PAGE
3

Name:__

Box:___________

Test 1 EC331 Embedded Systems (100 Point Maximum) Spring 2008 (KEH)
Closed notes, open CPU12 Manual - 100 points max. 60 minutes
"Fill in the Blank"/"Multiple Choice" Questions

This is an objective test. You must have exactly the correct answer to each question for credit. (No partial credit given) All questions on this test apply to the M68HC12 microcontroller.

1. (30 points – 1 point per blank) Fill in the chart below, indicating how many bytes must be READ from memory and how many bytes must be WRITTEN to memory by each instruction AFTER THE INSTRUCTION HAS BEEN FETCHED.

Assembly Code

Bytes Read From Memory # Bytes Written to Memory

LDX #$2A

0

0

LDX $2A

2

0

ADDA $4000

1

0

STD
$12, X

0
2
 RTS 2 0
a.
LDX
3, X

b.
LEAX
3, X+

c.
LDX
$0834

d.
LDX
#$0834

e.
MOVB 5, +X, 2, -Y

f.
DEC
5, -X

g.
DEC
[5, X]

h.
MOVW
 #4, $0800

i.
PSHX

j.
ROR
$0800

k.
ROR
[$0800, X]

l.
JSR
$1234, X

m.
JSR
[$1234, X]

n.
BCLR
$0FFF, $F0

o.
TARG: BRCLR $250, X, $20, TARG

2. (38 points – 1 point per blank) Assuming the instructions below are executed in sequence, fill in the blanks below:

(A)
LDAA #$98

ADDA #$79

After this ADDA instruction executes, the condition code (CCR) flags are:

H = ___ N = ____ Z = ____ V = ____ C = _____

Register A contains $__________

(B)
DAA

After this DAA instruction executes, Register A contains $___________
(C)
LDAA #$E5

ADDA #$C7

After this ADDA instruction executes, the condition code (CCR) flags are:

H = ___ N = ____ Z = ____ V = ____ C = _____

Register A contains $__________
(D)
LDAA #$85

SUBA #$5B

After this SUBA instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

Register A contains $__________

(E)
LDAA #$43

SUBA #$CD

After this SUBA instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

Register A contains $__________

(F)
LDD #$ABCD

SUBD #$5DCB

After the SUBD instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

Register D contains $__________

(G) LDAA #$A5
CMPA #$C2

After the CMPA instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

Register A contains $__________

(H) LDX #$0123

 LEAX $0123, X

 TFR X, D

 ADDD #$FDBA
After the ADDD instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

Register D contains $__________

3. (14 Points – 1 pt per blank) Given the following address map in an M68HC12-based system, fill in the blanks:
Address Contents
A. The following two instructions are executed:

 $0820 $DE

LDX $832

 $0821 $08

LDD 8, X+
 $0822 $34

 now register "A" contains $________

 $0823 $02

 now register “B” contains $________

 $0824 $02

 now register “X” contains $______________

 $0825 $35
B. The following two instructions are executed

 $0826 $00
 $0827 $24

LDY #$0832

 $0828 $20

LDX 5,+Y
 $0829 $00

 $082A $12

Now register “Y” contains $_________ and register “X” contains $_________
 $082B $10

 $082C $24

 $082D $00

 $082E $23

 $082F $00

$0830 $21
$0831
 $05

$0832 $08
 $0833 $35 C. The following instructions are

 $0834 $08

LDX $834

LDX -3,X

 $0835 $40

LDY $821

LDAA 2,Y

LDAB [2,Y]

 $0836 $08

 $0837 $2E Now X contains $______________ and D contains $________________

 $0838 $08
 $0839 $20
 $083A
 $45

 $083B $67

 $083C $20

 $083D $00 D. The following four instructions are

 $083E $20 executed:

 $083F $02

LDS #$1000

LDY #$0836
PSHY
PULB
 $0840 $78
PULA
 $0841 $37
PSHY
 $0842 $02
LDY 2,Y

LEAX
2,Y
 Now "Y" contains $__________ “S” contains $__________ “D” contains $___________ “X” contains $____________
E. Assume the memory map above, and that he following program fragment is executed from location START:

START:

LDY #3

LDD #0

LDX #$0820
LOOP1:
ADDD 2,+X

DBNE Y, LOOP1

STD $0800

LOOP2:

BRA LOOP2
After the BRA instruction is executed, indicate the contents of Y, X, and RAM locations $800 and $0801 ?

Y = $____________
X = $_____________
($800) = $___________ ($801) = $___________
4. (18 points --- 2 pts per blank) Subroutine “ToUpper” converts lower case letters found in an ASCII string (in RAM) to upper case (capital) letters. Recall that lower case letters “a, b, …. z” are represented by the ASCII codes $61, $62, …$7A; while the upper case letters “A, B, … Z” are represented by the ASCII codes $41, $42, … $5A. This ASCII string must be null-terminated, which means that it must end with the NULL ASCII character, whose value is $00.

 Subroutine “ToUpper” is called by
1) Pushing the (16-bit) starting address of a null-terminated ASCII string (stored in RAM) on the stack.
2) Pushing a (16-bit) RAM address which, upon return from the subroutine, will hold the number of characters that were changed from lower case to upper case.
3) Calling the routine using a JSR or BSR instruction.
 Upon return, the null-terminated ASCII string (which must be in RAM) will have been converted to all upper case (capital) letters. The input arguments must be removed from the stack after returning to the main program. Subroutine “ToUpper” must be written so that upon return to the calling program, the values that were in registers X, Y, and D before this subroutine was called are not changed. First construct a memory map of the stack (to the right of the code below) just after the registers have been preserved on the stack in Subroutine “ToUpper”, then fill in the NINE missing blanks in the code for subroutine “ToUpper” and its calling test program “ToUpperTest”, which are shown below.

XDEF ToUpperTest

ABSENTRY ToUpperTest

ORG $0800

STRING_START
DC.B "This is a TEST to Convert an ASCII STRING TO all Upper Case Characters", 0

NR_LOWERCASE
DS.W 1

 ;Note: after the program below has been run to location "STOP_HERE", location NR_LOWERCASE

 ;should contain the value 35 (in decimal), since there 35 lower case letters need to be

 ;converted from lower to upper case. Also, the null-terminated ASCII string at location

 ;STRING_START will be converted to all upper case letters.

ORG $4000

ToUpperTest:
LDS #$1000

LDX #STRING_START

PSHX

LDX #NR_LOWERCASE

PSHX

BSR ToUpper

LEAS ___________ , SP

;***BLANK 1
STOP_HERE:
BRA STOP_HERE

ToUpper:
PSHD

PSHX

PSHY

LDX __________ , SP

;***BLANK 2

LDY #0

BACKAGN:
LDAA 0,X

BEQ DONE_STRING

NOT_DONE:
CMPA #$61

BLO ______________

;***BLANK 3

CMPA #$7A

BHI _______________

;***BLANK 4

____________________ #$20
;***BLANK 5

STAA ______________

;***BLANK 6

 INY

LC_NOT_FOUND: INX

BRA BACKAGN

DONE_STRING:
STY [___________ , SP]

;***BLANK 7

PULY

PULX

;***BLANK 8

;***BLANK 9

ORG $FFFE

DC.W ToUpperTest

