage rises above 10 V. Assume that R2 remains = 100 ohms.

5) Stepping Motor (8 points)
Referring to the stepping motor circuit diagram shown in the course notes, imagine that the two bottom rows of 7406 hex inverters are removed, leaving us with just one row of 2N6427 power Darlington transistors. Then imagine that a microcontroller has PTM3 connected to the base of the left-most power Darlington, PTM2 to the next one, PTM1 to the next, and finally PTM0 to the right-most power Darlington.

a. (2 pts) List the sequence of eight 4-bit numbers that would have to be output on the low 4 bits of PORT M (in the order PM3:PM2:PM1:PM0) in order to make the magnetic field vector developed by the stepping motor step in the clockwise (CW) direction, with 8 steps per revolution (45 degrees per step). Let your first number correspond to the magnetic field pointing directly up.

________, _______, _______, ________, _________, ______, ______, _______

b. (4 pts) Assuming a permanent magnet rotor with 7 north poles (instead of the rotor with 3 north poles considered in the lecture notes), determine the number of steps per revolution of the shaft using the 8-value sequence of Part A. Do this by drawing, in the space provided below, the 7-pole rotor (showing only the north poles) with one of the 7 poles aligned with the initial B field. Then when the B field steps 45 degrees to its next position, determine which north pole is closest to the new position of the B field, and hence is pulled into alignment. Determine the angle through which the shaft rotates, and determine its direction (CW or CCW).

 Degrees of Shaft Angle Rotation Per Step = ________ Step Direction = ____

c. (1 pt) What is the best name for the four 1N4001 power diodes in this stepping motor circuit?
(circle one)
1. transient voltage suppression diodes 2. turn-on speedup diodes 3. turn-off speedup diodes
4. load current limiter diodes

d. (1 pt) What is the best name for the purpose of the 22-ohm resistor in this stepping motor circuit? (circle one)
1. turn-on speedup resistor 2. turn-off speedup resistor 3. load current limiter
4. voltage transient suppression resistor

6) (2 pt) A magnetic reed switch will be most sensitive to an applied magnetic field (B) that is
 oriented in a direction that is

 1. perpendicular to the reeds 2. parallel to the reeds 3. at a 45 degree angle to the reeds

7) (2 pt) What is the purpose of the diodes in the 8 x 8 scanned keyswitch matrix discussed in the
 course notes?

 1. short-circuit protection 2. over-voltage protection 3. speed up key scanning process

8) (7 pts) Imagine that a “poor man’s A/D” circuit implemented in the C language is used to sense the value of a variable resistor Rx by connecting Rx between PT0 and Vcc = 5.0 V and a 0.22 µF capacitor between PT0 and ground. Assume that PT0 has a logic high threshold of 3.00 V. If PT0 is driven low (to 0 V) for several seconds, and then suddenly released (allowed to float), the time elapsed before a logic 1 is read on PT0 is 2.5 ms.

A. (4 pts) Find the value of Rx.

B. (1 pts) How should the LSB of the PERT register be set in order to obtain the most accurate measurement of Rx? Explain your reasoning.

C. (1 pts) How would you set the LSB’s of the Port M data register and the Port M data direction register in order to drive PT0 to 0 V?

D. (1 pts) How would you set the LSB’s of the Port M data register and the PORT M data direction register in order to release (float) PT0?
9) (7 pts) UPC Bar Code (Used on groceries and many other consumer products, but NOT on books!)

[image: image3.jpg]lass. .. T had

[

o T coutd et

nis exploadne w
Cotution Wenic
AL

Nete that £
ok Yew’

i

The next four bars indicate the first encoded digit. The four bars (alternating between white and
black) in each digit must consist of how many modules? (#/‘M_,\(QI;D 2Awhiteoar s + #Maluler i

i black =1
a0blc2d3edf5s6h7 At et oy

This first encoded digit contains a 3 module white bar, two module black bar, 1 module white, and a
I module black bar. This first encoded digit represents a value of “0” that indicates a product
category number. The next 5 encoded digits represent a manufacturer ID number.

1%

Please find the next 5 encoded digits: in Zhis

1

Second digit: a.
Third digit: a.
Fourth digit: a.
a.
a.

S~
006
Do,
fappq
—

© oo

-

)

0
0
0
Fifth digit: 0
Sixth digit:

W WL,
o004
R S
N h Dhih
Yiu s,
99 42 49 G2 ¢q
= - N
B
~Naaa

oo
———
o

0

o

“manufactucers ID #
Sample UPC Bar Code

mn

F. The encoder wheel shown on p. 6-4B has output A connected to the D input and output B
connected to the clock input of a rising edge sensitive D FF. Both outputs A and B go high when
the light beam is blocked by a black area on the optical encoder disk. When the optical disk is
turned clockwise the Q output of the D flip flop will be set

(N

o

uts connected
NP

{np
) i

1 D and CLK
To the Wyo

a. high b. low

Now connect output A to the clock input and output B to the D input. When the optical disk is
turned clockwise the Q output of the D flip flop will be set
a. high b. low

v

G. Which magnetic sensor has an output voltage that is velocity dependent?

a. Hall Effect Sensor ~ b. Reed Switch c. Inductive Pickup

a. (2 pts) Using the UPC encoding table found in the notes, determine the six encoded UPC digits in the left half of the bar code. Recall that Black = 1, White = 0; there are 3 SYNC patterns: 101 at each end, and 01010 in the middle. (Hint: first make sure you can successfully decode the six left digits in the example UPC code in the notes, or on any grocery product in your home.)

b. (2 pts) Recalling that the UPC encoding table found in the notes must have its black and white regions exchanged for the right half of the UPC code, determine the six encoded UPC digits in the right half of the bar code. (Hint: first make sure you can successfully decode the six right digits in the example UPC code in the notes, or on any grocery product in your home.)

c. (3 pts) The last (rightmost) digit you found in Part (b) is the UPC-A checksum digit. In the space below, show the step-by-step calculation of this checksum digit from the other preceding 11 digits. (Hint: typing “UPC checksum calculation” into GOOGLE will result in many websites that describe the UPC-A checksum calculation… for example, here is a good website: http://www.morovia.com/education/utility/upc-ean.asp)
_1145886268.unknown

