ECE331 HW #1 (Due in class on Monday, Sept 10, 2007)

Name: __________________________ Mailbox:________
1. The following program is executed in sequence. Fill in HNZVC flags, and also the accumulator register “A” contents, after each arithmetic instruction executes shown below. If “H” is not affected, be sure to keep it at the value it was the last time it WAS affected! (You may want to attach this sheet to your HW, with the blanks filled in, BUT also show your math for each problem off to the right, as was done in class.

Start:
ldaa #$15

adda #$38
HNZVC = ____________ A = $_______

ldaa #$6A

adda #$59
HNZVC = ____________ A = $_______

ldaa #$FC

adda #$04
HNZVC = ____________ A = $_______

ldaa #$25

adda #$B7
HNZVC = ____________ A = $_______

ldaa #$6E

adda #$AD
HNZVC = ____________ A = $_______

ldaa #$81

adda #$FC
HNZVC = ____________ A = $_______

ldaa #$72

suba #$6E
HNZVC = ____________ A = $_______

cmpa #$60
HNZVC = ____________ A = $_______ (Note this is cmpa!)

cmpa #$70
HNZVC = ____________ A = $_______ (Note this is cmpa!)

suba #$A0
HNZVC = ____________ A = $_______

2. (A) Study the assembly program below to make sure you understand how it adds two 32-bit numbers and then calculates “5 factorial” = 5*4*3*2*1 = 120. Then hand assemble this program using your CPU12 pdf manual to find the OP CODES. Fill in the Addr and Contents columns on the left, just as an assembler would do it. I have started you out by filling in the first few Addr and Contents entries. Please do NOT cheat and use the Metrowerks assembler at this time!

Addr Contents
;*** Homework #1 Problem 2 (Hand Assembly)

; export symbols

 XDEF Entry ; export 'Entry' symbol

ABSENTRY Entry ; for absolute assembly: mark this as application entry point

RAMStart EQU $3800 ; absolute address of start of on-chip RAM ($3800 - $3FFFF)

ROMStart EQU $4000 ; absolute address of on-chip Flash ROM

 ORG RAMStart

3800 ResultWd: RMB 4 ; RMB 4 is an assembly directive =>reserve 4 memory bytes.

3804 TEMP: DS.B 1 ; “RMB” is the same as "DS.B"
3805 FACT_RSLT: DS.B 1

 ORG ROMStart

;Adding two long words

4000 B6 40 3F Entry:
LDAA LongWd1+3
 ; Add least significant bits

4003 BB 40 43 ADDA LongWd2+3

4006 7A 38 03 STAA ResultWd+3
 ; Store result

LDAA LongWd1+2

ADCA LongWd2+2
 ; Add next byte with CARRY from last addition stage

STAA ResultWd+2

LDAA LongWd1+1

ADCA LongWd2+1
 ; Add next byte with CARRY from last addition stage

STAA ResultWd+1

LDAA LongWd1

ADCA LongWd2

 ; Add next byte with CARRY from last addition stage

STAA ResultWd

;Calculating 5 factorial 5*4*3*2*1 = 120 (not very efficient pgm!)

MOVB #5,TEMP ;Put the value to calculate factorial of into TEMP

LDAB TEMP

NXT_MULT:
DEC TEMP

BEQ DONE
 ;When TEMP decremented down to 0, we are done!

LDAA TEMP

MUL

 ;8-bit unsigned multiply with 16-bit result (A:B = A X B)

BRA NXT_MULT

DONE:
STAB FACT_RSLT

 HANG_HERE: BRA HANG_HERE ; End program with this endless loop

LongWd1:
FCB $12, $34, $56,$78 ;FCB => form constant byte.
 LongWd2:
DC.B $0A, $BC, $CD, $DE ;FCB Equivalent to “DC.B”
 ORG $FFFE

 FDB Entry ; Init Reset Vector. FDB => Form Double Byte

 Equivalent to “DC.W”

(B) Determine the contents of each of the RAM locations $3800 through $3805 after the program execution has reached the “dynamic halt” loop at location “HANG_HERE”.

(C) Now use the Metrowerks IDE to assemble. Verify your assembly results of Part A by clicking on Project – Disassembly. Bring up the Simulator. Be sure to single step through the program carefully, and verify that the results claimed in Part B are indeed displayed in the memory window of the simulator after the program has completed Attach to this HW document a screen shot of your True Time Simulator results (ALT – Print Screen) that clearly shows the correct results in the memory window.
