Using the FreeScale CMS9S12C32 Microcontroller Module without the PBMCUSLK Project Board.

Here is what you must do differently when using the CSM9S12C32 module operating “stand-alone”, without the aid of the P & E Background Debug Module (BDM) that is on the PBMCUSLK project board. You will have to make use of the “FreeScale 68HCS12 Serial Debug Monitor” program, which must be flash programmed into the 16k block of flash RAM starting at 0xC000 onto your CSM9S12C32 module using the P & E Cyclone BDM pod that is resident on the project board. This only has to be done once. The Serial Debug Monitor interfaces with CodeWarrior in such a way that there is very little difference between using it and using the P & E BDM to debug an application program. Nevertheless, there are few important differences. Here are instructions for using the CSM9S12C32 in stand-alone mode.
1. Move the “Power SEL” Jumper on the CSM9S12C32 from Position 1 to Position 2, in order to allow power to be supplied to the module via the external dc wall-mounted “power cube”.

2. Plug in your power cube that came with the CSM9S12C32 kit, and connect it to the module via the power connector jack. The green “Vdd” LED should light to let you know that the microcontroller is getting dc power.

3. Connect the serial cable that came with your CSM9S12C32 module kit between the module’s serial port and the PC’s serial port connector (COM1) when you bring up Code Warrior and start debugging the program.

4. If you want to use the two on-board LEDs and the two on-board switches (SW1 and SW2), connect all four of the the USER Jumpers. This connects SW1 to Port E, Pin 0; SW2 to Port P, Pin 5; LED1 to Port A, Pin 0; and LED2 to Port B, Pin 4.

5. If you want to connect to other I/O pins, you will have to wire-wrap wires to the IDE connector edge fingers, or you will have to buy an IDE connector similar to the one that we plugged the CSM9S12C32 module into on the Project Board.

6. Set your computer’s serial communication (COM1) port to 9600 baud, 8 data bits, no parity, one stop bit, no flow control, if it is not already set this way. Do this by right clicking on the “My Computer” icon, then select “Properties – Hardware – Device Manager – Ports – Communications Port (COM1) – Port Settings”. This brings up the “Communication Port Properties” window shown below. Set each parameter as shown below, as needed.

7. Bring up CodeWarrior and set up your project using the Project Wizard, as usual. This time, however, you must specify the “HC(S)12 Serial Monitor” when you create the project using the “Project Wizard”, instead of the P & E Cyclone BDM.

8. Now enter and compile your program, which may be in either assembly or C. If your program is in assembly, ROM must start at $4000 (since $C000 is now taken by the Serial Debug Monitor), also RAM should now start at $3800 instead of $0800, as it did with the BDM.

9. Before entering the Serial Debugger, by pressing the “green arrow” on the CodeWarrior IDE, first press down pushbutton SW1 that is located on the CSM12C32 module, then momentarily depress the RESET button on the CSM12C32 module to start the serial debug monitor program running on the CSM12C32 module. (Nothing visible will show up on the CodeWarrior window at this time.)

10. You may now use CodeWarrior to download programs to the module as you did with the P&E BDM. The same CodeWarrior debug commands may be used as with the BDM!

11. If you forget to perform Step 9 before trying to enter the debugger by clicking on the green arrow, you will see a “Connection” error window pop up. This window will tell you that communication with the target (module) could not be established. To recover from this error, merely press the RESET button on the module, and then hit the “Retry” button on the “Connection Window”. This will allow you to enter the debugger. Most of us find this easier to do than performing Step 9, which is the recommended procedure!
12. Note that you can no longer debug a program that uses the serial port, since it is being used by the debugger. However, the serial port may still be used in an application as long as the serial port driver routine is not single-stepped through.
13. Note that the Serial Debugger program switches the bus clock speed of the module to 24 MHz. So the module will run at 24 MHz if you press the “Go” button on the debugger window.
14. You can make the project run independently of the CodeWarrior Debugger by disconnecting the serial cable from the CSM9S12C32 module, and then pressing RESET to start the application program running alone. However, now the program will run with only a bus clock speed of 8 MHz (since the Serial Debug Program is no longer executed first out of reset.)

15. If you want to get your application to run at the 24 MHz bus clock independently of the Serial Debugger, you must call the PLL_INIT routine that was discussed in class.
16. An example C program appears in Figure 1. It was created with the Project Wizard, specifying the 68HCS12 Serial Monitor.

Note that this program lights LED1 on the CSM9S12C32 module when SW1 on the module is pressed, and it flashes LED2 while SW2 is pressed. Note that when run at full speed under the Serial Debugger, while SW2 is pressed LED2 flashes at a 1 second rate, but when the serial cable is removed, and the RESET button on the module is once again depressed, while SW2 is pressed LED2 flashes at only a 3 second rate (since the bus clock has been lowered from 24 MHz to 8 MHz.)

Figure 1. C Program that runs on the CSM9S12C32 module “Stand-Alone” using the Serial Debug Monitor.

#include <hidef.h> /* common defines and macros */

#include <mc9s12c32.h> /* derivative information */

#pragma LINK_INFO DERIVATIVE "mc9s12c32"

//SW1 on PORTE_BIT0 Note:SW1 high when not pressed, low when pressed.

#define SW1 PORTE_BIT0

//SW2 on PTP_PTP5 Note:SW2 high when not pressed, low when pressed.

#define SW2 PTP_PTP5

//LED1 on PORTA_BIT0 Note: LED1 ON when Bit #0 of PORTA is low.

#define LED1 PORTA_BIT0

//LED2 on PORTB_BIT4 Note: LED2 ON when Bit #4 of PORTB is low.

#define LED2 PORTB_BIT4

void main(void) {

long int i;

while(1) {

 DDRB_BIT4=1;

 DDRA_BIT0=1;

 DDRP_DDRP5=0;

 if(SW1) {

 LED1=1; //If SW1 not pressed, turn OFF LED1

 }

 else {

 LED1=0; //If SW1 pressed, turn ON LED1

 }

 if(SW2) LED2=1; //If SW2 not pressed (Hi), turn OFF LED2

 else{ //If SW2 pressed (Low), flash LED on and off at 1 Hz rate

 LED2=0; //Turn ON LED2

 for(i=0;i<200000;i++); //Wait 1 second

 LED2=1; //Turn OFF LED2

 for(i=0;i<200000;i++); //Wait 1 second

 }

}

}

