Alarm Clock With Keypad Entry
ECE331 Final Project

Fall 2007

David Berdy, Clayton Lewis

A. Introduction
The goal of this project was to create an alarm clock using the MC9S12C32, Hitachi-style LCD panel, 16-key keypad, and speaker. The keypad is used for entering the time of the clock and the time of the alarm. The clock is kept track of by using time-based interrupts which interrupt every 10 ms. Every time the 10 ms interrupt occurs, the hour, minute, second, and centisecond (10 ms) variables are updated accordingly. To input an alarm time, the user may push the “*” key. The LCD will then go into an alarm entry mode. At this point, the user will be prompted to put in the hours, minutes, and seconds they would like the alarm to go off on. While the user is in the alarm entry mode, the clock will still be able to keep track of the time, as we do not want time to stop when an alarm is being entered. The time may also be entered in a similar way by pressing “#.” To turn on the alarm, the user may press “A”.
B. External Specification: User Manual

The “Alarm Clock with Keypad Entry” may be used to keep track of time and set an alarm. A keypad is used to avoid the need to awkwardly press multiple buttons countless times in order to set the time, as is done in traditional alarm clocks. NOTE: All times are in “military time” (i.e. 22:48:00 would be 10:48:00 p.m.).
Time Entry

To enter the current time, press the “#” button. The display will stop incrementing the time, and an “S” will be displayed to the right of the time. Press any of the numeric buttons (0-9) to enter the ten’s hour digit(hh:mm:ss). The time will be updated and displayed to reflect the change of this bit. Next, set the unit’s hour digit (hh:mm:ss). Continue setting the time in this order, from leftmost digit to rightmost digit. If you would like to accept your changes before entering the remaining digits, hit the “#” sign again. For example, press # to enter time entry mode, then press “1” then “2” to set the hour to 12, and press “#” to leave the remaining digits as they are.
Alarm Set

To set the alarm, press the “*” key. The display will stop updating the current time, and a “M” will be displayed to the right to show that you are in the alarm set mode. You will be able to enter the time the alarm will go off just as the time is entered in the “Time Entry” section above (i.e. from leftmost to rightmost digit). To turn the alarm on, press one of the keys “A”,”B”,”C”, or ”D”. When one of these keys is pressed, the alarm will be turned on or off. When the alarm is on an “A” will be displayed to the right of the current time.
Turn Off Alarm

When an alarm is sounding, you may turn it off by hitting one of the keys “A”, “B”, “C”, or “D”. This will turn off the alarm sound, as well as the alarm, until the alarm is set again (i.e. an “A” is to the right of the current time).
C. Internal Operation

The basic structure of the program is based on case statements. The system essentially implements a state machine. The ports and variables are all initialized at program entry. The hardware diagram can be seen in the Appendix. Port T is used for the keypad input, and port AD is used for the LCD output. The program uses the same LCD display routines used in Lab 5. Port M2 is used to drive a transistor that powers a speaker.
The main loop of the program checks to see if a key is pressed, and then determines what key is pressed. The processKey subroutine sets a variable, “rc”, based on the key pressed. Since this subroutine runs every time the main loop runs, it also determines whether the current time equals the alarm time. If the current time equals the alarm time, the mode is set to sound the alarm. The program uses a case statement on the variable “mode” which stores what state the program is in. There are 5 different states: TIME_DISPLAY, TIME_ENTRY, ALARM_ENTRY, ALARM_ENABLE, and ALARM_SOUND. The purpose of these states can be seen from their names.
Just as in Lab5, there is an interrupt routine that interrupts every 10ms, and updates the time variable. This interrupt service routine is called no matter what, since it is the only interrupt, all other code runs in subroutines or the main function. This was necessary to make sure the time updated even while the program was doing other things.
D. Testing Procedures and Results

The general testing procedure implemented in our design was iterative testing. We slowly coded portions of the program and then tested them. We started off with the LCD display and clock code from lab 5. We had to put the LCD display on port AD rather than port T, since we decided to connect the keypad to port T. We edited the lab 5 code to set the LCD display to port AD and then connected the keypad (port T) and LCD display (port AD). This was then tested to make sure the LCD and clock still worked. After this, we created code to receive input from the keypad. This was very similar to lab 3, however slightly modified to fit into our program. This was tested by writing the inputted key pressed onto the LCD display. The previous two steps were relatively easy to implement.

E. Bill of Materials

The following is a list of materials, and their costs (from the parts room or Digi-Key
1. MC9S12C32 Lab Module (ECE331 Lab Kit) - $25
2. 16-key, 8 pin keypad (Available from parts room) - $5.95
3. Hitachi-style LCD Display (Available from parts room) - $3.50
4. Speaker (Available from parts room) - $2.00
5. Breadboard (or circuit board) - $2.00
6. Various Wires - $2.00
7. LM7805 - $0.5
8. LED - $0.2
9. 0.1 µF capacitor - $0.05
10. 2 kΩ resistor - $0.05
11. 10 Ω resistor - $0.05
12. 100 Ω resistor - $0.05
13. 2N3904 NPN General Purpose Amplifier - $0.2
Appendix
High-Level Flow Diagram

[image: image1.emf]Update time

variables -add 1

to centisecond and

check for wrapping

Interrupt every 10 ms

Return

Initialize

Alarm EntryTime EntryAlarm EnableAlarm Sound

GetKey

Set rc based on

button pressed

Key Pressed?Yes

No

TIME_ENTRYALARM_ENTRYALARM_ENABLEALARM_SOUND

Mode = ?

Set mode based

on rc entry and

current mode

Set mode based

on rc entry and

current mode

Set mode based

on rc entry and

current mode

Set mode based

on rc entry and

current mode

Circuit Schematic

[image: image2.emf]LCD11

Vcc = 5 V

LCD14

P5

Speaker

Q1

3904

LCD13

D1

Pwr LED

P7

P2

LCD1

Ground Bus

LCD6

R5

100 ohm

P4

LCD4

LM7805

3

2

1

Input

GND

Output

C1

0.1 UF

LCD12

R5

10 ohm

P6

P0

RST SW

LCD3

Red +5V DC Power Bus (Top of Breadboard)

R4

2k

+

7-15VDC

DC Adaptor

R5

1k

LCD2

P1

LCD5

P3

CSM12C32 J1 Connector

1

2

3

4

5

6

7

8

9

10

11

12

13

15

17

19

21

23

25

27

29

30

31

32

28

26

24

22

20

18

16

14

33

35

37

39

34

36

38

40

Vx

PE1/IRQ

GND

RESET

PS1/TXD

MODC/BKGD

PS0/RXD

NC

PP5/KWP5

NC

PE0/XIRQ

NC

PT0/PW0/IOC0

PT1/PW0/IOC1

PM4/MOSI

PM2/MISO

PM5/SCK

PM3/SS

PE4/ELCK

PE7/XCLKS

PAD02/AN02

PT2/PW2/IOC2

PAD03/AN03

PT3/PW3/IOC3

PM0/RXCAN

PM1/TXCAN

PA0

PB4

PAD01/AN01

PAD00/NA00

NC

NC

PAD04/AN04

PAD05/AN05

PAD06/AN06

PAD07/AN07

PT4/PW4/IOC4

PT5/IOC5

PT6/IOC6

PT7/IOC7

LCD11

Vcc = 5 V

LCD14

P5

Speaker

Q1

3904

LCD13

D1

Pwr LED

P7

P2

LCD1

Ground Bus

LCD6

R5

100 ohm

P4

LCD4

LM7805

3

2

1

Input

GND

Output

C1

0.1 UF

LCD12

R5

10 ohm

P6

P0

RST SW

LCD3

Red +5V DC Power Bus (Top of Breadboard)

R4

2k

+

7-15VDC

DC Adaptor

R5

1k

LCD2

P1

LCD5

P3

CSM12C32 J1 Connector

1

2

3

4

5

6

7

8

9

10

11

12

131517192123252729

30

31

322826242220181614

33353739

34363840

Vx

PE1/IRQ

GND

RESET

PS1/TXD

MODC/BKGD

PS0/RXD

NC

PP5/KWP5

NC

PE0/XIRQ

NC

PT0/PW0/IOC0PT1/PW0/IOC1PM4/MOSIPM2/MISOPM5/SCKPM3/SSPE4/ELCKPE7/XCLKSPAD02/AN02

PT2/PW2/IOC2

PAD03/AN03

PT3/PW3/IOC3

PM0/RXCAN

PM1/TXCAN

PA0PB4

PAD01/AN01PAD00/NA00

NCNC

PAD04/AN04PAD05/AN05PAD06/AN06PAD07/AN07

PT4/PW4/IOC4

PT5/IOC5PT6/IOC6PT7/IOC7

Main.c:

#include <hidef.h> /* common defines and macros */

#include <mc9s12c32.h> /* derivative information */

#pragma LINK_INFO DERIVATIVE "mc9s12c32"

#include "main_asm.h" /* interface to the assembly module */

#define NUM_KEYS 16

enum operationMode {

 NO_KEY,

 TIME_DISPLAY,

 TIME_ENTRY,

 ALARM_ENTRY,

 ALARM_ENABLE,

 ALARM_SOUND,

 DUPLICATE_KEY,

 INVALID_KEY,

 DIGIT_KEY

};

/* coded/decoded key value tables */

static unsigned char keys[] = {0xB7, 0x7E, 0xBE, 0xDE, 0x7D, 0xBD, 0xDD, 0x7B, 0xBB, 0xDB, 0xEE, 0xED, 0xEB, 0xE7, 0x77, 0xD7};

static unsigned char decodedKeys[] = {0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x41, 0x42, 0x43, 0x44, 0x2A, 0x23};

/* Global TIME Variable */

static unsigned char time[] = {

 0x30, //Hours (digit 1)

 0x30, //Hours (digit 2)

 0x30, //Minutes (digit 1)

 0x30, //Minutes (digit 2)

 0x30, //Seconds (digit 1)

 0x30, //Seconds (digit 2)

 0x30, //Centiseconds (digit 1)

 0x30 //Centiseconds (digit 2)

 };

static unsigned char alarmTime[] = {

 0x30, //Hours (digit 1)

 0x30, //Hours (digit 2)

 0x30, //Minutes (digit 1)

 0x30, //Minutes (digit 2)

 0x30, //Seconds (digit 1)

 0x30, //Seconds (digit 2)

 0x30, //Centiseconds (digit 1)

 0x30 //Centiseconds (digit 2)

 };

/* Status Digits "ASM"

 * A: Alarm is enabled

 * S: Set time mode

 * M: Set alarm mode

 */

static char dispDigits[] = {

 0x20, //A digit

 0x20, //S digit

 0x20, //M digit

 0x00 //NULL terminate so we can use as string

};

static unsigned char keyVal; //most recent key press

static unsigned char prevKey = 0x00; //most recent processed key

static unsigned char keyPress = 0x00; //current key value

static int enableAlarm = 0; //set/unset for alarm enabled/disabled

static int setIndex = 0;

/* Function Prototypes */

extern void updateTimeISR(void);

static void displayTime(void);

static int getKey(void);

static int processKey(int press);

static void delay(int count);

static int setTime(int mode, unsigned char key);

void main(void) {

 int rc;

 int x = 0;

 int i = 0;

 int displayThisTime = 0;

 int mode = TIME_DISPLAY;

 unsigned char prevSec = time[5] - 0x01;

 PLL_INIT(); //set internal clock to 24 MHz

 KEYPAD_INIT(); //init the keypad

 LCD_INIT(); //init the LCD panel

 DDRM = 0x07; //set PM2 to output

 PTM = 0x00;

 TSCR2 = 0x05; //set pre-scalar bits

 TSCR1 = 0x80; //start counter

 TIE = 0x01; //enable TC0 interrutps

 TIOS = 0x01; //set TC0 as output compare register

 TC0 = TCNT + 750*10; //schedule interrupt to occur in 10ms

 TFLG1 = 0x01; //clear TC0 interrupt flag

 asm("cli"); //enable interrupts

 for(;;){

 rc = getKey(); //look at input values for keypad

 if(rc == 0) { //if no key pressed, reset prevKey

 prevKey = 0x00; //prevKey is used to make sure we don't count a held key more than once

 }

 rc = processKey(rc); //determine if valid key press occurred and if we've hit an alarm

 switch(mode) {

 /* display time */

 case TIME_DISPLAY:

 if(rc == TIME_ENTRY || rc == ALARM_ENTRY || rc == ALARM_ENABLE || rc == ALARM_SOUND) { //see if we should go to a new mode

 mode = rc;

 }

 if(time[5] != prevSec) { //if a second has changed display the time (this avoids flicker)

 prevSec = time[5];

 displayTime();

 }

 break;

 /* set time */

 case TIME_ENTRY:

 if(rc == TIME_ENTRY) { //if '#' hit while entering time, leave time entry

 setIndex = 0; //reset time setting index

 dispDigits[1] = 0x20; //disable 'S' status digit

 mode = TIME_DISPLAY; //switch to display time

 } else {

 if(dispDigits[1] != 0x53) { //activate 'S' status digit

 dispDigits[1] = 0x53;

 displayTime(); //refresh screen

 }

 if(rc == DIGIT_KEY) { //wait for keypress, then set next digit

 if(setTime(mode, keyPress) == 1) { //if we've set last digit, reset 'S' status digit and leave mode

 mode = TIME_DISPLAY;

 dispDigits[1] = 0x20;

 }

 }

 }

 break;

 /* set alarm */

 case ALARM_ENTRY:

 if(rc == ALARM_ENTRY) { //if '*' hit while entering alarm, leave alarm entry

 dispDigits[2] = 0x20; //reset 'M' status digit

 mode = TIME_DISPLAY; //switch to display time

 } else {

 if(dispDigits[2] != 0x4D) { //activate 'M' status digit

 dispDigits[2] = 0x4D;

 displayTime(); //refresh screen

 }

 if(rc == DIGIT_KEY) { //wait for keypress, then set next alarm digit

 if(setTime(mode, keyPress) == 1) { //if last digit set, reset 'M' status digit and leave mode

 dispDigits[2] = 0x20;

 mode = TIME_DISPLAY;

 }

 }

 }

 break;

 /* enable alarm */

 case ALARM_ENABLE:

 enableAlarm = !enableAlarm; //toggle alarm

 if(enableAlarm) {

 dispDigits[0] = 0x41; //if alarm on, set 'A' status digit

 } else {

 dispDigits[0] = 0x20; //if alarm off, disable 'A' status digit

 }

 mode = TIME_DISPLAY; //leave mode

 break;

 /* activate alarm */

 case ALARM_SOUND:

 if(rc == ALARM_ENABLE) { //if A,B,C,D hit, turn off alarm

 mode = ALARM_ENABLE;

 } else {

 displayTime(); //refresh time

 for(x=0;x<1000;x++) { //turn off alarm

 for(i = 0; i < 1000; i++) {}

 }

 for(x=0;x<1000;x++) {

 for(i = 0; i < 2000; i++) {} //turn on sound

 PTM = ~(PTM & 0x07);

 }

 for(x=0;x<1000;x++) { //turn off sound

 for(i = 0; i < 1000; i++) {}

 PTM = 0x00;

 }

 }

 break;

 default:

 break;

 }

 }

}

/* set one digit of time or alarm time */

static int setTime(int mode, unsigned char key) {

 int rc = 0;

 if(mode == TIME_ENTRY) { //determine whether to set time or alarm time

 time[setIndex++] = key; //set the new digit

 displayTime(); //increment array index

 if(setIndex > 5) { //if we've set seconds we're done so reset index and return

 setIndex = 0;

 rc = 1;

 }

 } else if(mode == ALARM_ENTRY) {

 alarmTime[setIndex++] = key; //set the new digit

 displayTime(); //increment array index

 if(setIndex > 5) { //if we've set seconds we're done so reset index and return

 setIndex = 0;

 rc = 1;

 }

 }

 return rc;

}

/* Interrupt Service Routine - increments time */

interrupt void updateTimeISR(void) {

 int i = 0;

 TFLG1 = 0x01; //clear TC0 interrupt flag

 time[7] += 1; //increment centiseconds

 for(i = 7; i > 5; i--) { //determine if either centisecond digit is passed 9

 if(time[i] > 0x39) {

 time[i] = 0x30;

 time[i - 1] += 1;

 } else {

 break;

 }

 }

 /* Check and see if any other digits need to be incremented/reset */

 for(i = 5; i >= 0; i--) {

 if((time[i] > 0x35) && (i == 2 || i == 4)) {

 time[i] = 0x30;

 time[i - 1] += 1;

 } else if((time[i] > 0x39) && (((i == 1) && (time[0] < 0x32)) || i == 3 || i == 5)) {

 time[i] = 0x30;

 time[i - 1] += 1;

 } else if((time[i] > 0x33) && (time[0] >= 0x32) && (i == 1)) {

 time[i] = 0x30;

 time[i - 1] += 1;

 } else if((time[i] > 0x32) && (i == 0)) {

 time[i] = 0x30;

 }

 }

 TC0 = TCNT + 750*10; //schedule another interrupt

 return;

}

/* Get a key value from keypad */

static int getKey(void) {

 keyVal = PTT; //set first digits of keyVal

 DDRT = 0x0f; //reverse input/output pins on Port T

 delay(10); //delay for input/output lines to level off

 keyVal = (PTT | keyVal); //set rest of digits for keyVal

 DDRT = 0xf0; //revert input/output pins for Port T

 delay(10); //delay so input/output lines can level off

 if(keyVal != 0xff) { //if keyVal == 0b11111111 then no key was pressed

 return 1;

 }

 return 0;

}

/* simple delay (delay count number of loop iterations) */

static void delay(int count) {

 int i;

 for(i = 0; i < count; i++) {

 }

 return;

}

/* Process a key press and return a mode of operation */

static int processKey(int press) {

 int i;

 int alarm = 1; //assume alarm is on unless we find otherwise

 int rc = INVALID_KEY; //assuming invalid key unless we find otherwise

 /* If there was a key press then check to see if it was valid */

 /* If not, just see if we've hit an alarm time */

 if(press) {

 for(i = 0; i < NUM_KEYS; i++) { //look for key press in key values table

 if(keyVal == keys[i]) {

 if(decodedKeys[i] == prevKey) { //if key is a repeat (key being held down) ignore

 rc = DUPLICATE_KEY;

 } else if(decodedKeys[i] == 0x23) { //if key is '#' then enter time setting mode

 rc = TIME_ENTRY;

 } else if(decodedKeys[i] == 0x2A) { //if key is '*' then enter alarm setting mode

 rc = ALARM_ENTRY;

 } else if(decodedKeys[i] > 0x40) { //if key is A,B,C,D then toggle alarm

 rc = ALARM_ENABLE;

 } else { //if none of above, we've hit a digit key

 rc = DIGIT_KEY;

 }

 prevKey = decodedKeys[i]; //a valid key was found - lookup decoded ascii key value

 keyPress = decodedKeys[i];

 break;

 }

 }

 }

 /* check if time equals alarm time */

 for(i = 0; i < 6; i++) {

 if(time[i] != alarmTime[i]) {

 alarm = 0; /* found an unmatching digit - don't activate alarm */

 break;

 }

 }

 /* if we hit an alarm time and alarm is enabled, enter alarm_sound mode */

 if(alarm && enableAlarm) {

 rc = ALARM_SOUND;

 }

 return rc;

}

/* Print current time and alarm settings on LCD display*/

static void displayTime(void) {

 int i = 0;

 LCD_CMD(1); //clear the LCD panel

 LCD_MESSAGE("Time ", 0x00); //print out time on first line

 LCD_ADDRESS(0x07);

 for(i = 0; i < 6; i+= 2) { //print out all digits

 if(i != 0) {

 LCD_DTA(0x3A);

 }

 LCD_DTA(time[i]);

 LCD_DTA(time[i + 1]);

 }

 LCD_MESSAGE(dispDigits, 0x11); //display status digits

 LCD_MESSAGE("Alarm ", 0x40); //print out alarm on second line

 LCD_ADDRESS(0x47);

 for(i = 0; i < 6; i+= 2) { //print out all digits

 if(i != 0) {

 LCD_DTA(0x3A);

 }

 LCD_DTA(alarmTime[i]);

 LCD_DTA(alarmTime[i + 1]);

 }

 LCD_ADDRESS(0x25); //move cursor off screen (don't want to see it blinking)

 return;

}
Main_asm.h
#ifndef _MAIN_ASM_H

#define _MAIN_ASM_H

#ifdef __cplusplus

 extern "C" { /* our assembly functions have C calling convention */

#endif

/* Driver Function Definitions */

void LCD_INIT(void);

;assembly functions found in lcd_subroutines.asm
void LCD_DTA(char);

void LCD_ADDRESS(unsigned char);

void LCD_MESSAGE(char*, unsigned char);

void LCD_CMD(char);

void KEYPAD_INIT(void);

;assembly functions found in keypad_subroutines.asm
void PLL_INIT(void);

#ifdef __cplusplus

 }

#endif

#endif /* _MAIN_ASM_H */
Keypad_subroutines.asm

 XDEF PLL_INIT

 XDEF KEYPAD_INIT

 NOLIST

 INCLUDE 'mc9s12c32.inc'

 LIST

;initialize keypad

KEYPAD_INIT:

 PSHY

 BSET PERT, #%11111111 ;enable input/output pins

 BCLR DDRT, #%00001111 ;set input pins on Port T

 BSET DDRT, #%11110000 ;set output pins on Port T

 LDY 10000

 JSR wait_y ;delay so input/output lines can level off

 PULY

 RTS

 ;****Initialize clock generator and PLL for 24 MHz internal bus clock***********

 ;This initialization is performed by the serial debugger UBUG12, but it is not

 ;performed when a user program is run by itself (out of RESET without the serial debugger

 ;In that case, the internal clock defaults to 16/2 = 8 MHz. That is why I have included this

 ;code in this program... since we want the delay routine and the serial port baud rate to remain

 ;the same whether we are running under the debugger or without it!

 ;

 ;NOTE: This PLL initialization section may NOT be single stepped through using the serial debugger,

 ; since the bus clock changes, and thus so does the serial port baud rate change

 ; as the PLL is disconnected from the system.

 ;

PLL_INIT: bclr
CLKSEL,$80
;disconnect PLL from system

 bset
PLLCTL,$40
 ;turn on PLL

 movb
#2,SYNR
 ;set PLL multiplier

 movb
#1,REFDV
 ;set PLL divider

 ;PLLCLK = OSCCLK*(SYNR+1)/(REFDV+1)= 16MHz *(2+1)/(1+1) = 24MHz

 nop

;NOP delays put here to allow time for

 nop

;CRGFLG flag register to become valid.

wt_PLL_Lock:

 brclr
CRGFLG,8,wt_PLL_Lock ;Wait for PLL to lock

 bset
CLKSEL,$80
 ;Connect PLL into system

 rts

 ;*********End of PLL initialization. Now module clk = 24 MHz!

 ;***

;simple delay (delay y number loop iterations)

wait_y:

 PSHY

 PSHD

 BSET TSCR1, %10000000 ;set timing registers up

 BSET TSCR2, %00000100

 BCLR TSCR2, %00000011

 BSET TIOS, %00000100

 BCLR TIE, %00000100

 TFR y, d

 ADDD TCNT ;add wait time to current time

 STD TC2Hi ;store this values

 BSET TFLG1, %00000100 ;reset TFLG1

wait_cnt_done: ; wait for TFLG1 to go low (finished waiting)

 LDAA TFLG1

 ANDA #%00000100

 BEQ wait_cnt_done

 PULD ;pull pshed values off stack so we can return

 PULY

 RTS
lcd_subroutines.asm

;***

;Type:

M68HCs12 Assembly Program for Code Warrior

;Program Name:
lcd4bit_display

;Written By:
Jianjian Song & Keith Hoover

;Date:

October 5 2007

;Purpose: 4-Bit Mode LCD Panel interfacing via E, RS, DB7-4

;Display Panel Connections

;1--Vss(0V), 2--Vcc(5V), 3--Vee (0V), 4--RS = PT2, 5--R/W = 0V,

;6--E clock = PT3,11--DB4 = PT4,12--DB5 = PT5,13--DB6 = PT6

;14--DB7 = PT7.

;***

xdef LCD_INIT ;MAKE THE FOLLOWING SUBROUTINES AVAILABLE TO OTHER FILES

 xdef
LCD_DTA

 xdef
LCD_ADDRESS

 xdef
LCD_MESSAGE

 xdef LCD_CMD

nolist

 include 'mc9s12c32.inc'

list

;LCD hardware interface

LCD_DATA: EQU PTAD

LCD_CTRL: EQU PTAD

LCD_DATA_DIRECTION EQU DDRAD

LCD_CTRL_DIRECTION EQU DDRAD

DATA_OUTPUT EQU %11110000

CTRL_OUTPUT EQU %00001100

E:

EQU
%00001000 ;E = MASK TO ACCESS PT3 = LCD CONTROL LINE E

RS:

EQU
%00000100 ;RS = MASK TO ACCESS PT2 = LCD CONTROL LINE RS

; variables

DataSec: SECTION

TIME:
DS
2

;delay time variable

CodeSec: SECTION

;***

;LCD_INIT subroutine

;Initializes LCD Display according to manufacturer's directions

;**

LCD_INIT:

BSET LCD_DATA_DIRECTION,DATA_OUTPUT ;MAKE PT7:4 DRIVE LCD DB7:4 DATA INPUTS

BSET LCD_CTRL_DIRECTION,CTRL_OUTPUT
;MAKE PT2:3 DRIVE LCD RS AND E CONTROL INPUTS

BCLR
LCD_CTRL,E ; Set E to 0

BCLR
LCD_CTRL,RS
; Set RS=0 to select instruction entry mode

CLR
LCD_DATA

; 1st wait for 20 milliseconds (minimum of 15 ms)

MOVW
#400, TIME

JSR
VAR_DELAY

; Note: the LCD display always powers up in 8-bit transfer mode, but even though all 8

; bits are transferred into the display module when E falls, the bottom 4 bits of each

; byte are IGNORED when an INIT command is set, so it is OK that the bottom 4 bits of the

; LCD panel data bus (DB3:0) are not connected to anything!

; send 8-bit mode INIT command 3 times in a row...

; Here is the first INIT command

LDAB #$30

 JSR SEND4bits

; wait for 10 ms (minimum of 4.1 ms) before sending next INIT command.

MOVW
#200, TIME

JSR
VAR_DELAY

; send second INIT command

LDAB #$30

 JSR SEND4bits; 3rd wait for 1 millisecond (minimum of 0.1 ms)

MOVW
#20, TIME

JSR
VAR_DELAY

; Send third INIT command

LDAB #$30

 JSR SEND4bits

 MOVW
#20, TIME

JSR
VAR_DELAY

; Now send a fourth init command so that it changes the data transfer mode

; from 8-bits all at once to the 4-bit transfer mode, in which an 8-bit

; byte is transferred over the most-significant 4 bits of the display panel

; data bus (DB7:4)by two back-to-back calls to SEND4bits

LDAB #$20

 JSR SEND4bits

 MOVW
#20, TIME

JSR
VAR_DELAY

; This command sets data transfer mode to 4-bit mode, so now a full 8-bits are transferred

; by two back-to-back calls to SEND4bits

 LDAB #$28

 JSR SENDBYTE ; Function Set Command Format: 0 0 1 DL N F * *

; We just sent: 0 0 1 0 1 0 0 0

; DL=0 => 4-bit mode,

; N=1 => 1/8 duty cycle

; F=0 => 5 X 7 dot font

LDAB #$08

 JSR SENDBYTE ;
 Display OFF command

 LDAB #$01

 JSR SENDBYTE;
 ;Clear display and return home

LDAB #$06

 JSR SENDBYTE ;Entry mode set command format: 0 0 0 0 0 1 I/D S

 ;I/D = 1 => Increment display addr ptr.

 ;S = 0 => Do not shift (scroll) display

LDAB #$01

 JSR SENDBYTE;
 ;Clear display and return home

LDAB #$0F

 JSR SENDBYTE
 ; Display ON command

 RTS

;***

; Subroutine SEND4bits drives 4-bit data outon upper 4 bits of LCD data port

; then, after > 1 us delay, raises the E line, then, after > 1 us delay

; lowers the E line to complete the write cycle, then, after > 1 us delay

; returns.

;***

SEND4bits:

 PSHB

 ANDB #$F0

 LDAA LCD_DATA

 ANDA #$0F

 STAA LCD_DATA

 ORAB LCD_DATA

 STAB LCD_DATA ;DRIVE 4-BIT DATA OUT ON UPPER 4 BITS OF DATA PORT

 JSR WT5US

BSET
LCD_CTRL,E
 ; RAISE E LINE

JSR WT5US ; LET IT STAY HIGH FOR > 1 US

BCLR
LCD_CTRL,E ; LOWER IT

MOVW
#2, TIME ; Wait 1 us for BF flag

JSR
VAR_DELAY

PULB

RTS

;**

; Subroutine WT5US waits approximately 5 us, then returns

;**

WT5US:

 PSHY ;WAIT ABOUT 5 US

 LDY #10

WTHERE:

 DBNE Y,WTHERE

 PULY

 RTS

;**

; Subroutine: VAR_DELAY

; Delays for a period of time equal to Tdelay = TIME*50 microseconds

; This assumes a 24MHz bus clock, and that the RAM location

;
"TIME" is a input variable that must be loaded prior to calling VAR_DELAY

;
Note: The inner loop delay time = (4*300+4)*(1/24MHz)=50 microseconds

;**

LOOPS EQU 2400

VAR_DELAY:

PSHX

 ; 2 cycles

PSHY ; 2 cyles

LDY TIME
 ;
3 cycles

LP1:
LDX
#LOOPS
; 2 cycle

LP2:
DEX

 ; 1 cycle

BNE
LP2

 ; 3 cycles

DEY

 ; 1 cycles

BNE
LP1

 ; 3 cycles

PULY

 ; 3 cycles

PULX ; 3 cycles

RTS

 ; 5 cycles

;*********************************

; SUBROUTINE: SENDBYTE

;

Writes a byte in Accumulator B to LCD panel in "4-bit transfer" mode

; via two back-to-back 4-bit writes over bits DB7:4)

;*********************************

SENDBYTE:

PSHB

; send higher nibble out on DB7:4 first

JSR SEND4bits

MOVW
#2,TIME ;Wait 100 us after first 4-bit transfer cycle

JSR
VAR_DELAY

PULB

PSHB

; rotate lower nibble up into B7:4

ROLB

ROLB

ROLB

ROLB

; send lower nibble out on DB7:4 last

JSR SEND4bits

MOVW
#2,TIME

JSR
VAR_DELAY ;Wait 100 us after second 4-bit transfer cycle

PULB

RTS

;*********************************

; SUBROUTINE: LCD_ADDRESS

;

Sends an address in Accumulator B to LCD and thereby positions cursor

; to any arbitrary position on display. Addr 1 => 1st row

; Addr 2 => second row of display.

;*********************************

LCD_ADDRESS:

PSHB

BCLR
LCD_CTRL,RS
; Place LCD in command mode

ORAB #$80 ; Set MSB so the ddr address set command is sent

 JSR SENDBYTE

PULB

RTS

;*********************************

; SUBROUTINE: LCD_CMD

;

Sends an 8-bit LCD PANEL command in Accumulator B to LCD. For example

; if B contains 0x01, a CLEAR Display command is sent when this routine

; is called.

;*********************************

LCD_CMD:

PSHB

BCLR
LCD_CTRL,RS
; Place LCD in command mode

 JSR SENDBYTE ; Send command in Acc B.

PULB

RTS

;*********************************

; SUBROUTINE: LCD_DTA

;

 displays 8-bit ASCII-coded character in B register

;*********************************

LCD_DTA:

PSHB

BSET
LCD_CTRL,RS
; Place LCD in DATA CHARACTER DISPLAY mode

 JSR SENDBYTE

PULB

RTS

;*********************************

; SUBROUTINE: LCD_MESSAGE(B,X)

;

Displays an ASCII text message to LCD.

;

Accumulator B contains the address to write to

; For 2 x 24 display, Line 1: 0 - 0x17, Line 2: 0x40..0x57

;

X register contains starting address of the ASCII-coded text message

; The text message must be terminated in an ASCII NULL ($00) character.

;*********************************

LCD_MESSAGE:

 PSHB

PSHX

LDX 5, SP ; We need to pull the first parameter from off the stack

JSR
LCD_ADDRESS
; send address to LCD

NEXT:
LDAB
0,X
 ; load character

BEQ
DONE
 ; exit if character is 0

JSR
LCD_DTA
 ; send character in Accumulator A to LCD

INX

BRA
NEXT

DONE:
PULX

 PULB

RTS

END

 1

 2

 3

 A

 4

 5

 6

 B

 7

 8

 9

 C

 *

 0

 #

 D

Figure � SEQ Figure * ARABIC �1�: Entry Keypad

_1256121753.vsd
Set mode based on rc entry and current mode

GetKey
Set rc based on button pressed

Alarm Entry

Time Entry

Alarm Enable

Alarm Sound

Update time variables - add 1 to centisecond and check for wrapping

Interrupt every 10 ms

Return

Key Pressed?

Yes

No

TIME_ENTRY

ALARM_ENTRY

ALARM_ENABLE

ALARM_SOUND

Mode = ?

Set mode based on rc entry and current mode

Set mode based on rc entry and current mode

Initialize

Set mode based on rc entry and current mode

