PAGE
2

ECE331 Homework #3
Signed and Unsigned Sorting Program

(Due in class Friday, 3/21/2008)

Part 1. Working individually (not as a lab team) write, run, and debug using the Metrowerks Simulator a subroutine called UNSIGNED_SORT that uses indexed addressing to perform a “bubble sort” in ascending order on a list of several 8-bit UNSIGNED numbers that are stored in RAM. The number of values to be sorted should be pushed on the stack, and then the address of the first number in the data list (in RAM) should be pushed on the stack before the sort subroutine is called. After the sorting routine has finished, the data should be rearranged in (unsigned) numerically ascending order in the same place in RAM. To easily access the input parameters on the stack, use an indexed addressing mode, where the stack pointer, denoted in assembly language by the symbol “SP”, is used as the index register. For example “LDX 2,SP” will access the address of the data list that was pushed on the stack just before the subroutine was called, provided that nothing is pushed on the stack inside the subroutine. Recall that the JSR subroutine call instruction (extended addressing mode form) pushes PC = PCH:PCL (2 bytes) on the stack before it loads the PC with the starting address of the subroutine that is contained in the two bytes following the JSR opcode.

Use the following main program to call and test your sorting subroutine. You are not allowed to change this main program; your subroutine must conform to the way this main program calls your sorting subroutine.
;Homework #3 Bubble Sort & Passing Parameters via Stack

XDEF Entry

ABSENTRY Entry

ORG $0800

RESULT_RAM:
RMB 10
;Reserve 10 RAM bytes where data list to be sorted

;will be placed. Sorted data will reside here as well

;once the sorting subroutine has run.

SWAP_FLAG:
RMB 1
;Used to keep track of whether a swap was made

ORG $4000

DATLIST:

FCB $2C,$84,$55,$00,$A5,$FE,$72,$84,$32,$2C ;Data List in ROM
NR_ELEMENTS:
EQU 10
Entry:

LDS #$3F00

LDX #RESULT_RAM

LDY #DATLIST

LDAA #NR_ELEMENTS-1
MOVE_NXT:

MOVB A,Y, A,X

;copy data to be sorted to RESULT_RAM array

DECA

BPL MOVE_NXT

LDAA #10

PSHA

;Push number of bytes to sort.

LDD #RESULT_RAM

PSHD

;Push starting addr of data list.

JSR UNSIGNED_SORT

LEAS 3,SP

;Clean input arguments off stack

DYNHLT:

BRA DYNHLT

;by adding 3 to SP.

;******** Start of Subroutine UNSIGNED_SORT ***************
UNSIGNED_SORT: *****YOU MUST WRITE THIS SUBROUTINE!*****
RTS

Upon return from subroutine “UNSIGNED_SORT”, the data list should be found in RAM starting at location RESULT_RAM in ascending order, with the lowest unsigned number in the lowest address. Keep in mind that the data list is unsigned, where for example, $2C represents a decimal value of 44 decimal, and $FE represents a decimal value of 254 decimal. Each unsigned 8-bit value must lie in the range (0, 255). Indicate the results of your unsigned bubble sort by including a screen shot of your debugger’s memory window, showing that the data was sorted in the proper order.
Part 2. Now change just one instruction in your bubble sorting subroutine, and make it sort the same list of numbers, but now treating them as signed (2’s complement) 8-bit numbers. For example, $2C still represents a decimal value of 44, but now $FE represents a decimal value of -2. Each byte value to be sorted must now lie in the range (-128, 127). Indicate the results of your signed bubble sort by including a screen shot of your debugger’s memory window, showing that the data was sorted in the proper order.

Background Information on the BUBBLE SORT algorithm: The bubble sort algorithm involves making several passes through the data in RAM. This data is sorted “in place”. During each pass, you must compare adjacent pairs of numbers, and swap (interchange) their position if the left number in the pair is not less than the right number in the pair.
For example, if you were bubble sorting the list: 7 5 8 2 9, you would compare (7,5) and swap, yielding 5 7 8 2 9. Then you would compare (7,8) and not swap, resulting in 5 7 8 2 9. Then compare (8,2) and swap: 5 7 2 8 9. Then compare (8,9) and not swap. This completes the first pass through the data, resulting in 5 7 2 8 9.
After a similar second pass through the data, you should have 5 2 7 8 9. After the third pass through the data you have 2 5 7 8 9. After a 4th pass through the data we have no further swaps. The data list is still 2 5 7 8 9, and so we are done. When a swap is made, a memory location used as a “swap flag” should be cleared before each pass, and then set if a swap is made at some time during the pass. Thus, if the swap flag is still clear after the pass is completed, the sorting subroutine can terminate.
**
Hint: Note that if (inside your UNSIGNED_SORT subroutine) you initialize index register X to point to the start of the data list to be sorted (once this list has been placed in RAM):

LDX #RESULT_RAM
Then if you execute

LDAA 0,X

CMPA 1,X

BHI SWAP_NRS

this code fragment will compare the first two numbers in the list and branch to “SWAP_NRS” if the first number is greater (in an unsigned sense) than the second number. If X is incremented (INX) and this code fragment is re-executed,, then the second and third numbers in the list will be compared, etc. Please use this (constant-offset indexed) addressing technique to compare pairs of data values in your list.
