
Motorola HC12

Assembler

Product Date

HC12 Assembler 8/5/03

Table of Contents 3
Table Of Contents
Assembler . 15

Highlights . 15
Structure of this Document . 15

Using the Assembler .17
Assembler Environment. 17

Project Directory. 17
Editor . 17

Writing your Assembly Source File. 17
Assembling your Source File . 18
Linking Your Application . 21
Directly Generating an ABS File . 23

Assembler source file . 23
Assembling and generating the application . 24

Assembler Graphical User Interface .27
Starting the Assembler . 27
Assembler Main Window . 28
Window Title . 28
Content Area . 29
Tool Bar . 30
Status Bar . 31
Assembler Menu Bar . 31

File Menu . 32
Assembler Menu. 33
View Menu . 33

Editor Settings Dialog Box . 34
Global Editor (Shared by all Tools and Projects). 35
Local Editor (Shared by all Tools) . 36
Editor started with Command Line. 37
Editor started with DDE . 38
CodeWarrior with COM. 39
Modifiers. 39

Save Configuration Dialog Box . 40
Option Settings Dialog Box . 43
Message Settings Dialog Box . 44

Changing the Class associated with a Message . 45
About Box . 46
Specifying the Input File . 46

Use the Command Line in the Tool Bar to Assemble . 47
Use the Entry File | Assemble... 47
© Copyright 1987-2003 Metrowerks

4 Table of Contents
Use Drag and Drop. 47
Message/Error Feedback. 47

Use Information from the Assembler Window . 48
Use a User Defined Editor . 48

Environment . 51
The Current Directory. 52
Environment Macros. 52
Global Initialization File (MCUTOOLS.INI) (PC only) 53

[Installation] Section . 54
[Options] Section . 54
[XXX_Assembler] Section . 54
[Editor] Section . 56
Example . 57

Local Configuration File (usually project.ini) . 57
[Editor] Section . 58
[XXX_Assembler] Section . 59
Example . 63

Paths . 63
Line Continuation . 64
Environment Variable Details. 65
ABSPATH: Absolute file Path . 66
ASMOPTIONS: Default Assembler Options . 67
COPYRIGHT: Copyright Entry in Object File . 68
DEFAULTDIR: Default Current Directory . 69
ENVIRONMENT: Environment File Specification . 70
ERRORFILE: Error File Name Specification . 71
GENPATH: Search Path for Input File . 73
INCLUDETIME: Creation Time in Object File . 74
OBJPATH: Object File Path . 75
SRECORD: S Record Type . 76
TEXTPATH: Text File Path . 77
TMP: Temporary directory . 78
USERNAME: User Name in Object File . 79

Files . 81
Input Files . 81

Source Files . 81
Include File. 81

Output Files. 81
Object Files . 81
Absolute Files. 81
Motorola S Files . 82
Listing Files . 82
© Copyright 1987-2003 Metrowerks

Table of Contents 5
Debug Listing Files. 82
Error Listing File . 83

Assembler Options .85
Assembler Option Details . 86

Using Special Modifiers . 87
List of all Options. 89
-C=SAvocet: Switch Semi-Compatibility with Avocet Assembler ON 91
-Ci: Switch Case Sensitivity on Label Names OFF . 92
-CMacAngBrack: Angle brackets for Macro Arguments Grouping 93
-CMacBrackets: Square brackets for Macro Arguments Grouping 94
-Compat: Compatibility Modes . 95
-CPU: Derivative . 98
-D: Define Label . 99
-Env: Set Environment Variable . 101
-F: Output File Format . 102
-H: Short Help . 103
-I: Include File Path . 104
-L: Generate a Listing File . 105
-Lasmc: Configure Listing File . 107
-Lc: No Macro Call in Listing File . 109
-Ld: No Macro Definition in Listing File . 111
-Le: No Macro Expansion in Listing File . 113
-Li: No included File in Listing File . 115
-Lic: License Information . 117
-LicA: License Information about every Feature in Directory 118
-M: Memory Model . 119
-MacroNest: Configure Maximum Macro Nesting 120
-MCUasm: Switch Compatibility with MCUasm ON 121
-N: Display Notify Box . 122
-NoBeep: No Beep in Case of an Error . 123
-NoDebugInfo: No Debug Information for ELF/Dwarf Files 124
-NoEnv: Do not use Environment . 125
-ObjN: Object File Name Specification . 126
-Prod: Specify Project File at Startup. 127
-Struct: Support for Structured Types . 128
-V: Prints the Assembler Version . 129
-View: Application Standard Occurrence . 130
-W1: No Information Messages . 131
-W2: No Information and Warning Messages . 132
-WErrFile: Create "err.log" Error File . 133
© Copyright 1987-2003 Metrowerks

6 Table of Contents
-Wmsg8x3: Cut File Names in Microsoft Format to 8.3 134
-WmsgCE: RGB color for error messages . 135
-WmsgCF: RGB color for fatal messages . 136
-WmsgCI: RGB color for information messages . 137
-WmsgCU: RGB color for user messages . 138
-WmsgCW: RGB color for warning messages . 139
-WmsgFb: Set Message File Format for Batch Mode 140
-WmsgFi: Set Message File Format for Interactive Mode 142
-WmsgFob: Message Format for Batch Mode . 144
-WmsgFoi: Message Format for Interactive Mode. 146
-WmsgFonf: Message Format for no File Information. 148
-WmsgFonp: Message Format for no Position Information 149
-WmsgNe: Number of Error Messages. 151
-WmsgNi: Number of Information Messages. 152
-WmsgNu: Disable User Messages . 153
-WmsgNw: Number of Warning Messages . 154
-WmsgSd: Setting a Message to Disable . 155
-WmsgSe: Setting a Message to Error . 156
-WmsgSi: Setting a Message to Information . 157
-WmsgSw: Setting a Message to Warning . 158
-WOutFile: Create Error Listing File . 159
-WStdout: Write to Standard Output . 160

Sections . 161
Section Attribute . 161

Code Sections. 161
Constant Sections . 161
Data Sections . 162

Section Type . 162
Absolute Sections. 162
Relocatable Sections . 164
Relocatable vs. Absolute Section . 167

Assembler Syntax . 169
Comment Line . 169
Source Line . 169

Label Field . 169
Operation Field. 170
Operand Field: Addressing Modes. 178
Comment Field. 189

Symbols. 190
User Defined Symbols . 190
External Symbols . 190
© Copyright 1987-2003 Metrowerks

Table of Contents 7
Undefined Symbols . 191
Reserved Symbols . 191

Constants . 191
Integer Constants . 191
String Constants . 192
Floating-Point Constants . 192

Operators . 192
Addition and Subtraction Operators (binary) . 192
Multiplication, Division and Modulo Operators (binary). 193
Sign Operators (unary) . 193
Shift Operators (binary) . 194
Bitwise Operators (binary) . 194
Bitwise Operators (unary). 195
Logical Operators (unary). 195
Relational Operators (binary) . 195
HIGH Operator . 196
LOW Operator . 197
PAGE Operator. 197
Force Operator (unary) . 198
Operator Precedence. 198

Expression . 199
Absolute Expression . 200
Simple Relocatable Expression . 201
Unary Operation Result . 201
Binary Operations Result . 201

Translation Limits . 202
Assembler Directives .203

Directive Overview . 203
Section Definition Directives . 203
Constant Definition Directives . 203
Data Allocation Directives . 203
Symbol Linkage Directives . 204
Assembly Control Directives . 204
Listing File Control Directives . 205

ABSENTRY - Application Entry Point . 207
ALIGN - Align Location Counter . 208
BASE - Set Number Base . 209
CLIST - List Conditional Assembly . 210
DC - Define Constant. 212
DCB - Define Constant Block . 214
DS - Define Space . 216
ELSE - Conditional Assembly . 218
END - End Assembly. 220
ENDFOR - End of FOR block . 221
© Copyright 1987-2003 Metrowerks

8 Table of Contents
ENDIF - End Conditional Assembly . 222
ENDM - End Macro Definition . 223
EQU - Equate Symbol Value . 224
EVEN - Force Word Alignment . 225
FAIL - Generate Error Message . 226
FOR - Repeat assembly block. 229
IF - Conditional Assembly . 231
IFcc - Conditional Assembly . 233
INCLUDE - Include Text from Another File . 235
LIST - Enable Listing . 236
LLEN - Set Line Length . 238
LONGEVEN - Forcing Long-Word Alignment . 239
MACRO - Begin Macro Definition . 240
MEXIT - Terminate Macro Expansion. 241
MLIST - List Macro Expansions . 243
NOLIST - Disable Listing . 246
NOPAGE - Disable Paging. 248
OFFSET - Create Absolute Symbols . 249
ORG - Set Location Counter. 251
PAGE - Insert Page Break . 252
PLEN - Set Page Length . 253
RAD50 - Rad50 encoded string constants . 254
SECTION - Declare Relocatable Section . 256
SET - Set Symbol Value . 258
SPC - Insert Blank Lines. 259
TABS - Set Tab Length . 260
TITLE - Provide Listing Title. 261
XDEF - External Symbol Definition . 262
XREF - External Symbol Reference . 263
XREFB - External Reference for Symbols located on the Direct Page 264

Macros . 265
Macro Overview . 265
Defining a Macro . 265
Calling Macros . 266
Macro Parameters . 266

Macro Argument Grouping . 267
Labels Inside Macros . 268
Macro Expansion . 269
Nested Macros . 270
© Copyright 1987-2003 Metrowerks

Table of Contents 9
Assembler Listing File .271
Page Header . 271
Source Listing . 271

Abs.. 272
Rel. 272
Loc . 273
Obj. Code . 274
Source Line. 275

MASM Compatibility .277
Comment Line . 277
Constants . 277

Integer Constants . 277
Operators . 278
Directives . 278

MCUasm Compatibility .281
Labels . 281
SET Directive. 281
Obsolete Directives . 281

Semi-Avocet Compatibility. .283
Directives . 283
Section Definition . 284
Macro Parameters. 286
Support for Structured Assembly. 286

Switch Block. 286
FOR Block . 287

Mix C and Assembler Applications .289
Memory Models . 289
Parameter Passing Scheme. 290
Return Value . 291
Accessing Assembly Variables in an ANSI C Source File 291
Accessing ANSI C Variables in an Assembly Source File 292
Invoking an Assembly Function in an ANSI C Source File 293
Support for Structured Types . 295

Structured Type Definition . 295
Type allowed for Structured Type Fields . 296
Variable Definition . 296
Variable Declaration. 297
Accessing Structured Variable . 298
Structured Type: Limitations . 299

Make Applications .301
Assembler Applications . 301
© Copyright 1987-2003 Metrowerks

10 Table of Contents
Generating directly an Absolute File . 301
Mixed C and assembler Applications . 301
Memory Maps and Segmentation . 301

How To 303
How To Work with Absolute Sections . 303

Defining Absolute Sections in the Assembly Source File . 303
Linking an Application containing Absolute Sections. 304

How To Work with Relocatable Sections. 305
Defining Relocatable Sections in the Source File . 305
Linking an Application containing Relocatable Sections . 306

How To Initialize the Vector Table . 307
Initializing the Vector Table in the Linker PRM File . 308
Initializing the Vector Table in the Source File using a Relocatable Section 309
Initializing the Vector Table in the Source File using an Absolute Section 312

Splitting an Application into different Modules . 314
Using Direct Addressing mode to access Symbols. 316

Using Direct Addressing mode to Access External Symbols 316
Using Direct Addressing mode to Access Exported Symbols 316
Defining Symbols in the Direct Page. 317
Using Force Operator . 317
Using SHORT Sections . 317

Assembler Messages. 319
A1: Unknown message occurred .319
A2: Message overflow, skipping <kind> messages .319
A50: Input file ‘<file>’ not found. .320
A51: Cannot open statistic log file <file>. .320
A52: Error in command line <cmd>. .320
A64: Line Continuation occurred in <FileName> .320
A65: Environment macro expansion error '<description>' for <variablename> .320
A66: Search path <Name> does not exist. .321
A1000: Conditional directive not closed .321
A1001: Conditional else not allowed here .322
A1002: CASE, DEFAULT or ENDSW detected outside from a SWITCH block .322
A1003: CASE or DEFAULT is missing. .323
A1004: Macro nesting too deep. Possible recursion? Stop processing. (Set level with -MacroNest)323
A1051: Zero Division in expression .324
A1052: Right parenthesis expected. .324
A1053: Left parenthesis expected. .325
A1054: References on non-absolute objects are not allowed when options -FA1 or -FA2 are enabled 325
A1055: Error in expression .325
A1056: Error at end of expression .326
A1057: Cutting constant because of overflow .326
A1058: Illegal floating point operation. .326
A1059: != is taken as EQUAL .326
A1060: Implicit comment start .326
A1061: Floating Point format is not supported for this case .326
A1062: Floating Point number expected .327
A1101: Illegal label: label is reserved. .327
A1103: Illegal redefinition of label. .327
© Copyright 1987-2003 Metrowerks

Table of Contents 11
A1104: Undeclared user defined symbol: <symbolName> . 328
A1201: Label <labelName> referenced in directive ABSENTRY. Only labels defined in a code segment are al-

lowed in the ABSENTRY directive328
A1251: Cannot open object file: Object file name too long. 329
A1252: The exported label <name> is using an ELF extension . 329
A1253: Limitation: code size > <SizeLimit> bytes . 329
A1301: Structured type redefinition: <TypeName> . 329
A1302: Type <TypeName> is previously defined as label . 330
A1303: No type defined . 330
A1304: Field <FieldName> is not declared in specified type . 331
A1305: Type name expected . 332
A1401: Value out of range -128..127. 332
A1402: Value out of range -32768..32767. 333
A1405: PAGE with initialized RAM not supported . 334
A1406: HIGH with initialized RAM not supported. 335
A1407: LOW with initialized RAM not supported . 335
A1408: Out of memory, Code size too large . 335
A1410: EQU or SET labels are not allowed in a PC Relative addressing mode. . 335
A1411: PC Relative addressing mode is not supported to constants . 336
A1412: Relocatable object <Symbol> not allowed if generating absolute file . 336
A1413: Value out of relative range . 337
A1414: Cannot set fixup to constant . 337
A1415: Cutting fixup overflow . 337
A1416: Absolute section starting at <Address> size <Size> overlaps with absolute section starting at <Address>

337
A1417: Value out of possible range . 338
A1502: Reserved identifiers are not allowed as instruction or directive . 338
A1503: Error in option -D: <Description>. 338
A1601: Label must be terminated with a ":" . 339
A1602: Invalid character at end of label (<LabelName>): semicolon or space expected 339
A1603: Directive, instruction or macro name expected: <SymbolName> detected . 339
A1604: Invalid character detected at the beginning of the line: <Character> . 339
A1605: Invalid label name: <LabelName> . 340
A2301: Label is missing. 340
A2302: Macro name is missing . 340
A2303: ENDM is illegal. 341
A2304: Macro definition within definition . 341
A2305: Illegal redefinition of instruction or directive name . 342
A2306: Macro not closed at end of source. 342
A2307: Macro redefinition. 343
A2308: File name expected . 343
A2309: File not found . 343
A2310: Size specification expected . 344
A2311: Symbol name expected . 344
A2312: String expected . 345
A2313: Nesting of include files exceeds 50. 345
A2314: Expression must be absolute . 345
A2316: Section name required . 346
A2317: Illegal redefinition of section name. 346
A2318: Section not declared . 347
A2319: No section link to this label . 347
A2320: Value too small . 347
A2321: Value too big . 348
A2323: Label is ignored . 348
A2324: Illegal Base (2,8,10,16) . 349
A2325: Comma or Line end expected . 350
© Copyright 1987-2003 Metrowerks

12 Table of Contents
A2326: Label <Name> is redefined .350
A2327: ON or OFF expected .351
A2328: Value is truncated. .351
A2329: FAIL found .351
A2330: String is not allowed .352
A2332: FAIL found .352
A2333: Forward reference not allowed .353
A2335: Exported SET label is not supported .353
A2336: Value too big .353
A2338: <FailReason> .354
A2340: Macro parameter already defined .354
A2341: Relocatable Section Not Allowed: an Absolute file is currently directly generated355
A2342: Label in an OFFSET section cannot be exported .355
A2345: Embedded type definition not allowed .356
A2346: Directive or instruction not allowed in a type definition .356
A2350: MEXIT is illegal (detected outside of a macro). .357
A2351: Expected Comma to separate macro arguments .357
A2352: Invalid Character .357
A2353: Illegal or unsupported directive SECT. .358
A2354: Ignoring directive '<directive>' .358
A2355: Illegal size specification. .358
A2356: Illegal RAD50 character .358
A2356: Illegal macro argument 'Argument' .358
A2380: Cutting very long line .358
A2381: Previous message was in this context <Context> .359
A2382: Illegal character ('\0') in source file .359
A2383: Input line too long .359
A2400: End of Line expected .360
A2401: Complex relocatable expression not supported .360
A2402: Comma expected .361
A2500: Equal expected .361
A2501: TO expected .362
A2502: ENDFOR missing .362
A2503: ENDFOR without FOR .362
A3000: User requested stop .363
A4000: Recursive definition of label <Label name> .363
A4001: Data directive contains no data .363
A4002: Variable access size differs from previous declaration .363
A4003: Found XREF, but no XDEF for label <Label>, ignoring XREF. .364
A4004: Qualifier ignored .364
A4005: Access size mismatch for <Symbol> .364
A4100: Address space clash for <Symbol> .364
A12001: Illegal Addressing Mode .365
A12003: Value is truncated to one byte .365
A12004: Value is truncated to two bytes .366
A12005: Value must be between 1 and 8 .366
A12006: Value is truncated to five bits .366
A12008: Relative branch with illegal target .366
A12009: Illegal expression .366
A12010: Register expected .367
A12102: Page value expected .367
A12103: Operand not allowed .368
A12104: Immediate value expected .368
A12105: Immediate Address Mode not allowed .369
A12107: Illegal size specification for HC12-instruction .369
© Copyright 1987-2003 Metrowerks

Table of Contents 13
A12111: Invalid Offset in TRAP instruction. valid offsets are $30 .. $39 and $40 .. $FF 370
A12202: Not a hc12 instruction or directive . 370
A12403: Value out of range -256..255. 370
A12404: Value out of range -16..15. 372
A12409: In PC relative addressing mode, references to object located in another section or file are only allowed

for IDX2 addressing mode.372
A12411: Restriction: label specified in a DBNE, DBEQ, IBNE, IBEQ, TBNE or TBEQ instruction should be de-

fined in the same section they are used.373
A12412: PCR is ignored for this addressing mode . 374
A12600: Address lower than segment current position . 374
A12704: DEFSEG is missing. 374

Index . 377
© Copyright 1987-2003 Metrowerks

14 Table of Contents
© Copyright 1987-2003 Metrowerks

Assembler 15
Assembler

This document explains how to use the Macro Assembler.

Highlights
 • Graphical User Interface

 • On-line Help

 • 32bit Application

 • Conforms to Motorola Assembly Language Input Standard

Structure of this Document
 • Graphical User Interface: description of the Macro Assembler Graphical User

Interface (GUI)

 • Environment: detailed description of the Environment variables used by the
Macro assembler

 • Assembler Options: detailed description of the full set of Assembler options

 • Assembler Input Syntax: detailed description of the input syntax in an assembly
input file.

 • Assembler Directives: list of all directives that the assembler supports

 • Assembler Messages: description of messages produced by the Macro Assem-
bler, including examples.

 • Index
© Copyright 1987-2003 Metrowerks

16 Assembler
© Copyright 1987-2003 Metrowerks

Assembler 17
Using the Assembler

Assembler Environment
You can associate the assembler with a project directory and with an editor.

Project Directory

A project directory contains all of the environment files that you need to configure
your development environment.

When you install the assembler, the assembler automatically sets the project direc-
tory to the c:\metrowerks\demo directory. This directory contains initializa-
tion files that are required for the tools to work correctly.

Editor

You can associate an editor with the assembler to enable the Error Feedback. You
can use the Configuration dialog box to configure the assembler to use the editor.
Please refer to the Editor Settings dialog box section of this manual.

Writing your Assembly Source File
Once your project has been configured, you can start writing your application.

Note: You can write an assembly application using one or several assembly units.
Each assembly unit performs one particular task. An assembly unit is com-
prised of an assembly source file and some additional include files. Vari-
ables are exported and imported in the different assembly units so that a
variable defined in an assembly unit can be used in another assembly unit.
You create the application by linking all of the assembly units.

Let’s look at an example. Suppose that your source code is in a file named
test.asm and looks like the following code:

 XDEF entry ; Make the symbol entry visible for external module.
 ; This is necessary to allow the linker to find
 ; the symbol and use it as the entry point for the
 ; application.
initStk: EQU $AFE ; Initial value for SP
dataSec: SECTION ; Define a section
var1: DC.W 5 ; Assign 5 to the symbol var1
© Copyright 1987-2003 Metrowerks

18 Assembler
codeSec: SECTION ; Define a section for code
entry:
 LDS #initStk ; Load stack pointer
 LDD var1
 BRA entry

When writing your assembly source code, pay special attention to the following:

 • Make sure that symbols outside of the current source file (in another source file
or in the linker configuration file) that are referenced from the current source file
are externally visible. Notice that we have inserted the assembly directive “XDEF
entry” where appropriate in the example.

 • In order to make debugging from the application easier, we strongly recommend
that you define separate sections for code, constant data (defined with DC) and
variables (defined with DS). This will mean that the symbols located in the vari-
able or constant data sections can be displayed in the data window component.

 • Make sure to initialize the stack pointer when using BSR or JSR instructions in
your application.

Assembling your Source File
Once the source file is available, you can assemble it.

 • Start the macro assembler. The assembler is started. You can enter the name of
the file that you want to be assembled in the editable combo box. The example
shows the “test.asm” file.
© Copyright 1987-2003 Metrowerks

Assembler 19
 • You must correctly set the object file format (HIWARE or ELF/Dwarf). Select
menu entry Assembler | Options. The assembler displays the Option Settings dia-
log box.

 • In the Output folder, select the check box labeled Object File Format. The
assembler displays more information at the bottom of the dialog box.
© Copyright 1987-2003 Metrowerks

20 Assembler
 • Select the entry ELF/DWARF 2.0 Object File Format or the HIWARE Object File
Format in the list box and click OK.
The assembler starts to assemble the file when you click on the assemble button

().

 • The Macro Assembler indicates successful assembling by printing the number of
bytes of code that were generated. The message “*** 0 error(s),” indi-
cates that the test.asm file was assembled without errors.

 • The Macro Assembler generates a binary object file and a debug file for each
© Copyright 1987-2003 Metrowerks

Assembler 21
source file. The binary object file has the same name as the input module, but
with the ‘.o’ extension. The format of this file is controlled by the option -F. The
debug file has the same name as the input module, but with the ‘.dbg’ exten-
sion.

 • When the assembly option -L is specified on the command line, the Macro
Assembler generates a listing file containing the source instruction and the corre-
sponding hexadecimal code. The listing file generated by the Macro Assembler
looks like the following example:

HC12-Assembler
Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
 1 1 XDEF entry ; Make the symbol entry ...
 2 2 ; This is necessary to ...
 3 3 ; the symbol and use it ...
 4 4 ; application.
 5 5 0000 0AFE initStk: EQU $AFE; Initial SP
 6 6 dataSec: SECTION ; Define a section
 7 7 000000 0005 var1: DC.W 5 ; Assign 5 to var1
 8 8 codeSec: SECTION ; Define a code ...
 9 9 entry:
 10 10 000000 CF 0AFE LDS #initStk ; Load stack pointer
 11 11 000003 FC xxxx LDD var1
 12 12 000006 20F8 BRA entry

Linking Your Application
Once the object file is available, you can link your application. The linker organizes
the code and data sections according to the linker parameter file.

 • Start your editor and create the linker parameter file. You can use the file
fibo.prm located in the demo directory and rename it to test.prm.

 • In the file test.prm, change the name of the executable and object files to test.
Additionally, you can also modify the start and end address for the ROM and RAM
memory area. The module test.prm will look like the following:

LINK test.abs /* Name of the executable file generated.*/
NAMES test.o END /* Name of the object files in the application */
SECTIONS
 MY_ROM= READ_ONLY 0x800 TO 0x8FF; /* READ_ONLY memory area */
 MY_RAM= READ_WRITE 0xB00 TO 0xBFF; /* READ_WRITE memory area */
 MY_STK= READ_WRITE 0xA00 TO 0xAFF; /* READ_WRITE memory area */
END
PLACEMENT
© Copyright 1987-2003 Metrowerks

22 Assembler
 DEFAULT_ROM, cstSec INTO MY_ROM; /* Code should be
 allocated in MY_ROM */
 DEFAULT_RAM INTO MY_RAM; /* Variables should be
 allocated in MY_RAM */
 SSTACK INTO MY_STK; /* Stack will
 be allocated in MY_STK. */
END
INIT entry /* entry is the entry point to the application. */
VECTOR ADDRESS 0xFFFE entry

Note: The placement of the SSTACK section in the memory area MY_STK is
optional. It is only required when the application is executed in the simula-
tor to ensure some memory is available for the stack.

 • The commands in the linker parameter file are described in detail in the linker
manual.

 • Start the linker.

 • At the prompt, enter the name of the file that you want to link .

 • Press the enter key to start linking.
© Copyright 1987-2003 Metrowerks

Assembler 23
Directly Generating an ABS File
The assembler can directly generate an ABS file from your assembly source file.
The assembler generates a Motorola S file at the same time. You can directly burn
the S file into an EPROM.

Note: The assembler for the Philips XA does not support the ELF format. Directly
generating an ABS file is only possible in ELF.

Assembler source file

When an ABS file is directly generated using the assembler, no linker is involved.
This means that the application must be implemented in a single assembly unit and
must only contain absolute sections.

For example, suppose your source code is stored in a file named abstest.asm
and looks like the following code:

 ABSENTRY entry ; Specifies the application Entry point
iniStk: EQU $AFE ; Initial value for SP
 ORG $FFFE ; Reset vector definition
Reset: DC.W entry
© Copyright 1987-2003 Metrowerks

24 Assembler
 ORG $40 ; Define an absolute constant section
var1: DC.B 5 ; Assign 5 to the symbol var1
 ORG $80 ; Define an absolute data section
data: DS.B 1 ; Define one byte variable in RAM at $80
 ORG $B00 ; Define an absolute code section
entry:
 LDS #iniStk ; Load stack pointer
 LDAA var1
main:
 INCA
 STAA data
 BRA main

When writing your assembly source file for direct absolute file generation, pay spe-
cial attention to the following points:

 • The reset vector is usually initialized in the assembly source file with the applica-
tion entry point. An absolute section containing the application entry point
address is created at the reset vector address. To set the entry point of the applica-
tion at address $FFFE on the label entry, the following code is needed:
 ORG $FFFE ; Reset vector definition
Reset: DC.W entry

 • The directive ABSENTRY is used to write the address of the application entry
point in the generated absolute file. To set the entry point of the application on
the label entry in the absolute file, the following code is needed:
 ABSENTRY entry

 • It is strongly recommended to use separate sections for code, data and constants.
All sections used in the assembler application must be absolute and defined using
the ORG directive. The address for constant or code sections has to be located in
the ROM memory area, while the data sections have to be located in RAM area
(according to the hardware which is used). It is the programmer’s responsibility
to ensure that no section overlaps occur.

Assembling and generating the application

Once the source file is available, you can assemble it.

 • Start the Macro Assembler. The assembler is started. Enter the name of the file to
be assembled in the editable combo box, in our example abstest.asm.
© Copyright 1987-2003 Metrowerks

Assembler 25
 • Select menu entry Assembler | Options. The Option Settings dialog box is dis-
played.

 • In the Output folder, select the check box in front of the label Object File Format.
The assembler displays more information at the bottom of the dialog box.

 • Select the radio button ELF/DWARF 2.0 Absolute File and click OK. The assem-
bler is now ready to generate directly an absolute file.

 • Click the assemble button to assemble the file.

 • You can load the generated absolute .abs file in the debugger.
© Copyright 1987-2003 Metrowerks

26 Assembler
 • The .sx file generated is a standard Motorola S record file. You can directly
burn this file into a EPROM memory.
© Copyright 1987-2003 Metrowerks

Assembler 27
Assembler Graphical User Interface
The Macro Assembler runs under Windows 9X, Windows NT and compatible oper-
ating systems.

Run the assembler.

Starting the Assembler
When you start the assembler, the assembler displays a standard Tip of the Day win-
dow containing the news about the assembler.

Click Next Tip to see the next piece of information about the assembler.

Click Close to close the Tip of the Day dialog box.

If you do not want the assembler to automatically open the standard Tip of the Day
window when the assembler is started, uncheck Show Tips on StartUp.

If you want the assembler to automatically open the standard Tip of the Day window
at assembler start up, choose Help|Tip of the Day The assembler displays the Tip
of the Day dialog box. Check the Show Tips on StartUp check box.
© Copyright 1987-2003 Metrowerks

28 Assembler
Assembler Main Window

This window is only visible on the screen when you do not specify any file name
when you start the assembler.

The assembler window consists of a window title, a menu bar, a tool bar, a content
area and a status bar.

Window Title
The window title displays the assembler name and the project name. If a project is
not loaded, the assembler displays “Default Configuration” in the window title. An
asterisk (*) after the configuration name indicates that some settings have changed.
The assembler adds an asterisk (*) when an option, the editor configuration or the
window appearance changes.
© Copyright 1987-2003 Metrowerks

Assembler 29
Content Area
The assembler displays logging information about the assembly session in the con-
tent area. This logging information consists of:

 • the name of the file being assembled,

 • the whole name (including full path specifications) of the files processed (main
assembly file and all files included),

 • the list of the error, warning and information messages generated and

 • the size of the code generated during the assembly session.

When a file is dropped into the Assembly window content area, the assembler either
loads the corresponding file as a configuration file or the assembler assembles the
file. The assembler loads the file as a configuration if the file has the extension
.ini. If the file does not end with the .ini extension, the assembler assembles the
file using the current option settings.

All text in the assembler window content area can have context information consist-
ing of two items:

 • a file name including a position inside of a file

 • a message number

File context information is available for all output lines where a file name is dis-
played. There are two ways to open the file specified in the file context information
in the editor specified in the editor configuration:

 • If a file context is available for a line, double-click on a line containing file con-
text information.

 • Click with the right mouse on the line and select “Open ..”. This entry is only
available if a file context is available.

If the assembler cannot open a file even though a context menu entry is present, this
means that the editor configuration information is not correct (see the section Edit
Settings dialog box below).

The message number is available for any message output. There are three ways to
© Copyright 1987-2003 Metrowerks

30 Assembler
open the corresponding entry in the help file:

 • Select one line of the message and press the F1 key. If the selected line does not
have a message number, the main help is displayed.

 • Press Shift-F1 and then click on the message text. If the point clicked at does
not have a message number, the main help is displayed.

 • Click the right mouse button on the message text and select Help on This
entry is only available if a message number is available.

Tool Bar

The three buttons on the left hand side of the toolbar correspond to the menu items

of the File menu. The New , the Load and the Save buttons allow you to
reset, load and save configuration files for the Macro Assembler.

The Help button and the Context Help button allow you to open the Help file
or the Context Help.

When pressing , the mouse cursor changes to a question mark beside an arrow.
© Copyright 1987-2003 Metrowerks

Assembler 31
The assembler opens help for the next item on which you click. You can get specific
help on menus, toolbar buttons or on the window area by using this Context Help.

The editable combo box contains the list of the last commands executed. Once a
command line has been selected or entered in this combo box, click the Assemble

button to execute this command. The Stop button becomes enabled when

some file is assembled. When it is pressed, the assembler stops the assembly.

The Options Dialog Box button allows you to open the Option Settings dialog.

The Message Dialog Box button allows you to open the Message Settings dia-
log box.

The Clear button allows you to clear the assembler window content area.

Status Bar

When pointing to a button in the tool bar or a menu entry, the message area displays
the function of the button or menu entry you are pointing to.

Assembler Menu Bar
The following menus are available in the menu bar:

Menu Description

File Contains entries to manage Assembler configuration files

Assembler Contains entries to set Assembler options

View Contains entries to customize the assembler window output
© Copyright 1987-2003 Metrowerks

32 Assembler
File Menu

With the file menu, Assembler configuration files can be saved or loaded. An
Assembler configuration file contains the following information:

 • the assembler option settings specified in the assembler dialog boxes

 • the list of the last command line executed and the current command line.

 • the window position, size and font.

 • the editor currently associated with the assembler. This editor may be specifically
associated with the assembler or globally defined for all Tools (See Edit Settings
Dialog Box).

 • the Tips of the Day settings, including if enabled at startup and which is the cur-
rent entry.

 • Configuration files are text files which have the standard extension .ini. The
user can define as many configuration files as required for his project and can
switch between the different configuration files using the File | Load Configura-
tion and File | Save Configuration menu entry or the corresponding tool bar but-
tons.

Help A standard Windows Help menu

Menu entry Description

Assemble A standard Open File dialog box is opened, displaying the list
of all the .asm files in the project directory. The input file
can be selected using the features from the standard Open
File dialog box. The selected file is assembled when the Open
File dialog box is closed clicking OK

New/Default
Configuration

Resets the assembler option settings to the default value. The
assembler options which are activated per default are speci-
fied in section Assembler Options.

Load Configuration A standard Open File dialog box is opened, displaying the list
of all the .ini files in the project directory. The configura-
tion file can be selected using the features from the standard
Open File dialog box. The configuration data stored in the
selected file is loaded and used by further assembly sessions.

Menu Description
© Copyright 1987-2003 Metrowerks

Assembler 33
Assembler Menu

This menu allows you to customize the assembler. You can graphically set or reset
Assembler options or stop assembling.

View Menu

This menu allows you to customize the assembler window. You can specify if the
status bar or the tool bar must be displayed or hidden. You can also define the font

Save Configuration Saves the current settings in the configuration file specified on
the title bar.

Save Configuration
as...

A standard Save As dialog box is opened, displaying the list of
all the .ini files in the project directory. The name or loca-
tion of the configuration file can be specified using the fea-
tures from the standard Save As dialog box. The current
settings are saved in the specified configuration file when the
Save As dialog box is closed clicking OK.

Configuration... Opens the Configuration dialog box to specify the editor used
for error feedback and which parts to save with a configura-
tion.

See Editor Settings dialog box
and Save Configuration dialog box

1. project.ini
2.

Recent project list. This list can be used to open a recently
opened project again.

Exit Closes the assembler.

Menu entry Description

Options allows you to define the options which must be activated when
assembling an input file (See Option Settings dialog box).

Messages allows you to map messages to a different message class (See
Messages Settings dialog box).

Stop assembling Stops assembling of the current source file.

Menu entry Description
© Copyright 1987-2003 Metrowerks

34 Assembler
used in the window or clear the window.

Editor Settings Dialog Box
The Editor Setting dialog box has a main selection entry. Depending on the main
type of editor selected, the content below changes.

There are the following main entries:

Menu entry Description

Tool Bar switches display from the tool bar in the assembler window.

Status Bar switches display from the status bar in the assembler window.

Log... allows you to customize the output in the assembler window
content area. The following entries are available when Log...
is selected:

Change Font opens a standard font dialog box. The options selected in the
font dialog box are applied to the assembler window content
area.

Clear Log allows you to clear the assembler window content area.
© Copyright 1987-2003 Metrowerks

Assembler 35
Global Editor (Shared by all Tools and Projects)

This entry is shared by all tools (compiler/linker/assembler/...) for all projects. This
setting is stored in the [Editor] section of the global initialization file MCU-
TOOLS.INI. Some Modifiers can be specified in the editor command line.
© Copyright 1987-2003 Metrowerks

36 Assembler
Local Editor (Shared by all Tools)

This entry is shared by all tools (compiler/linker/assembler/...) for the current
project. This setting is stored in the [Editor] section of the local initialization
file, usually project.ini in the current directory. Some Modifiers can be speci-
fied in the editor command line.

The global and local editor configuration affects other tools besides the assembler.
It is recommended to close other tools while modifying these topics.
© Copyright 1987-2003 Metrowerks

Assembler 37
Editor started with Command Line

When this editor type is selected, a separate editor is associated with the assembler
for error feedback. The editor configured in the shell is not used for error feedback.

Enter the command which should be used to start the editor.

The format from the editor command depends on the syntax which should be used
to start the editor. Some Modifiers can be specified in the editor command line to
refer to a file name of a line number (See section Modifiers below).

Example

For the IDF use (with an adapted path to the idf.exe file)

C:\metrowerks\prog\idf.exe %f -g%l,%c

For the CodeWright use (with an adapted path to the cw32.exe file)

C:\cw32\cw32.exe %f -g%l

For WinEdit 32 bit version use (with an adapted path to the winedit.exe file)

C:\WinEdit32\WinEdit.exe %f /#:%l
© Copyright 1987-2003 Metrowerks

38 Assembler
Editor started with DDE

Enter the service, topic and client name to be used for a DDE connection to the edi-
tor. All entries can have modifiers for the file name and line number as explained
below in the modifiers section.

Example

For Microsoft Developer Studio use the following setting:

Service Name: "msdev"
Topic Name: "system"
ClientCommand: "[open(%f)]"
© Copyright 1987-2003 Metrowerks

Assembler 39
CodeWarrior with COM

If CodeWarrior with COM is enabled, the CodeWarrior IDE (registered as COM
server by the installation script) is used as editor.

Modifiers

The configurations may contain some modifiers to tell the editor which file to open
and at which line.

- The %f modifier refers to the name of the file (including path and extension)
where the error has been detected.

- The %l modifier refers to the line number where the message has been detected.

- The %c modifier refers to the column number where the message has been
detected.

Note: Be careful. The %l modifier can only be used with an editor which can be
started with a line number as parameter. This is not the case for WinEdit
version 3.1 or lower or for the Notepad. When you work with such an editor,
© Copyright 1987-2003 Metrowerks

40 Assembler
you can start it with the file name as parameter and then select the menu
entry ‘Go to’ to jump on the line where the message has been detected. In
that case the editor command looks like:
C:\WINAPPS\WINEDIT\Winedit.EXE %f
Please check your editor manual to define the command line which should
be used to start the editor.

Save Configuration Dialog Box

The second index of the configuration dialog box contains all options for the save
operation.

In the Save Configuration index, four check boxes allow you to choose which
items to save into a project file while the configuration is saved.

This dialog box has the following configurations:

 • Options: This item is related to the option and message settings. If this check box
is set the current option and message settings are stored in the project file when
the configuration is saved. By disabling this check box, changes done to the
© Copyright 1987-2003 Metrowerks

Assembler 41
option and message settings are not saved, the previous settings remain valid.

 • Editor Configuration: This item is related to the editor settings. If you set this
check box, the current editor settings are stored in the project file when the con-
figuration is saved. If you disable this check box, the previous settings remain
valid.

 • Appearance: This item is related to many parts like the window position (only
loaded at startup time) and the command line content and history. If you set this
check box, these settings are stored in the project file when the current configura-
tion is saved. If you disable this check box, the previous settings remain valid.

 • Environment Variables: With this set, the environment variable changes done in
the Environment property sheet are saved too.

Note: By disabling selective options only some parts of a configuration file can be
written. For example when the best Assembler options are found, the save
option mark can be removed. Then future save commands will not modify
the options any more.

 • Save on Exit: If this option is set, the assembler writes the configuration on exit.
The assembler does not prompt you to confirm this operation. If this option is not
set, the assembler does not write the configuration at exit, even if options or
another part of the configuration has changed. No confirmation will appear in
any case when closing the assembler.

Note: Almost all settings are stored in the project configuration file.
The only exceptions are:
- The recently used configuration list.
- All settings in this dialog box.

Note: The configurations of the assembler can, and in fact are intended to, coexist
in the same file as the project configuration of other tools and the IDF.
When an editor is configured by the shell, the assembler can read this con-
tent out of the project file, if present. The default project configuration file
name is project.ini. The assembler does automatically open an existing
project.ini in the current directory at startup. When using the option -prod at
startup or loading the configuration manually, also a different name than
project.ini can be chosen.

Environment Configuration Dialog

On the third page of the configuration dialog is used to configure the environment.
The content of the dialog is read from the actual project file out of the section
© Copyright 1987-2003 Metrowerks

42 Assembler
[Environment Variables] The following variables are available:

General Path: GENPATH
Object Path: OBJPATH
Text Path: TEXTPATH
Absolute Path: ABSPATH
Header File Path: LIBPATH

Various Environment Variables: other variables not covered by the above list.

The following buttons are available:

Add: Adds a new line/entry
Change: changes a line/entry
Delete: deletes a line/entry
Up: Moves a line/entry up
Down: Moves a line/entry down

Note that the variables are written to the project file only if you press the Save But-
ton (or using File->Save Configuration, or CTRL-S). Additionally in the Save Con-
figuration dialog it can be specified if the environment is written to the project file
or not.
© Copyright 1987-2003 Metrowerks

Assembler 43
Option Settings Dialog Box

This dialog box allows you to set/reset Assembler options. The options available
are arranged into different groups, and a sheet is available for each of these groups.
The content of the list box depends on the selected sheet:

An Assembler option is set when the check box in front of it is checked. To obtain
more detailed information about a specific option, select it and press the F1 key or

Group Description

Output lists options related to the output files generation (which kind
of file should be generated).

Input lists options related to the input files.

Host lists options related to the host.

Code Generation lists options related to code generation (memory models, ...).

Messages lists options controlling the generation of error messages.

Various list various additional options (options used for compatibility,
...).
© Copyright 1987-2003 Metrowerks

44 Assembler
the Help button. To select an option, click once on the option text. The option text is
then displayed inverted.

When the dialog box is opened and no option is selected, pressing the F1 key or the
Help button shows the help about this dialog box.

The available options are listed in the section Assembler Options.

Message Settings Dialog Box

This dialog box allows you to map messages to a different message class.

Some buttons in the dialog box may be disabled, e.g. if an option cannot be moved
to an information message, the ‘Move to: Information’ button is disabled. The fol-
lowing buttons are available in the dialog box:

Button Description

Move to: Disabled The selected messages are disabled, they will no longer be
displayed.

Move to: Information The selected messages are changed to information messages.

Move to: Warning The selected messages are changed to warning messages.

Move to: Error The selected messages are changed to error messages.
© Copyright 1987-2003 Metrowerks

Assembler 45
A sheet is available for each error message class and the content of the list box
depends on the selected sheet:

Each message has its own character (‘A’ for Assembler message) followed by a 4-5
digit number. This number allows an easy search for the message both in the man-
ual or on-line help.

Changing the Class associated with a Message

You can configure your own mapping of messages to the different classes. To do

Move to: Default The selected messages are changed to their default message
type.

Reset All Resets all messages to their default message type.

Ok Exits this dialog box and accepts the changes made.

Cancel Exits this dialog box without accepting the changes made.

Help Displays online help about this dialog box.

Message group Description

Disabled Lists all messages disabled. That means that messages dis-
played in the list box will not be displayed by the assembler.

Information Lists all information messages. Information messages informs
about action taken by the assembler.

Warning Lists all warning messages. When such a message is gener-
ated, translation of the input file continues and an object file
will be generated.

Error Lists all error messages. When such a message is generated,
translation of the input file continues but no object file will be
generated.

Fatal Lists all fatal error messages. When such a message is gener-
ated, translation of the input file stops immediately. Fatal
messages cannot be changed. They are only listed to call con-
text help.

Button Description
© Copyright 1987-2003 Metrowerks

46 Assembler
this, use one of the buttons located on the right hand of the dialog box. Each button
refers to a message class. To change the class associated with a message, you have
to select the message in the list box and then click the button associated with the
class where you want to move the message.

Example

To define the warning ‘A2336: Value too big' as an error message:

 • Click the Warning sheet, to display the list of all warning messages in the list
box.

 • Click on the string ‘A2336: Value too big' in the list box to select the message.

 • Click Error to define this message as an error message.

Note: Messages cannot be moved from or to the fatal error class.

Note: The ‘Move to’ buttons are enabled when all selected messages can be
moved. When one message is marked, which cannot be moved to a specific
group, the corresponding ‘Move to’ button is disabled (grayed).

If you want to validate the modification you have performed in the error message
mapping, close the 'Message settings' dialog box with the 'OK' button. If you close
it using the 'Cancel' button, the previous message mapping remains valid.

About Box
The about box can be opened with the menu Help->about. The about box contains
much information including the current directory and the versions of subparts of the
assembler. The main assembler version is displayed separately on top of the dialog
box.

With the button ‘Extended Information’ it is possible to get license information
about all software components in the same directory of the executable.

Click on OK to close this dialog box.

Note: During assembling, the subversions of the sub parts cannot be requested.
They are only displayed if the assembler is not processing files.

Specifying the Input File
There are different ways to specify the input file which must be assembled. During
assembling of a source file, the options are set according to the configuration per-
© Copyright 1987-2003 Metrowerks

Assembler 47
formed by the user in the different dialog boxes, and according to the options speci-
fied on the command line.

Before starting to assemble a file, make sure you have associated a working direc-
tory with your assembler.

Use the Command Line in the Tool Bar to Assemble

Assembling a New File

A new file name and additional Assembler options can be entered in the command
line. The specified file is assembled when you press the Assemble button in the tool
bar or when you press the enter key.

Assembling a file which has already been assembled

The commands executed previously can be displayed using the arrow on the right
side of the command line. A command is selected by clicking on it. It appears in the
command line. The specified file will be processed when the button Assemble in the
tool bar is selected.

Use the Entry File | Assemble...

When the menu entry File | Assemble... is selected a standard file Open File dialog
box is opened, displaying the list of all the .asm files in the project directory. The
user can browse to get the name of the file he or she wants to assemble. Select the
desired file and click Open in the Open File dialog box to assemble the selected file.

Use Drag and Drop

A file name can be dragged from an external software (for example the File Man-
ager/Explorer) and dropped into the assembler window. The dropped file will be
assembled when the mouse button is released in the assembler window. If a file
being dragged has the extension .ini, it is considered to be a configuration and it
is immediately loaded and not assembled. To assemble a source file with the exten-
sion .ini, use one of the other methods.

Message/Error Feedback
After assembly, there are several ways to check where different errors or warnings
have been detected. Per default, the format of the error message looks as follows:
© Copyright 1987-2003 Metrowerks

48 Assembler
>> <FileName>, line <line number>, col <column number>, pos <absolute
position in file>
<Portion of code generating the problem>
<message class><message number>: <Message string>

Example

>> in "C:\metrowerks\demo\fiboerr.asm", line 18, col 0, pos 722
 DC label
 ^
ERROR A1104: Undeclared user defined symbol: label

See also Assembler options -WmsgFi, -WmsgFb, -WmsgFob, -WMsgFoi, -Wmsg-
FonF and -WmsgFonP for different message formats.

Use Information from the Assembler Window

Once a file has been assembled, the assembler window content area displays the list
of all the errors or warnings detected.

The user can use his usual editor to open the source file and correct the errors.

Use a User Defined Editor

The editor for Error Feedback can be configured using the Configuration dialog
box. Error feedback is performed differently, depending on whether or not the edi-
tor can be started with a line number.

Line Number Can be Specified on the Command Line

Editors like the IDF, WinEdit (v95 or higher) or Codewright can be started with a
line number in the command line. When these editors have been correctly config-
ured, they can be started automatically by double clicking on an error message. The
configured editor will be started, the file where the error occurs is automatically
opened and the cursor is placed on the line where the error was detected.

Line Number Cannot be Specified on The Command Line

Editors like WinEdit v31 or lower, Notepad, Wordpad cannot be started with a line
number in the command line. When these editors have been correctly configured,
they can be started automatically by double clicking on an error message. The con-
figured editor will be started and the file where the error occurs is automatically
opened. To scroll to the position where the error was detected, you have to:

 • Activate the assembler again.
© Copyright 1987-2003 Metrowerks

Assembler 49
 • Click the line on which the message was generated. This line is highlighted on
the screen.

 • Copy the line in the clipboard pressing CTRL + C.

 • Activate the editor again.

 • Select Search | Find, the standard Find dialog box is opened.

 • Copy the content of the clipboard in the Edit box pressing CTRL + V.

 • Click Forward to jump to the position where the error was detected.
© Copyright 1987-2003 Metrowerks

50 Assembler
© Copyright 1987-2003 Metrowerks

Assembler 51
Environment
This part describes the environment variables used by the assembler. Some of those
environment variables are also used by other tools (e.g. Linker/Compiler), so con-
sult also their respective manual.

There are three ways to specify of environment:

1) The current project file with the section [Environment Variables]. This file may
be specified on Tool startup using the -Prod option. This way is recommended and
also supported by the IDF.

2) An optional ‘default.env’ file in the current directory. This file is supported for
compatibility reasons with earlier versions. The name of this file may be specified
using the variable ENVIRONMENT. Using the default.env file is not recom-
mended.

3) Setting environment variables on system level (DOS level). This is not recom-
mended.

Various parameters of the assembler may be set in an environment using so-called
environment variables. The syntax is always the same:

Parameter = KeyName "=" ParamDef.

Example

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;/usr/local/lib;/home/me/
my_project

These parameters may be defined in several ways:

Using system environment variables supported by your operating system.

Putting the definitions in a file called DEFAULT.ENV (.hidefaults for UNIX)
in the default directory.

Putting the definitions in a file given by the value of the system environment vari-
able ENVIRONMENT.

Note: The default directory mentioned above can be set via the system environ-
ment variable DEFAULTDIR

When looking for an environment variable, all programs first search the system
environment, then the DEFAULT.ENV (.hidefaults for UNIX) file and finally
the global environment file given by ENVIRONMENT. If no definition can be
found, a default value is assumed.
© Copyright 1987-2003 Metrowerks

52 Assembler
Note: The environment may also be changed using the -Env Assembler option

The Current Directory
The most important environment for all tools is the current directory. The current
directory is the base search directory where the tool starts to search for files (e.g. for
the DEFAULT.ENV / .hidefaults)

Normally, the current directory of a tool started is determined by the operating sys-
tem or by the program who launches the tools (e.g. IDF, Make Utility, ...).

For the UNIX operating system, the current directory for an executable is also the
current directory from where the binary file has been started.

For MS Windows based operating systems, the current directory definition is quite
complex:

 • If the tool is launched using a File Manager/Explorer, the current directory is the
location of the executable launched.

 • If the tool is launched using an Icon on the Desktop, the current directory is the
one specified and associated with the Icon in its properties.

 • If the tool is launched by dragging a file on the icon of the executable under Win-
dows 95 or Windows NT 4.0, the desktop is the current directory.

 • If the tool is launched by another launching tool with its own current directory
specification (e.g. an editor as IDF, a Make utility, ...), the current directory is the
one specified by the launching tool (e.g. current directory definition in IDF).

 • When local project file is loaded, the current directory is set to where the local
project file is in. Changing the current project file does also change the current
directory if the other project file is in a different directory. Note that browsing for
an assembly source file does not change the current directory.

To overwrite this behavior, the system environment variable DEFAULTDIR may be
used.

The current directory is displayed among other information with the assembler
option “-v” and in the about box.

Environment Macros
It is possible to use Macros in your environment settings.

Example:
© Copyright 1987-2003 Metrowerks

Assembler 53
MyVAR=C:\test
TEXTPATH=$(MyVAR)\txt
OBJPATH=${MyVAR}\obj

In the example, TEXTPATH is expanded to ‘C:\test\txt’ and OBJPATH is expanded
to ‘C:\test\obj’.

From the example above, you can see that you either can use $() or ${}. However,
the variable referenced has to be defined somewhere.

Additionally there are following special variables allowed too (note that the are
always surrounded by {} and they are case sensitive. Additionally the variable con-
tent contains a the directory separator ‘\’ as well:

 • {Compiler}: That is the path of the executable one directory level up. That is if
the executable is ‘c:\metrowerks\prog\linker.exe’, then the variable is
‘c:\metrowerks\’. Note that {Compiler} is used for the assembler too.

 • {Project}: Path of the current project file. E.g. if the current project file is
‘C:\demo\project.ini’, the variable contains ‘C:\demo\’.

 • {System}: This is the path were your Windows system is installed, e.g.
‘C:\WINNT\’.

Global Initialization File (MCUTOOLS.INI) (PC
only)

All tools may store some global data into the file MCUTOOLS.INI. The tool first
search for this file in the directory of the tool itself (path of the executable). If there
is no MCUTOOLS.INI file in this directory, the tool looks for a MCUTOOLS.INI
file located in the MS Windows installation directory (e.g. C:\WINDOWS).

Example

C:\WINDOWS\MCUTOOLS.INI
D:\INSTALL\PROG\MCUTOOLS.INI

If a tool is started in the D:\INSTALL\PROG\DIRECTOY, the initialization file in
the same directory than the tool is used (D:\INSTALL\PROG\MCUTOOLS.INI).

But if the tool is started outside the D:\INSTALL\PROG directory, the initializa-
tion file in the Windows directory is used (C:\WINDOWS\MCUTOOLS.INI).

The following section gives a short description of the entries in the MCU-
TOOLS.INI file:
© Copyright 1987-2003 Metrowerks

54 Assembler
[Installation] Section

Entry: Path

Arguments: Last installation path.

Description Whenever a tool is installed, the installation script stores the
installation destination directory into this variable.

Example Path=c:\install

Entry: Group

Arguments: Last installation program group.

Description Whenever a tool is installed, the installation script stores the
installation program group created into this variable.

Example Group=Assembler

[Options] Section

Entry: DefaultDir

Arguments: Default Directory to be used.

Description Specifies the current directory for all tools on a global level (see
also environment variable DEFAULTDIR).

Example DefaultDir=c:\install\project

[XXX_Assembler] Section

instead of XXX, the actual backend name appears

Entry: SaveOnExit

Arguments: 1/0

Description 1 if the configuration should be stored when the assembler is
closed, 0 if it should not be stored. The assembler does not ask to
store a configuration in either cases.

Entry: SaveAppearance
© Copyright 1987-2003 Metrowerks

Assembler 55
Arguments: 1/0

Description 1 if the visible topics should be stored when writing a project file,
0 if not. The command line, its history, the windows position and
other topics belong to this entry.
This entry corresponds to the state of the check box ‘Appearance’
in the ‘Save Configuration’ dialog box.

Entry: SaveEditor

Arguments: 1/0

Description 1 if the editor settings should be stored when writing a project file,
0 if not. The editor setting contain all information of the editor
configuration dialog box.
This entry corresponds to the state of the check box ‘Editor Con-
figuration’ in the ‘Save Configuration’ dialog box.

Entry: SaveOptions

Arguments: 1/0

Description 1 if the options should be contained when writing a project file, 0
if not.
This entry corresponds to the state of the check box ‘Options’ in
the ‘Save Configuration’ dialog box.

Entry: RecentProject0, RecentProject1, ...

Arguments: names of the last and prior project files

Description This list is updated when a project is loaded or saved. Its current
content is shown in the file menu.

Example SaveOnExit=1
SaveAppearance=1
SaveEditor=1
SaveOptions=1
RecentProject0=C:\myprj\project.ini
RecentProject1=C:\otherprj\project.ini
© Copyright 1987-2003 Metrowerks

56 Assembler
[Editor] Section

Entry: Editor_Name

Arguments: The name of the global editor

Description Specifies the name of the editor used as global editor. This entry
has only a description effect. Its content is not used to start the
editor.

Saved: Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.

Entry: Editor_Exe

Arguments: The name of the executable file of the global editor (including
path).

Description Specifies the file name which is started to edit a text file, when the
global editor setting is active.

Saved: Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.

Entry: Editor_Opts

Arguments: The options to use with the global editor

Description Specifies options (arguments), which should be used when start-
ing the global editor. If this entry is not present or empty, “%f” is
used. The command line to launch the editor is build by taking the
Editor_Exe content, then appending a space followed by the con-
tent of this entry.

Saved: Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.

Example [Editor]
editor_name=IDF
editor_exe=C:\metrowerks\prog\idf.exe
editor_opts=%f -g%l,%c
© Copyright 1987-2003 Metrowerks

Assembler 57
Example

The following example shows a typical layout of the MCUTOOLS.INI:

[Installation]
Path=c:\metrowerks
Group=Assembler

[Editor]
editor_name=IDF
editor_exe=C:\metrowerks\prog\idf.exe
editor_opts=%f -g%l,%c

[Options]
DefaultDir=c:\myprj

[XXX_Assembler]
SaveOnExit=1
SaveAppearance=1
SaveEditor=1
SaveOptions=1
RecentProject0=c:\myprj\project.ini
RecentProject1=c:\otherprj\project.ini

Local Configuration File (usually project.ini)
The assembler does not change the default.env file in any way. The assembler only
reads the contents. All the configuration properties are stored in the configuration
file. The same configuration file can and is intended to be used by different applica-
tions (assembler, Linker, etc.).

The processor name is encoded into the section name, so that Assembler for differ-
ent processors can use the same file without any overlapping. Different versions of
the same Assembler are using the same entries. This mainly plays a role when
options only available in one version should be stored in the configuration file. In
such situations, two files must be maintained for the different Assembler versions.
If no incompatible options are enabled when the file is last saved, the same file can
be used for both Assembler version.

The current directory is always the directory, where the configuration is in. If a con-
figuration file in a different directory is loaded, then the current directory also
changes. When the current directory changes, also the whole default.env file is
reloaded. Always when a configuration file is loaded or stored, the options in the
environment variable ASMOPTIONS is reloaded and added to the project options.
This behavior has to be noticed when in different directories different default.env
© Copyright 1987-2003 Metrowerks

58 Assembler
exist which do contain incompatible options in ASMOPTIONS. When a project is
loaded using the first default.env, its ASMOPTIONS are added to the configuration
file. If then this configuration is stored in a different directory, where a default.env
exists with the incompatible options, the assembler adds options and remarks the
inconsistency. Then a message box appears to inform the user that the default.env
options were not added. In such a situation the user can either remove the option
from the configuration file with the advanced option dialog box or he can remove
the option from the default.env with the shell or a text editor depending which
options should be used in the future.

At startup the configuration stored in the file project.ini located in the current
directory is loaded.

[Editor] Section

Entry: Editor_Name

Arguments: The name of the local editor

Description Specifies the name of the editor used as local editor. This entry
has only a description effect. Its content is not used to start the
editor.

This entry has the same format as for the global editor configura-
tion in the mcutools.ini file.

Saved: Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.

Entry: Editor_Exe

Arguments: The name of the executable file of the local editor (including
path).

Description Specifies file name with is started to edit a text file, when the
local editor setting is active. In the editor configuration dialog
box, the local editor selection is only active when this entry is
present and not empty.

This entry has the same format as for the global editor configura-
tion in the mcutools.ini file.

Saved: Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.
© Copyright 1987-2003 Metrowerks

Assembler 59
Entry: Editor_Opts

Arguments: The options to use with the local editor

Description Specifies options (arguments), which should be used when start-
ing the local editor. If this entry is not present or empty, “%f” is
used. The command line to launch the editor is build by taking the
Editor_Exe content, then appending a space followed by the con-
tent of this entry.

This entry has the same format as for the global editor configura-
tion in the mcutools.ini file.

Saved: Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.

Example [Editor]
editor_name=IDF
editor_exe=C:\metrowerks\prog\idf.exe
editor_opts=%f -g%l,%c

[XXX_Assembler] Section

instead of XXX, the actual backend name appears

Entry: RecentCommandLineX, X= integer

Arguments: String with a command line history entry, e.g. fibo.asm

Description This list of entries contains the content of the command line
history.

Saved: Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.

Entry: CurrentCommandLine

Arguments: String with the command line, e.g. “fibo.asm -w1”

Description The currently visible command line content.

Saved: Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.
© Copyright 1987-2003 Metrowerks

60 Assembler
Entry: StatusbarEnabled

Arguments: 1/0

Special: This entry is only considered at startup. Later load operations do
not use it any more.

Description Is currently the statusbar enabled state.
1: the statusbar is visible
0: the statusbar is hidden

Saved: Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.

Entry: ToolbarEnabled

Arguments: 1/0

Special: This entry is only considered at startup. Later load operations do
not use it any more.

Description Is currently the toolbar enabled state.
1: the toolbar is visible
0: the toolbar is hidden

Saved: Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.

Entry: WindowPos

Arguments: 10 integers, e.g. “0,1,-1,-1,-1,-1,390,107,1103,643”

Special: This entry is only considered at startup. Later load operations do
not use it any more.
Changes of this entry do not show the “*” in the title.

Description This numbers contain the position and the state of the window
(maximized,..) and other flags.

Saved: Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.
© Copyright 1987-2003 Metrowerks

Assembler 61
Entry: WindowFont

Arguments: size: == 0 -> generic size, < 0 -> font character height, > 0 font
cell height
weight: 400 = normal, 700 = bold (valid values are 0..1000)
italic: 0 == no, 1 == yes
font name: max. 32 characters.

Description Font attributes.

Saved: Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.

Example WindowFont=-16,500,0,Courier

Entry: TipFilePos

Arguments: any integer, e.g. 236

Description Actual position in tip of the day file. Used that different tips are
shown at different calls.

Saved: Always when saving a configuration file.

Entry: ShowTipOfDay

Arguments: 0/1

Description Should the Tip of the Day dialog box be shown at startup.
1: it should be shown
0: no, only when opened in the help menu

Saved: Always when saving a configuration file.

Entry: Options

Arguments: current option string, e.g.: -W2

Description The currently active option string. This entry can be very long.

Saved: Only with Options set in the File->Configuration Save Configura-
tion dialog box.
© Copyright 1987-2003 Metrowerks

62 Assembler
Entry: EditorType

Arguments: 0/1/2/3/4

Description This entry specifies which editor configuration is active.
0: global editor configuration (in the file mcutools.ini)
1: local editor configuration (the one in this file)
2: command line editor configuration, entry EditorCommandLine
3: DDE editor configuration, entries beginning with EditorDDE
4: CodeWarrior with COM. There are no additional entries.

For details see also Editor Setting dialog box.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog box.

Entry: EditorCommandLine

Arguments: command line, for IDF: “c:\metrowerks\prog\idf.exe %f -
g%l,%c”

Description Command line content to open a file. For details see also Editor
Setting dialog box.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog box.

Entry: EditorDDEClientName

Arguments: client commend, e.g. “[open(%f)]”

Description Name of the client for DDE editor configuration. For details see
also Editor Setting dialog box.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog box.

Entry: EditorDDETopicName

Arguments: topic name, e.g. “system”

Description Name of the topic for DDE editor configuration. For details see
also Editor Setting dialog box.
© Copyright 1987-2003 Metrowerks

Assembler 63
Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog box.

Entry: EditorDDEServiceName

Arguments: service name, e.g. “system”

Description Name of the service for DDE editor configuration. For details see
also Editor Setting dialog box.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog box.

Example

The following example shows a typical layout of the configuration file (usually
project.ini):

[Editor]
Editor_Name=IDF
Editor_Exe=c:\metrowerks\prog\idf.exe
Editor_Opts=%f -g%l,%c

[XXX_Assembler]
StatusbarEnabled=1
ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500,0,Courier
TipFilePos=0
ShowTipOfDay=1
Options=-w1
EditorType=3
RecentCommandLine0=fibo.asm -w2
RecentCommandLine1=fibo.asm
CurrentCommandLine=fibo.asm -w2
EditorDDEClientName=[open(%f)]
EditorDDETopicName=system
EditorDDEServiceName=msdev
EditorCommandLine=c:\metrowerks\prog\idf.exe %f -g%l,%c

Paths
Most environment variables contain path lists telling where to look for files. A path
© Copyright 1987-2003 Metrowerks

64 Assembler
list is a list of directory names separated by semicolons following the syntax below:

PathList = DirSpec {";" DirSpec}.
DirSpec = ["*"] DirectoryName.

Example

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;/usr/local/metrowerks/lib;/
home/me/my_project

If a directory name is preceded by an asterisk ("*"), the programs recursively
search that whole directory tree for a file, not just the given directory itself. The
directories are searched in the order they appear in the path list.

Example

LIBPATH=*C:\INSTALL\LIB

Note: Some DOS/UNIX environment variables (like GENPATH, LIBPATH, etc.)
are used. For further details refer to Environment Variable Details.

We strongly recommend working with the Shell and setting the environment by
means of a DEFAULT.ENV file in your project directory (This 'project dir.' can be
set in the Shell's 'Configure' dialog box). This way, you can have different projects
in different directories, each with its own environment

Note: When starting the assembler from an external editor, do not set the system
environment variable DEFAULTDIR. If you do so and this variable does not
contain the project directory given in the editor’s project configuration, files
might not be put where you expect them to be put!

Fore some environment variables a synonym also exists. Those synonyms may be
used for older releases of the assembler and will be removed in the future.

Line Continuation
It is possible to specify an environment variable in a environment file (default.env/
.hidefaults) over different lines using the line continuation character ‘\’:

Example

ASMOPTIONS=\
-W2 \
-WmsgNe=10

This is the same as

ASMOPTIONS=-W2 -WmsgNe=10
© Copyright 1987-2003 Metrowerks

Assembler 65
But this feature may be dangerous using it together with paths, e.g.

GENPATH=.\
TEXTFILE=.\txt

will result in

GENPATH=.TEXTFILE=.\txt

To avoid such problems, we recommend to use a semicolon’;’ at the end of a path if
there is a ‘\’ at the end:

GENPATH=.\;
TEXTFILE=.\txt

Environment Variable Details
The remainder of this section is devoted to describing each of the environment vari-
ables available for the assembler. The environment variables are listed in alphabeti-
cal order and each is divided into several sections.

Topic Description

Tools Lists tools which are using this variable.

Synonym Fore some environment variables a synonym also exists.
Those synonyms may be used for older releases of the assem-
bler and will be removed in the future. A synonym has lower
precedence than the environment variable.

Syntax Specifies the syntax of the option in a EBNF format.

Arguments Describes and lists optional and required arguments for the
variable.

Default Shows the default setting for the variable or none.

Description Provides a detailed description of the option and how to use
it.

Example Gives an example of usage, and effects of the variable where
possible. The examples shows an entry in the
default.env for PC or in the .hidefaults for
UNIX.

See also Names related sections.
© Copyright 1987-2003 Metrowerks

66 Assembler
ABSPATH

ABSPATH: Absolute file Path
Tools: Compiler, Assembler, Linker, Decoder, Debugger

Synonym: None

Syntax: "ABSPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Default: none.

Description This environment variable is only relevant when absolute files are
directly generated by the macro assembler instead of object files.
When this environment variable is defined, the assembler will
store the absolute files it produces in the first directory specified
there. If ABSPATH is not set, the generated absolute files will be
stored in the directory the source file was found.

Example ABSPATH=\sources\bin;..\..\headers;\usr\local\bin

See also none
© Copyright 1987-2003 Metrowerks

Assembler 67
ASMOPTIONS

ASMOPTIONS: Default Assembler Options
Tools: Assembler

Synonym: None

Syntax: "ASMOPTIONS=" {<option>}.

Arguments: <option>: Assembler command line option

Default: none.

Description If this environment variable is set, the assembler appends its con-
tents to its command line each time a file is assembled. It can be
used to globally specify certain options that should always be set,
so you don’t have to specify them each time a file is assembled.

Options enumerated there must be valid assembly options and are
separated by space characters.

Example ASMOPTIONS=-W2 -L

See also Assembler options
© Copyright 1987-2003 Metrowerks

68 Assembler
COPYRIGHT

COPYRIGHT: Copyright Entry in Object File
Tools: Compiler, Assembler, Linker, Librarian

Synonym: none.

Syntax: "COPYRIGHT=" <copyright>.

Arguments: <copyright>: copyright entry.

Default: none.

Description Each object file contains an entry for a copyright string. This
information may be retrieved from the object files using the
decoder.

Example COPYRIGHT=Copyright

See also Environment variable USERNAME

Environment variable INCLUDETIME
© Copyright 1987-2003 Metrowerks

Assembler 69
DEFAULTDIR

DEFAULTDIR: Default Current Directory
Tools: Compiler, Assembler, Linker, Decoder, Debugger, Librarian,

Maker

Synonym: none.

Syntax: "DEFAULTDIR=" <directory>.

Arguments: <directory>: Directory to be the default current directory.

Default: none.

Description With this environment variable the default directory for all tools
may be specified. All the tools indicated above will take the direc-
tory specified as their current directory instead the one defined by
the operating system or launching tool (e.g. editor).

Note: This is an environment variable on system level (global
environment variable) It cannot be specified in a default
environment file (DEFAULT.ENV/.hidefaults)

Example DEFAULTDIR=C:\INSTALL\PROJECT

See also Section The Current Directory

Section Global Initialization File (MCUTOOLS.INI)
© Copyright 1987-2003 Metrowerks

70 Assembler
ENVIRONMENT

ENVIRONMENT: Environment File
Specification

Tools: Compiler, Assembler, Linker, Decoder, Debugger, Librarian,
Maker

Synonym: HIENVIRONMENT

Syntax: "ENVIRONMENT=" <file>.

Arguments: <file>: file name with path specification, without spaces

Default: none.

Description This variable has to be specified on system level. Normally the
assembler looks in the current directory for a environment file
named default.env (.hidefaults on UNIX). Using ENVIRON-
MENT (e.g. set in the autoexec.bat (DOS) or .cshrc (UNIX)), a
different file name may be specified.

Note: This is an environment variable on system level (global
environment variable) It cannot be specified in a default
environment file (DEFAULT.ENV/.hidefaults).

Example ENVIRONMENT=\metrowerks\prog\global.env

See also none.
© Copyright 1987-2003 Metrowerks

Assembler 71
ERRORFILE

ERRORFILE: Error File Name Specification
Tools: Compiler, Assembler, Linker

Synonym: none.

Syntax: "ERRORFILE=" <file name>.

Arguments: <file name>: File name with possible format specifiers.

Default: EDOUT.

Description The environment variable ERRORFILE specifies the name for
the error file (used by the Compiler or assembler).

Possible format specifiers are:

'%n': Substitute with the file name, without the path.

'%p': Substitute with the path of the source file.

'%f': Substitute with the full file name, i.e. with the path and name
(the same as '%p%n').

In case of an illegal error file name, a notification box is shown.

Example

ERRORFILE=MyErrors.err

lists all errors into the file MyErrors.err in the current directory.

ERRORFILE=\tmp\errors

lists all errors into the file errors in the directory \tmp.

ERRORFILE=%f.err

lists all errors into a file with the same name as the source file, but
with extension .err, into the same directory as the source file, e.g.
if we compile a file \sources\test.c, an error list file
\sources\test.err will be generated.

ERRORFILE=\dir1\%n.err

for a source file test.c, an error list file \dir1\test.err will be
generated.
© Copyright 1987-2003 Metrowerks

72 Assembler
ERRORFILE=%p\errors.txt

for a source file \dir1\dir2\test.c, an error list file
\dir1\dir2\errors.txt will be generated.

If the environment variable ERRORFILE is not set, errors are
written to the default error file. The default error file name
depends on the way the assembler is started.

If a file name is provided on the assembler command line, the
errors are written to the file EDOUT in the project directory.

If no file name is provided on the assembler command line, the
errors are written to the file ERR.TXT in the project directory.

Example Another example shows the usage of this variable to support cor-
rect error feedback with the WinEdit Editor which looks for an
error file called EDOUT:

Installation directory: E:\INSTALL\PROG
Project sources: D:\SRC
Common Sources for projects: E:\CLIB

Entry in default.env (D:\SRC\DEFAULT.ENV):
ERRORFILE=E:\INSTALL\PROG\EDOUT

Entry in WINEDIT.INI (in Windows directory):
OUTPUT=E:\INSTALL\PROG\EDOUT

Note: Be careful to set this variable if the WinEdit Editor is use,
else the editor cannot find the EDOUT file

See also none.
© Copyright 1987-2003 Metrowerks

Assembler 73
GENPATH

GENPATH: Search Path for Input File
Tools: Compiler, Assembler, Linker, Decoder, Debugger

Synonym: HIPATH

Syntax: "GENPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Default: none.

Description The macro assembler will look for the sources and included files
first in the project directory, then in the directories listed in the
environment variable GENPATH

Note: If a directory specification in this environment variables
starts with an asterisk (“*”), the whole directory tree is
searched recursive depth first, i.e. all subdirectories and
their subdirectories and so on are searched, too. Within
one level in the tree, search order of the subdirectories is
indeterminate (these is not valid for Win32).

Example GENPATH=\sources\include;..\..\headers;\usr\local\lib

See also none.
© Copyright 1987-2003 Metrowerks

74 Assembler
INCLUDETIME

INCLUDETIME: Creation Time in Object File
Tools: Compiler, Assembler, Linker, Librarian

Synonym: none.

Syntax: "INCLUDETIME=" ("ON" | "OFF").

Arguments: "ON": Include time information into object file.

"OFF": Do not include time information into object file.

Default: "ON"

Description Normally each object file created contains a time stamp indicating
the creation time and data as strings. So whenever a new file is
created by one of the tools, the new file gets a new time stamp
entry.

This behavior may be undesired if for SQA reasons a binary file
compare has to be performed. Even if the information in two
object files is the same, the files do not match exactly because the
time stamps are not the same. To avoid such problems this vari-
able may be set to OFF. In this case the time stamp strings in the
object file for date and time are “none” in the object file.

The time stamp may be retrieved from the object files using the
decoder.

Example INCLUDETIME=OFF

See also Environment variable COPYRIGHT

Environment variable USERNAME
© Copyright 1987-2003 Metrowerks

Assembler 75
OBJPATH

OBJPATH: Object File Path
Tools: Compiler, Assembler, Linker, Decoder

Synonym: None

Syntax: "OBJPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Default: none.

Description This environment variable is only relevant when object files are
generated by the macro assembler. When this environment vari-
able is defined, the assembler will store the object files it produces
in the first directory specified there. If OBJPATH is not set, the
generated object files will be stored in the directory the source file
was found.

Example OBJPATH=\sources\bin;..\..\headers;\usr\local\bin

See also none.
© Copyright 1987-2003 Metrowerks

76 Assembler
SRECORD

SRECORD: S Record Type
Tools: Assembler, Linker, Burner

Synonym: None

Syntax: "SRECORD=" <RecordType>.

Arguments: <Record Type>: Force the type for the Motorola S record which
must be generated. This parameter may take the value ‘S1’, ‘S2’
or ‘S3’.

Default: none.

Description This environment variable is only relevant when absolute files are
directly generated by the macro assembler instead of object files.
When this environment variable is defined, the assembler will
generate a Motorola S file containing records from the specified
type (S1 records when S1 is specified, S2 records when S2 is
specified and S3 records when S3 is specified).

Note: If the environment variable SRECORD is set, it is the user
responsibility to specify the appropriate S record type. If
you specifies S1 while your code is loaded above 0xFFFF,
the Motorola S file generated will not be correct, because
the addresses will all be truncated to 2 bytes values.

When this variable is not set, the type of S record generated will
depend on the size if the address, which must be loaded there. If
the address can be coded on 2 bytes, a S1 record is generated. If
the address is coded on 3 bytes, a S2 record is generated. Other-
wise a S3 record is generated.

Example SRECORD=S2

See also none
© Copyright 1987-2003 Metrowerks

Assembler 77
TEXTPATH

TEXTPATH: Text File Path
Tools: Compiler, Assembler, Linker, Decoder

Synonym: none.

Syntax: "TEXTPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Default: none.

Description When this environment variable is defined, the assembler will
store the listing files it produces in the first directory specified
there. If TEXTPATH is not set, the generated listing files will be
stored in the directory the source file was found.

Example TEXTPATH=\sources\txt;..\..\headers;\usr\local\txt

See also none.
© Copyright 1987-2003 Metrowerks

78 Assembler
TMP

TMP: Temporary directory
Tools: Compiler, Assembler, Linker, Debugger, Librarian

Synonym: none.

Syntax: "TMP=" <directory>.

Arguments: <directory>: Directory to be used for temporary files.

Default: none.

Description If a temporary file has to be created, normally the ANSI function
tmpnam() is used. This library function stores the temporary files
created in the directory specified by this environment variable. If
the variable is empty or does not exist, the current directory is
used. Check this variable if you get an error message “Cannot cre-
ate temporary file”.

Note: This is an environment variable on system level (global
environment variable) It CANNOT be specified in a
default environment file (DEFAULT.ENV/.hidefaults).

Example TMP=C:\TEMP

See also Section The Current Directory
© Copyright 1987-2003 Metrowerks

Assembler 79
USERNAME

USERNAME: User Name in Object File
Tools: Compiler, Assembler, Linker, Librarian

Synonym: none.

Syntax: "USERNAME=" <user>.

Arguments: <user>: Name of user.

Default: none.

Description Each object file contains an entry identifying the user who created
the object file. This information may be retrieved from the object
files using the decoder.

Example USERNAME=PowerUser

See also Environment variable COPYRIGHT

Environment variable INCLUDETIME
© Copyright 1987-2003 Metrowerks

80 Assembler
© Copyright 1987-2003 Metrowerks

Assembler 81
Files

Input Files

Source Files

The macro assembler takes any file as input, it does not require the file name to
have a special extension. However, we suggest that all your source file names have
extension .asm and all included files extension .inc. Source files will be
searched first in the project directory and then in the directories enumerated in
GENPATH .

Include File

The search for include files is governed by the environment variable GENPATH.
Include files are searched for first in the project directory, then in the directories
given in the environment variable GENPATH. The project directory is set via the
Shell, the Program Manager or the environment variable DEFAULTDIR.

Output Files

Object Files

After successful assembling session, the Macro Assembler generates an object file
containing the target code as well as some debugging information. This file is writ-
ten to the directory given in the environment variable OBJPATH. If that variable
contains more than one path, the object file is written in the first directory given; if
this variable is not set at all, the object file is written in the directory the source file
was found. Object files always get the extension .o.

Absolute Files

When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an absolute file instead of an object
file. This file is written to the directory given in the environment variable ABS-
PATH. If that variable contains more than one path, the absolute file is written in the
first directory given; if this variable is not set at all, the absolute file is written in the
© Copyright 1987-2003 Metrowerks

82 Assembler
directory the source file was found. Absolute files always get the extension .abs.

Motorola S Files

When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an ELF absolute file instead of an
object file. In that case a Motorola S record file is generated at the same time. This
file can be burnt into an EPROM. It contains information stored in all the
READ_ONLY sections in the application. The extension for the generated Motor-
ola S record file depends on the setting from the variable SRECORD.

 • If SRECORD = S1, the Motorola S record file gets the extension .s1.

 • If SRECORD = S2, the Motorola S record file gets the extension .s2.

 • If SRECORD = S3, the Motorola S record file gets the extension .s3.

 • If SRECORD is not set, the Motorola S record file gets the extension .sx.

This file is written to the directory given in the environment variable ABSPATH. If
that variable contains more than one path, the S record file is written in the first
directory given; if this variable is not set at all, the S record file is written in the
directory the source file was found.

Listing Files

After successful assembling session, the Macro Assembler generates a listing file
containing each assembly instruction with their associated hexadecimal code. This
file is always generated, when the option -L is activated (even when the macro
assembler generates directly an absolute file). This file is written to the directory
given in the environment variable TEXTPATH. If that variable contains more than
one path, the listing file is written in the first directory given; if this variable is not
set at all, the listing file is written in the directory the source file was found. Listing
files always get the extension .lst. The format of the listing file is described in
the Assembler Listing File chapter. This file is only generated when the option -L is
activated.

Debug Listing Files

After successful assembling session, the Macro Assembler generates a debug listing
file, which will be used to debug the application. This file is always generated, even
when the macro assembler generates directly an absolute file. The debug listing file
is a duplicate from the source, where all the macros are expanded and the include
files merged. This file is written to the directory given in the environment variable
© Copyright 1987-2003 Metrowerks

Assembler 83
OBJPATH. If that variable contains more than one path, the debug listing file is
written in the first directory given; if this variable is not set at all, the debug listing
file is written in the directory the source file was found. Debug listing files always
get the extension .dbg.

Error Listing File

If the Macro Assembler detects any errors, it does not create an object file but an
error listing file. This file is generated in the directory the source file was found
(also see Environment, Environment Variable ERRORFILE).

If the assembler’s window is open, it displays the full path of all include files read.
After successful assembling the number of code bytes generated is displayed, too.
In case of error, the position and file name where the error occurs is displayed in the
assembler window.

If the assembler is started from the IDF (with '%f' given on the command line) or
Codewright (with '%b%e' given on the command line), this error file is not pro-
duced. Instead it writes the error messages in a special format in a file called
EDOUT using the Microsoft format by default. Use WinEdit’s Next Error or Code-
Wright’s Find Next Error command to see both error positions and the error mes-
sages.

Interactive Mode (Assembler window open)

If ERRORFILE is set, the assembler creates a message file named as specified in
this environment variable.

If ERRORFILE is not set, a default file named ERR.TXT is generated in the current
directory.

Batch Mode (Assembler window not open)

If ERRORFILE is set, the assembler creates a message file named as specified in
this environment variable.

If ERRORFILE is not set, a default file named EDOUT is generated in the current
directory.
© Copyright 1987-2003 Metrowerks

84 Assembler
Assembler

.inc

ERRORFILE

ERR.TXT.o

.asm

.lst
.dbg

1. current dir
2. GENPATH

1. current dir
2. GENPATH

1. TEXTPATH
2. Source file
 path

1. OBJPATH
2. Source file
 path

or
EDOUT

.abs 1. ABSPATH
2. Source file
 path
© Copyright 1987-2003 Metrowerks

Assembler 85
Assembler Options
The assembler offers a number of Assembler options that you can use to control the
assembler’s operation. Options are composed of a minus/dash (‘-’) followed by one
or more letters or digits. Anything not starting with a dash/minus is supposed to be
the name of a source file to be assembled. Assembler options may be specified on
the command line or in the ASMOPTIONS environment variable. Typically, each
Assembler option is specified only once per assembling session.

Command line options are not case sensitive, e.g. "–Li" is the same as "–li". It is
possible to coalescing options in the same group, i.e. one might also write "–Lci"
instead of "–Lc –Li". However such a usage is not recommended as it make the
command line less readable and it does also create the danger of name conflicts. For
example "–Li –Lc" is not the same as "–Lic" because this is recognized as a sepa-
rate, independent option on its own.

Note: It is not possible to coalesce options in different groups, e.g. "–Lc –W1"
cannot be abbreviated by the terms "–LC1" or "–LCW1".

Assembler options are grouped by:
HOST, OUTPUT, INPUT, TARGET and VARIOUS.

ASMOPTIONS If this environment variable is set, the assembler
appends its contents to its command line each time a
file is assembled. It can be used to globally specify
certain options that should always be set, so you
don’t have to specify them each time a file is assem-
bled.

Group Description

HOST Lists options related to the host.

OUTPUT Lists options related to the output files generation (which kind
of file should be generated).

INPUT Lists options related to the input files.

CODE Lists options related to code generation (memory models, ...).

MESSAGES Lists options controlling the generation of error messages.

VARIOUS Lists various options.
© Copyright 1987-2003 Metrowerks

86 Assembler
The group corresponds to the property sheets of the graphical option settings.

Each option has also a scope:

The options available are arranged into different groups, and a sheet is available for
each of these groups. The content of the list box depends on the selected sheets.

Assembler Option Details
The remainder of this section is devoted to describing each of the assembler options
available for the assembler. The options are listed in alphabetical order and each is
divided into several sections.

Scope Description

Application The option has to be set for all files (Assembly Units) of an
application. A typical example is an option to set the memory
model. Mixing object files will have unpredictable results.

Assembly Unit This option can be set for each assembling unit for an appli-
cation differently. Mixing objects in an application is possible.

None The option scope is not related to a specific code part. A typi-
cal example are options for the message management.

Topic Description

Group HOST, OUTPUT, INPUT, CODE, LANGUAGE, MESSAGE
or VARIOUS.

Scope Application, Assembly Unit, Function or None.

Syntax Specifies the syntax of the option in a EBNF format.

Arguments Describes and lists optional and required arguments for the
option.

Default Shows the default setting for the option.

Description Provides a detailed description of the option and how to use
it.
© Copyright 1987-2003 Metrowerks

Assembler 87
Using Special Modifiers

With some options, it is possible to use special modifiers. However, some modifiers
may not make sense for all options. This section describes those modifiers.

The following modifiers are supported:

Examples:

For your examples it is assumed that the actual file name (base file name for the
modifiers) is:

c:\Metrowerks\my demo\TheWholeThing.myExt

Example Gives an example of usage, and effects of the option where
possible. Assembler settings, source code and/or Linker PRM
files are displayed where applicable. The examples shows an
entry in the default.env for PC or in the .hide-
faults for UNIX.

See also Names related options.

Modifier Description

%p Path including file separator

%N File name in strict 8.3 format

%n File name without extension

%E Extension in strict 8.3 format

%e Extension

%f Path + file name without extension

%” A double quote (“) if the file name, the path or the extension
contains a space

%’ A single quote (‘) if the file name, the path or the extension
contains a space

%(ENV) Replaces it with the contents of an environment variable

%% Generates a single ‘%’

Topic Description
© Copyright 1987-2003 Metrowerks

88 Assembler
%p gives the path only with a file separator:

c:\Metrowerks\my demo\

%N results in the file name in 8.3 format, that is the name with only 8 characters:

TheWhole

%n returns just the file name without extension:

TheWholeThing

%E gives the extension in 8.3 format, that is the extension with only 3 characters:

myE

%e is used for the whole extension:

myExt

%f gives the path plus the file name:

c:\Metrowerks\my demo\TheWholeThing

Because the path contains a space, using %” or %’ is recommended: Thus %”%f%”
gives:

“c:\Metrowerks\my demo\TheWholeThing”

where %’%f%’ gives:

‘c:\Metrowerks\my demo\TheWholeThing’

Using %(envVariable) an environment variable may be used. A file separator fol-
lowing after % (envVariable) is ignored if the environment variable is empty or
does not exist. In other words, the $(TEXTPATH)\myfile.txt is replaced with

c:\Metrowerks\txt\myfile.txt

if TEXTPATH is set to

TEXTPATH=c:\Metrowerks\txt

But is set to

myfile.txt

if TEXTPATH is does not exist or is empty.

A %% may be used to print a percent sign.The %e%% gives:

myExt%
© Copyright 1987-2003 Metrowerks

Assembler 89
List of all Options
-C=SAvocet Semi Avocet Compatibility
-Ci Switch Case Sensitivity on Label Names OFF
-Compat Compatibility Modes
-CPU CPU Derivative
-D Define Label
-Env Set Environment Variable
-F Output File Format Specification
-H Short Help
-I Include File Path
-L Generate a Listing File
-LasmC Configure the Listing File
-Lc No Macro Call in Listing File
-Ld No Macro Definition in Listing File
-Le No Macro Expansion in Listing File
-Li No Included File in Listing File
-Lic License Information
-LicA License Information about every Feature in Directory
-MacroNest Configure Maximum Macro Nesting
-M Memory Model
-MCUasm Switch Compatibility with MCUasm On
-N Display Notify Box
-NoBeep No Beep in Case of an Error
-NoDebugInfo No debug info for ELF/Dwarf files
-NoEnv Do not use Environment
-ObjN Object File Name Specification
-Struct Support for Structured Types
-V Prints Assembler Version Number
-View Application Standard Occurrence
-W1 No Information Messages
-W2 No Information and Warning Messages
-WErrFile Create “err.log” Error File
-WMsg8x3 Cut File Names in Microsoft Format to 8.3
-WmsgFb Set Message File Format for Batch Mode
-WmsgFi Set Message File Format for Interactive Mode
-WmsgFob Message Format for Batch Mode
-WmsgFoi Message Format for Interactive Mode
-WmsgFonf Message Format for no File Information
-WmsgFonp Message Format for no Position Information
© Copyright 1987-2003 Metrowerks

90 Assembler
-WmsgNe Number of Error Messages
-WmsgNi Number of Information Messages
-WmsgNu Disable User Messages
-WmsgNw Number of Warning Messages
-WmsgSd Setting a Message to Disable
-WmsgSe Setting a Message to Error
-WmsgSi Setting a Message to Information
-WmsgSw Setting a Message to Warning
-WOutFile Create Error Listing File
-WStdout Write to Standard Output
© Copyright 1987-2003 Metrowerks

Assembler 91
-C=SAvocet

-C=SAvocet: Switch Semi-Compatibility with
Avocet Assembler ON

Group: VARIOUS

Scope: Assembly Unit

Syntax: "-C=SAvocet".

Arguments: none

Default: none.

Description: This switches ON compatibility mode with the Avocet Assembler.
Additional features supported, when this option is activated are
enumerated in section “Semi-Avocet Compatibility”.

Example: ASMOPTIONS=-C=SAvocet

See also: Chapter “Semi-Avocet Compatibility”.
© Copyright 1987-2003 Metrowerks

92 Assembler
-Ci

-Ci: Switch Case Sensitivity on Label Names
OFF

Group: INPUT

Scope: Assembly Unit

Syntax: "-Ci".

Arguments: none

Default: none.

Description This switches case sensitivity on label names off. When this
option is activated, the assembler do not care about case sensitiv-
ity for label name.

If the assembler generates object files and not directly absolute
files (Option -FA2), then the case of exported/imported labels
must still match. Or the option -Ci should be specified in the
linker as well.

Example When case sensitivity on label names is switched off, the assem-
bler will not generate any error message for following code:

 ORG $200
entry: NOP
 BRA Entry

The instruction ‘BRA Entry’ will branch on the label ‘entry’.
Per default, the assembler is case sensitive. For the assembler the
labels ‘Entry’ and ‘entry’ are two distinct labels.

See also Option -F
© Copyright 1987-2003 Metrowerks

Assembler 93
-CMacAngBrack

-CMacAngBrack: Angle brackets for Macro
Arguments Grouping

Group: LANGUAGE

Scope: Application

Syntax: "-CMacAngBrack" ("ON" | "OFF").

Arguments: "ON" or "OFF".

Default: none.

Description: This option control whether the < > syntax for macro invocation
argument grouping is available. When it is disabled, the assem-
bler does not recognize the special meaning for < in the macro
invocation context. There are cases where the angle brackets are
ambiguous. New code should use the [? ?] syntax instead.

See also: Macro argument grouping

Macros chapter

Option -CMacBrackets
© Copyright 1987-2003 Metrowerks

94 Assembler
-CMacBrackets

-CMacBrackets: Square brackets for Macro
Arguments Grouping

Group: LANGUAGE

Scope: Application

Syntax: "-CMacBrackets" ("ON" | "OFF").

Arguments: "ON" or "OFF".

Default: "ON".

Description: This option control whether the [? ?] syntax for macro invocation
argument grouping is available. When it is disabled, the assem-
bler does not recognize the special meaning for [? in the macro
invocation context.

See also: Macro argument grouping

Macros chapter

Option -CMacAngBrack
© Copyright 1987-2003 Metrowerks

Assembler 95
-Compat

-Compat: Compatibility Modes
Group: LANGUAGE

Scope: Application

Syntax: "-Compat" ["=" {"!" | "=" | "c" | "s" | "f" | "$" | "a" | "b"}.

Arguments: see below.

Default: none.

Description: This option control some compatibility enhancements of the
assembler. The goal is not to provide 100% compatibility with
any other assembler, but to make it possible to reuse as much as
possible. The various suboptions do control different parts of the
assembly:

"=": Operator != means equal
The assembler takes the != operator by default as not equal, as it
is in the C language. For compatibility, this behavior can be
changed to equal with this option. Because the danger of this
option for existing code, a message is issued for every != which is
treated as equal.

"!": Support additional ! operators
The following additional operators are defined when this option is
present:
"!^": exponentiation
"!m": modulo
"!@": signed greater or equal
"!g": signed greater
"!%": signed less or equal
"!t": signed less than
"!$": unsigned greater or equal
"!S": unsigned greater
"!&": unsigned less or equal
"!l": unsigned less
"!n": one complement
"!w": low operator
"!h": high operator
© Copyright 1987-2003 Metrowerks

96 Assembler
Note that the following ! operators are defined by default:
"!.": binary and
"!x": Exclusive or
"!+": binary or

"c": Alternate comment rules
With this suboption, comments do implicitly start when a space is
present after the argument list. A special character is not neces-
sary. Be careful with spaces when this option is given as part of
the intended arguments may be taken as comment. However, to
avoid accidental comments, the assembler does issue a warning if
such a comment does not start with a "*" or a ";".

Example: Comments starting with a *

 NOP * With -Compat=c, comments
 * can start with a *

Example: Implicit comment start after a space
With -Compat=c, "+ 1" is taken as comment. A warning is issued
because the "comment" does not start with a ";" or a "*".

 DC.B 1 + 1 , 1
 DC.B 1+1,1

With -Compat=C, this code generates a warning and the 3 bytes
1,2,1. Without it, this code generates the 4 bytes 2,1,2,1.

"s": Symbol prefixes
With this suboption, so compatibility prefixes for symbols are
supported. With this option, the assembler does accept “pgz:” and
“byte:” prefixed for symbols in XDEF’s and XREF’s. They corre-
spond to a XREF.B or XDEF.B with the same symbol without the
prefix.

"f": Ignore FF character at line start
With this suboption, an otherwise a illegal character recognized
from feed character is ignored.

"$": Support $ character in symbols
With this suboption, the assembler supports to start identifiers
with a $ sign.

"a": Add some additional directives
With this suboption, some additional directives are added for an
enhanced compatibility.
© Copyright 1987-2003 Metrowerks

Assembler 97
The assembler does actually support a SECT directive as alias of
the usual SECTION directive. The SECT directive takes the sec-
tion name as first argument.

"b": support FOR directive
With this suboption, the assembler does support a FOR directive
to generate repeated patterns more easily without having to use
recursive macros.

See also: FOR directive
© Copyright 1987-2003 Metrowerks

98 Assembler
-CPUHC12, -CPUStar12

-CPU: Derivative
Group: CODE

Scope: Application

Syntax: "-CPU" {“HC12”|”Star12”}.

Arguments: none

Default: none.

Description: This option controls whether code for a HC12 or for a Star12
should be produced. Because the instruction set of the two CPUs
is very similar, this option does only affect PCR relative MOVB/
MOVW instructions. In HC12 or default mode, the assembler
does adapt the offsets according to the CPU12 Reference Manual,
paragraph 3.9.1 Move Instructions. In Star12 mode it does not.

Example: Consider the following code:

One: DC 1
CopyOne: MOVB One, PCR, $1000

By default, or with -CPUHC12, the assembler generates:

000000 01 One: DC 1
000001 180D DC10 CopyOne: MOVB One, PCR, $1000
003005 00

With the option -CPUStar12, the assembler generates:

003000 01 One: DC 1
003001 180D DA10 CopyOne: MOVB One, PCR, $1000
003005 00

The difference is that for the HC12, the assembler adapts the off-
set to One according to the MOVB IDX/EXT case by -2, so the
resulting code is $DC for the IDX encoding. For Star12, this is
not done, and the IDX encodes as $DA.

Note: PC relative MOVB/MOVW instructions (e.g. “MOVB
1,PC,2,PC”) are not adapted. Only PCR relative move instruc-
tions (MOVB 1,PCR,2,PCR) are adapted.

See also: CPU12 Reference Manual, paragraph 3.9.1 Move Instructions
© Copyright 1987-2003 Metrowerks

Assembler 99
-D

-D: Define Label
Group: INPUT

Scope: Assembly Unit

Syntax: "-D" <LabelName> ["=" <Value>].

Arguments: <LabelName>: Name of label.
<Value>: Value for label. 0 if not present.

Default: 0 for the Value.

Description This option behaves as if a “Label: EQU Value” would be at the
start of the main source file. When no explicit value is given, 0 is
used as default.

This option can be used to build different versions with one com-
mon source file.

Example Conditional inclusion of a copyright notice:

Source file:

YearAsString: MACRO
 DC.B $30+(\1 /1000)%10
 DC.B $30+(\1 / 100)%10
 DC.B $30+(\1 / 10)%10
 DC.B $30+(\1 / 1)%10
 ENDM

 ifdef ADD_COPYRIGHT
 ORG $1000
 DC.B "Copyright by "
 DC.B "John Doe"
 ifdef YEAR
 DC.B " 1999-"
 YearAsString YEAR
 endif
 DC.B 0
 endif

When assembled with the options "-dADD_COPYRIGHT -
dYEAR=2001", the following listing is generated:

 1 1 YearAsString: MACRO
© Copyright 1987-2003 Metrowerks

100 Assembler
 2 2 DC.B $30+(\1 /1000)%10
 3 3 DC.B $30+(\1 / 100)%10
 4 4 DC.B $30+(\1 / 10)%10
 5 5 DC.B $30+(\1 / 1)%10
 6 6 ENDM
 7 7
 8 8 0000 0001 ifdef ADD_COPYRIGHT
 9 9 ORG $1000
10 10 a001000 436F 7079 DC.B "Copyright by "
 001004 7269 6768
 001008 7420 6279
 00100C 20
11 11 a00100D 4A6F 686E DC.B "John Doe"
 001011 2044 6F65
12 12 0000 0001 ifdef YEAR
13 13 a001015 2031 3939 DC.B " 1999-"
 001019 392D
14 14 YearAsString YEAR
15 2m a00101B 32 + DC.B $30+(YEAR /1000)%10
16 3m a00101C 30 + DC.B $30+(YEAR / 100)%10
17 4m a00101D 30 + DC.B $30+(YEAR / 10)%10
18 5m a00101E 31 + DC.B $30+(YEAR / 1)%10
19 15 endif
20 16 a00101F 00 DC.B 0
21 17 endif

See also none.
© Copyright 1987-2003 Metrowerks

Assembler 101
-Env

-Env: Set Environment Variable
Group: HOST

Scope: Assembly Unit

Syntax: "-Env" <EnvironmentVariable> "=" <VariableSetting>.

Arguments: <EnvironmentVariable>: Environment variable to be set
<VariableSetting>: Setting of the environment variable

Default: none.

Description This option sets an environment variable.

Example ASMOPTIONS=-EnvOBJPATH=\sources\obj

This is the same as

OBJPATH=\sources\obj

in the default.env.

See also Environment Variable Details
© Copyright 1987-2003 Metrowerks

102 Assembler
-F (-Fh, -F2o, -FA2o, -F2, -FA2)

-F: Output File Format
Group: OUTPUT

Scope: Application

Syntax: "-F" ("h" | "2o"| "A2o" | "2"| "A2").

Arguments: "h": HIWARE object file format, this is the default

"2o": Compatible ELF/DWARF 2.0 object file format

"A2o": Compatible ELF/DWARF 2.0 absolute file format

"2": ELF/DWARF 2.0 object file format

"A2": ELF/DWARF 2.0 absolute file format

Default: -F2

Description: Define the format for the output file generated by the assembler.

With the option -Fh set, the assembler uses an object file format
which is proprietary of HIWARE.

With the options -F2 set, the assembler produces an ELF/DWARF
object file. This object file formats may also be supported by
other Compiler or Assembler vendors.

With the options -FA2 set, the assembler produces an ELF/
DWARF absolute file. This file formats may also be supported by
other Compiler or Assembler vendors.

Note that the ELF/DWARF 2.0 files format has been updated in
the current version of the assembler. If you are using HI-WAVE
version 5.2 (or an earliest version), -F2o or -FA2o must be used to
generate ELF/DWARF 2.0 object files which can be loaded in the
debugger.

Example: ASMOPTIONS=-F2

See also: none.
© Copyright 1987-2003 Metrowerks

Assembler 103
-H

-H: Short Help
Group: VARIOUS

Scope: None

Syntax: "-H".

Arguments: none.

Default: none.

Description The -H option causes the assembler to display a short list (i.e. help
list) of available options within the assembler window. Options
are grouped into HOST, OUTPUT, INPUT, MESSAGE, CODE
and VARIOUS.
No other option or source files should be specified when the -H
option is invoked.

Example You find below a portion of the list produced by the option -H:

...
MESSAGE:
-N Show notification box in case of errors
-NoBeep No beep in case of an error
-W1 Don't print INFORMATION messages
-W2 Don't print INFORMATION or WARNING messages
-WErrFile Create "err.log" Error File
...

See also none.
© Copyright 1987-2003 Metrowerks

104 Assembler
-I

-I: Include File Path
Group: INPUT

Scope: None

Syntax: "-I"<path>.

Arguments: <path>: File path to be used for includes.

Default: none.

Description With the option -I it is possible to specify a file path used for
include files.

Example -Id:\mySources\include

See also none.
© Copyright 1987-2003 Metrowerks

Assembler 105
-L

-L: Generate a Listing File
Group: OUTPUT

Scope: Assembly unit

Syntax: "-L" ["=" <dest>]

Arguments: <dest>: the name of the listing file to be generated.
It may contain special modifiers (see Using Special Modifiers).

Default: no listing file generated.

Description Switches on the generation of the listing file. If dest is not speci-
fied, the listing file will have the same name as the source file, but
with extension .lst. The listing file contains macro definition,
invocation and expansion lines as well as expanded include files.

Example: ASMOPTIONS=-L

In the following example of assembly code, the macro cpChar
accept two parameters. The macro copies the value of the first
parameter to the second one.

When option -L is specified, following portion of code

 XDEF Start
MyData: SECTION
char1: DS.B 1
char2: DS.B 1
 INCLUDE "macro.inc"
CodeSec: SECTION
Start:
 cpChar char1, char2
 NOP

With the following include file macro.inc

cpChar: MACRO
 LDAA \1
 STAA \2
 ENDM

generates the following output in the assembly listing file:

 Abs. Rel. Loc Obj. code Source line
© Copyright 1987-2003 Metrowerks

106 Assembler
 ---- ---- ------ --------- -----------
 1 1 XDEF Start
 2 2 MyData: SECTION
 3 3 000000 char1: DS.B 1
 4 4 000001 char2: DS.B 1
 5 5 INCLUDE "macro.inc"
 6 1i cpChar: MACRO
 7 2i LDAA \1
 8 3i STAA \2
 9 4i ENDM
 10 6 CodeSec: SECTION
 11 7 Start:
 12 8 cpChar char1, char2
 13 2m 000000 B6 xxxx + LDAA char1
 14 3m 000003 7A xxxx + STAA char2
 15 9 000006 A7 NOP

Content of included files, as well as macro definition, invocation
and expansion is stored in the listing file.

For a detailed description of the listing file, see the Listing File
chapter.

See also Option -Lasmc
Option -Lc
Option -Ld
Option -Le
Option -Li
© Copyright 1987-2003 Metrowerks

Assembler 107
-Lasmc

-Lasmc: Configure Listing File
Group: OUTPUT

Scope: Assembly unit

Syntax: "-Lasmc" "=" [{"s" | "r" | "m" | "l" | "k" | "i" | "c" | "a"}.

Arguments: s: Do not write the source line
r: Do not write the relative line (Rel.)
m: Do not write the macro mark
l: Do not write the address (Loc)
k: Do not write the location kind
i: Do not write the include mark column
c: Do not write the object code
a: Do not write the absolute line (Abs.)

Default: Write all columns.

Description The listing file shows by default a lot of information. With this
option, the output can be reduced to columns which are of inter-
rest. This option configures which columns are printed in a listing
file. To configure which lines to print, see the options Option -Lc
Option -Ld, Option -Le and Option -Li.

Example: For the following file:

 DC.B "Hello World"
 DC.B 0

The assembler generates by default this listing file:

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 000000 4865 6C6C DC.B "Hello World"
 000004 6F20 576F
 000008 726C 64
 2 2 00000B 00 DC.B 0

In order to get this output without the source file line numbers and
other irrelevant parts for this simple DC.B example, the following
option is added "-Lasmc=ramki", this generates:
© Copyright 1987-2003 Metrowerks

108 Assembler
Loc Obj. code Source line
------ --------- -----------
000000 4865 6C6C DC.B "Hello World"
000004 6F20 576F
000008 726C 64
00000B 00 DC.B 0

For a detailed description of the listing file, see the Listing File
chapter.

See also Option -L
Option -Lc
Option -Ld
Option -Le
Option -Li
Listing File chapter
© Copyright 1987-2003 Metrowerks

Assembler 109
-Lc

-Lc: No Macro Call in Listing File
Group: OUTPUT

Scope: Assembly unit

Syntax: "-Lc"

Arguments: none.

Default: none.

Description Switches on the generation of the listing file, but macro invoca-
tions are not present in the listing file. The listing file contains
macro definition and expansion lines as well as expanded include
files.

Example: ASMOPTIONS=-Lc

In the following example of assembly code, the macro cpChar
accept two parameters. The macro copies the value of the first
parameter to the second one.

When option -Lc is specified, following portion of code

 XDEF Start
MyData: SECTION
char1: DS.B 1
char2: DS.B 1
 INCLUDE "macro.inc"
CodeSec: SECTION
Start:
 cpChar char1, char2
 NOP

With the include file macro.inc:

cpChar: MACRO
 LDAA \1
 STAA \2
 ENDM

generates the following output in the assembly listing file:

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 XDEF Start
© Copyright 1987-2003 Metrowerks

110 Assembler
 2 2 MyData: SECTION
 3 3 000000 char1: DS.B 1
 4 4 000001 char2: DS.B 1
 5 5 INCLUDE "macro.inc"
 6 1i cpChar: MACRO
 7 2i LDAA \1
 8 3i STAA \2
 9 4i ENDM
 10 6 CodeSec: SECTION
 11 7 Start:
 13 2m 000000 B6 xxxx + LDAA char1
 14 3m 000003 7A xxxx + STAA char2
 15 9 000006 A7 NOP

Content of included files, as well as macro definition and expan-
sion is stored in the listing file.

The source line containing the invocation of the macro is not
present in the listing file.

For a detailed description of the listing file, see the Listing File
chapter.

See also Option -L
Option -Ld
Option -Le
Option -Li
© Copyright 1987-2003 Metrowerks

Assembler 111
-Ld

-Ld: No Macro Definition in Listing File
Group: OUTPUT

Scope: Assembly unit

Syntax: "-Ld"

Arguments: none.

Default: none.

Description Switches on the generation of the listing file, but macro defini-
tions are not present in the listing file. The listing file contains
macro invocation and expansion lines as well as expanded include
files.

Example: ASMOPTIONS=-Ld

In the following example of assembly code, the macro cpChar
accept two parameters. The macro copies the value of the first
parameter to the second one.

When option -Ld is specified, following portion of code

 XDEF Start
MyData: SECTION
char1: DS.B 1
char2: DS.B 1
 INCLUDE "macro.inc"
CodeSec: SECTION
Start:
 cpChar char1, char2
 NOP

With the include file macro.inc:

cpChar: MACRO
 LDAA \1
 STAA \2
 ENDM

generates the following output in the assembly listing file:

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
© Copyright 1987-2003 Metrowerks

112 Assembler
 1 1 XDEF Start
 2 2 MyData: SECTION
 3 3 000000 char1: DS.B 1
 4 4 000001 char2: DS.B 1
 5 5 INCLUDE "macro.inc"
 6 1i cpChar: MACRO
 10 6 CodeSec: SECTION
 11 7 Start:
 12 8 cpChar char1, char2
 13 2m 000000 B6 xxxx + LDAA char1
 14 3m 000003 7A xxxx + STAA char2
 15 9 000006 A7 NOP

Content of included files, as well as macro invocation and expan-
sion is stored in the listing file.

The source code from the macro definition is not present in the
listing file.

For a detailed description of the listing file, see the Listing File
chapter.

See also Option -L
Option -Lc
Option -Le
Option -Li
© Copyright 1987-2003 Metrowerks

Assembler 113
-Le

-Le: No Macro Expansion in Listing File
Group: OUTPUT

Scope: Assembly unit

Syntax: "-Le"

Arguments: none.

Default: none.

Description Switches on the generation of the listing file, but macro expan-
sions are not present in the listing file. The listing file contains
macro definition and invocation lines as well as expanded include
files.

Example: ASMOPTIONS=-Le

In the following example of assembly code, the macro cpChar
accept two parameters. The macro copies the value of the first
parameter to the second one.

When option -Le is specified, following portion of code

 XDEF Start
MyData: SECTION
char1: DS.B 1
char2: DS.B 1
 INCLUDE "macro.inc"
CodeSec: SECTION
Start:
 cpChar char1, char2
 NOP

With the include file macro.inc:

cpChar: MACRO
 LDAA \1
 STAA \2
 ENDM

generates the following output in the assembly listing file:

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
© Copyright 1987-2003 Metrowerks

114 Assembler
 1 1 XDEF Start
 2 2 MyData: SECTION
 3 3 000000 char1: DS.B 1
 4 4 000001 char2: DS.B 1
 5 5 INCLUDE "macro.inc"
 6 1i cpChar: MACRO
 7 2i LDAA \1
 8 3i STAA \2
 9 4i ENDM
 10 6 CodeSec: SECTION
 11 7 Start:
 12 8 cpChar char1, char2
 15 9 000006 A7 NOP

Content of included files, as well as macro definition and invoca-
tion are stored in the listing file.

The macro expansion lines are not present in the listing file.

For a detailed description of the listing file, see the Listing File
chapter.

See also Option -L
Option -Lc
Option -Ld
Option -Li
© Copyright 1987-2003 Metrowerks

Assembler 115
-Li

-Li: No included File in Listing File
Group: OUTPUT

Scope: Assembly unit

Syntax: "-Li"

Arguments: none.

Default: none.

Description Switches on the generation of the listing file, but include files are
not expanded in the listing file. The listing file contains macro
definition, invocation and expansion lines.

Example: ASMOPTIONS=-Li

In the following example of assembly code, the macro cpChar
accept two parameters. The macro copies the value of the first
parameter to the second one.

When option -Li is specified, following portion of code

 XDEF Start
MyData: SECTION
char1: DS.B 1
char2: DS.B 1
 INCLUDE "macro.inc"
CodeSec: SECTION
Start:
 cpChar char1, char2
 NOP

With the include file macro.inc:

cpChar: MACRO
 LDAA \1
 STAA \2
 ENDM

generates the following output in the assembly listing file:

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 XDEF Start
 2 2 MyData: SECTION
© Copyright 1987-2003 Metrowerks

116 Assembler
 3 3 000000 char1: DS.B 1
 4 4 000001 char2: DS.B 1
 5 5 INCLUDE "macro.inc"
 10 6 CodeSec: SECTION
 11 7 Start:
 12 8 cpChar char1, char2
 13 2m 000000 B6 xxxx + LDAA char1
 14 3m 000003 7A xxxx + STAA char2
 15 9 000006 A7 NOP

Macro definition, invocation and expansion is stored in the listing
file.

The content of included file is not present in the listing file.

For a detailed description of the listing file, see the Listing File
chapter.

See also Option -L
Option -Lc
Option -Ld
Option -Le
© Copyright 1987-2003 Metrowerks

Assembler 117
-Lic

-Lic: License Information
Group: VARIOUS

Scope: None

Syntax: "-Lic".

Arguments: none.

Default: none.

Description The -Lic option prints the current license information (e.g. if it is
a demo version or a full version). This information is also dis-
played in the about box.

Example ASMOPTIONS=-Lic

See also Option -LicA
© Copyright 1987-2003 Metrowerks

118 Assembler
-LicA

-LicA: License Information about every
Feature in Directory

Group: VARIOUS

Scope: None

Syntax: "-LicA".

Arguments: none.

Default: none.

Description The -LicA option prints the license information of every tool or
DLL in the directory where the executable is (e.g. if tool or fea-
ture is a demo version or a full version). Because the option has to
analyze every single file in the directory, this may take a long
time.

Example ASMOPTIONS=-LicA

See also Option -Lic
© Copyright 1987-2003 Metrowerks

Assembler 119
-M (-Ms, -Mb, -Ml)

-M: Memory Model
Group: CODE

Scope: Application

Syntax: "-M" ("s" | "b" | "l").

Arguments: "s": small memory model
"b": banked memory model
"l": large memory model.

Default: -Ms

Description: The assembler for the MC68HC12 supports three different mem-
ory models. Default is the small memory model, which
corresponds to the normal setup, i.e. a 64kB code-address space.
If you use some code memory expansion scheme, you may use
banded memory model. The large memory model is used when
using both code and data memory expansion scheme.

Memory models are interesting when mixing ANSI-C and assem-
bler files. For compatibility reasons, the memory model used by
the different files must be identical.

Example: ASMOPTIONS=-Ms

See also: none.
© Copyright 1987-2003 Metrowerks

120 Assembler
-MacroNest

-MacroNest: Configure Maximum Macro
Nesting

Group: Language

Scope: Assembly Unit

Syntax: "-MacroNest" <Value>.

Arguments: <Value>: max. allowed nesting level.

Default: 3000.

Description This option controls how deep macros calls can be nested. It’s
main purpose is to avoid endless recursive macro invocations.
When the nesting level is reached, then the message A

Example See the description of message A1004 for an example.

See also Message A1004
© Copyright 1987-2003 Metrowerks

Assembler 121
-MCUasm

-MCUasm: Switch Compatibility with MCUasm
ON

Group: VARIOUS

Scope: Assembly Unit

Syntax: "-MCUasm".

Arguments: none

Default: none.

Description This switches ON compatibility mode with the MCUasm Assem-
bler. Additional features supported, when this option is activated
are enumerated in section “MCUasm Compatibility”.

Example ASMOPTIONS=-MCUasm

See also Chapter MCUasm Compatibility.
© Copyright 1987-2003 Metrowerks

122 Assembler
-N

-N: Display Notify Box
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-N".

Arguments: none.

Default: none.

Description Makes the assembler display an alert box if there was an error
during assembling. This is useful when running a makefile (please
see Manual about Make Utility) since the assembler waits for the
user to acknowledge the message, thus suspending makefile pro-
cessing. (The 'N' stands for “Notify”.)

This feature is useful for halting and aborting a build using the
Make Utility.

Example ASMOPTIONS=-N

If during assembling an error occurs, a dialog box will be opened.

See also none.
© Copyright 1987-2003 Metrowerks

Assembler 123
-NoBeep

-NoBeep: No Beep in Case of an Error
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-NoBeep".

Arguments: none.

Default: none.

Description Normally there is a ‘beep’ notification at the end of processing if
there was an error. To have a silent error behavior, this ‘beep’ may
be switched off using this option.

Example ASMOPTIONS=-NoBeep

See also none.
© Copyright 1987-2003 Metrowerks

124 Assembler
-NoDebugInfo

-NoDebugInfo: No Debug Information for ELF/
Dwarf Files

Group: LANGUAGE

Scope: Assembly Unit

Syntax: "-NoDebugInfo".

Arguments: none.

Default: none.

Description By default, the assembler produces debugging info for the pro-
duced ELF/Dwarf files. With this option this can be switched off.

Example ASMOPTIONS=-NoDebugInfo

See also none.
© Copyright 1987-2003 Metrowerks

Assembler 125
-NoEnv

-NoEnv: Do not use Environment
Group: Startup. (This option cannot be specified interactively)

Scope: Assembly Unit

Syntax: "-NoEnv".

Arguments: none.

Default: none.

Description This option can only be specified at the command line while start-
ing the application. It cannot be specified in any other
circumstances, including the default.env file, the command line or
whatever.
When this option is given, the application does not use any envi-
ronment (default.env, project.ini or tips file).

Example xx.exe -NoEnv

(use the actual executable name instead of “xx”)

See also Environment
© Copyright 1987-2003 Metrowerks

126 Assembler
-ObjN

-ObjN: Object File Name Specification
Group: OUTPUT

Scope: Assembly Unit

Syntax: "-ObjN"<FileName>.

Arguments: <FileName>: Name of the binary output file generated.

Default: -ObjN%n.o (when relocatable file generated),|
-ObjN%n.abs (when absolute file generated).

Description Normally, the object file has the same name than the processed
source file, but with extension “.o” when relocatable code is gen-
erated or “.abs” when absolute code is generated. This option
allows a flexible way to define the output file name. The modifier
“%n” can be used, it is replaced with the source file name.
If <file> in the option contains a path (absolute or relative), the
environment variable OBJPATH is ignored.

Example ASMOPTIONS=-ObjNa.out

The resulting object file will be “a.out”. If the environment vari-
able OBJPATH is set to “\src\obj”, the object file will
be“\src\obj\a.out”.

fibo.c -ObjN%n.obj

The resulting object file will be “fibo.obj”.

myfile.c -ObjN..\objects_%n.obj

The object file will be named relative to the current directory to
“..\objects_myfile.obj. Note that the environment variable OBJ-
PATH is ignored, because the <file> contains a path.

See also Environment variable OBJPATH.
© Copyright 1987-2003 Metrowerks

Assembler 127
-Prod

-Prod: Specify Project File at Startup
Group: none. (This option cannot be specified interactively)

Scope: none.

Syntax: "-Prod=” <file>.

Arguments: <file>: name of a project or project directory

Default: none.

Description This option can only be specified at the command line while start-
ing the application. It cannot be specified in any other
circumstances, including the default.env file, the command line or
whatever.
When this option is given, the application opens the file as config-
uration file. When the file name does only contain a directory, the
default name project.ini is appended. When the loading fails, a
message box appears.

Example assembler.exe -prod=project.ini

(use the assembler executable name instead of “assembler”)

See also Environment
© Copyright 1987-2003 Metrowerks

128 Assembler
-Struct

-Struct: Support for Structured Types
Group: INPUT

Scope: Assembly Unit

Syntax: "-Struct".

Arguments: None.

Default: None

Description When this option is activated, the macro assembler also support
the definition and usage of structured types. This is interesting for
application containing both ANSI C and Assembly modules.

Example ASMOPTIONS=-Struct

See also Chapter Mix C and Assembler Applications.
© Copyright 1987-2003 Metrowerks

Assembler 129
-V

-V: Prints the Assembler Version
Group: VARIOUS

Scope: None

Syntax: "-V".

Arguments: none.

Default: none.

Description Prints the assembler version and the current directory

Note: This option is useful to determine the current directory of
the assembler

Example -V produces the following list:

Command Line '-v'
Assembler V-5.0.8, Jul 7 1998

Directory: C:\metrowerks\demo

Common Module V-5.0.7, Date Jul 7 1998
User Interface Module, V-5.0.17, Date Jul 7 1998
Assembler Kernel, V-5.0.13, Date Jul 7 1998
Assembler Target, V-5.0.8, Date Jul 7 1998

See also none.
© Copyright 1987-2003 Metrowerks

130 Assembler
-View

-View: Application Standard Occurrence
Group: HOST

Scope: Assembly Unit

Syntax: "-View" <kind>.

Arguments: <kind> is one of:
“Window”: Application window has default window size
“Min”: Application window is minimized
“Max”: Application window is maximized
“Hidden”: Application window is not visible (only if arguments)

Default: Application started with arguments: Minimized.
Application started without arguments: Window.

Description Normally the application (e.g. assembler, linker, compiler, ...) is
started as normal window if no arguments are given. If the appli-
cation is started with arguments (e.g. from the maker to assemble/
link/compile a file) then the application is running minimized to
allow batch processing. However, with this option the behavior
may be specified. Using -ViewWindow the application is visible
with its normal window. Using -ViewMin the application is visi-
ble iconified (in the task bar). Using -ViewMax the application is
visible maximized (filling the hole screen). Using -ViewHidden
the application processes arguments (e.g. files to be compiled/
linked) completely invisible in the back ground (no window/icon
in the task bar visible). However e.g. if you are using the -N
option a dialog box is still possible.

Example c:\metrowerks\prog\linker.exe -ViewHidden fibo.prm

See also none.
© Copyright 1987-2003 Metrowerks

Assembler 131
-W1

-W1: No Information Messages
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-W1".

Arguments: none.

Default: none.

Description Inhibits the assembler’s printing INFORMATION messages, only
WARNING and ERROR messages are written to the error listing
file and to the assembler window.

Example ASMOPTIONS=-W1

See also none.
© Copyright 1987-2003 Metrowerks

132 Assembler
-W2

-W2: No Information and Warning Messages
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-W2".

Arguments: none.

Default: none.

Description Suppresses all messages of type INFORMATION and WARN-
ING, only ERRORs are written to the error listing file and to the
assembler window .

Example ASMOPTIONS=-W2

See also none.
© Copyright 1987-2003 Metrowerks

Assembler 133
-WErrFile

-WErrFile: Create "err.log" Error File
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WErrFile" ("On" | "Off").

Arguments: none.

Default: err.log is created/deleted.

Description The error feedback from the assembler to called tools is now done
with a return code. In 16 bit windows environments, this was not
possible, so in the error case a file “err.log” with the numbers of
errors written into was used to signal an error. To state no error,
the file “err.log” was deleted. Using UNIX or WIN32, there is
now a return code available, so this file is no longer needed when
only UNIX / WIN32 applications are involved. To use a 16 bit
maker with this tool, the error file must be created in order to sig-
nal any error.

Example

-WErrFileOn

err.log is created/deleted when the application is finished.

-WErrFileOff

existing err.log is not modified.

See also Option -WStdout
Option -WOutFile
© Copyright 1987-2003 Metrowerks

134 Assembler
-Wmsg8x3

-Wmsg8x3: Cut File Names in Microsoft
Format to 8.3

Group: MESSAGE

Scope: Assembly Unit

Syntax: "-Wmsg8x3".

Arguments: none.

Default: none.

Description Some editors (e.g. early versions of WinEdit) are expecting the
file name in the Microsoft message format in a strict 8.3 format,
that means the file name can have at most 8 characters with not
more than a 3 characters extension. Using Win95 or WinNT
longer file names are possible. With this option the file name in
the Microsoft message is truncated to the 8.3 format.

Example

x:\mysourcefile.c(3): INFORMATION C2901: Unrolling
loop

With the option -Wmsg8x3 set, the above message will be

x:\mysource.c(3): INFORMATION C2901: Unrolling loop

See also Option -WmsgFi
Option -WmsgFb
Option -WmsgFoi
Option -WMsgFob
Option -WmsgFonP
© Copyright 1987-2003 Metrowerks

Assembler 135
-WmsgCE

-WmsgCE: RGB color for error messages
Group: MESSAGE

Scope: Compilation Unit

Syntax: "-WmsgCE" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCE16711680 (rFF g00 b00, red)

Description With this options it is possible to change the error message color.
The value to be specified has to be a RGB (Red-Green-Blue)
value, and has to be specified in decimal.

Example -WmsgCE255 changes the error messages to blue.

See also none.
© Copyright 1987-2003 Metrowerks

136 Assembler
-WmsgCF

-WmsgCF: RGB color for fatal messages
Group: MESSAGE

Scope: Compilation Unit

Syntax: "-WmsgCF" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCF8388608 (r80 g00 b00, dark red)

Description With this options it is possible to change the fatal message color.
The value to be specified has to be a RGB (Red-Green-Blue)
value, and has to be specified in decimal.

Example -WmsgCF255 changes the fatal messages to blue.

See also none.
© Copyright 1987-2003 Metrowerks

Assembler 137
-WmsgCI

-WmsgCI: RGB color for information
messages

Group: MESSAGE

Scope: Compilation Unit

Syntax: "-WmsgCI" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCI32768 (r00 g80 b00, green)

Description With this options it is possible to change the information message
color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

Example -WmsgCI255 changes the information messages to blue.

See also none.
© Copyright 1987-2003 Metrowerks

138 Assembler
-WmsgCU

-WmsgCU: RGB color for user messages
Group: MESSAGE

Scope: Compilation Unit

Syntax: "-WmsgCU" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCU0 (r00 g00 b00, black)

Description With this options it is possible to change the user message color.
The value to be specified has to be a RGB (Red-Green-Blue)
value, and has to be specified in decimal.

Example -WmsgCU255 changes the user messages to blue.

See also none.
© Copyright 1987-2003 Metrowerks

Assembler 139
-WmsgCW

-WmsgCW: RGB color for warning messages
Group: MESSAGE

Scope: Compilation Unit

Syntax: "-WmsgCW" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCW255 (r00 g00 bFF, blue)

Description With this options it is possible to change the warning message
color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

Example -WmsgCW0 changes the warning messages to black.

See also none.
© Copyright 1987-2003 Metrowerks

140 Assembler
-WmsgFb (-WmsgFbv, -WmsgFbm)

-WmsgFb: Set Message File Format for Batch
Mode

Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgFb" ["v" | "m"].

Arguments: "v": Verbose format.

"m": Microsoft format.

Default: -WmsgFbm

Description The assembler can be started with additional arguments (e.g. files
to be assembled together with Assembler options). If the assem-
bler has been started with arguments (e.g. from the Make Tool or
with the ‘%f’ argument from the IDF), the assembler assembles
the files in a batch mode, that is no Assembler window is visible
and the assembler terminates after job completion.

If the assembler is in batch mode the assembler messages are
written to a file and not visible on the screen. This file only con-
tains the assembler messages (see examples below).

By default, the assembler uses a Microsoft message format to
write the assembler messages (errors, warnings, information mes-
sages) if the assembler is in batch mode.

With this option, the default format may be changed from the
Microsoft format (only line information) to a more verbose error
format with line, column and source information

Example

var1: equ 5
var2: equ 5
 if (var1=var2)
 NOP
 endif
 endif
© Copyright 1987-2003 Metrowerks

Assembler 141
By default, the assembler generates the following error output in
the assembler window if it is running in batch mode:

X:\TW2.ASM(12):ERROR: Conditional else not allowed here

Setting the format to verbose, more information is stored in the
file:

ASMOPTIONS=-WmsgFbv
>> in "C:\tw2.asm", line 6, col 0, pos 81
 endif
^
ERROR A1001: Conditional else not allowed here

See also Environment variable ERRORFILE
Option -WmsgFob
Option -WmsgFi
Option -WmsgFonp
Option -WmsgFoi
Option -WmsgFonf
© Copyright 1987-2003 Metrowerks

142 Assembler
-WmsgFi (-WmsgFiv, -WmsgFim)

-WmsgFi: Set Message File Format for
Interactive Mode

Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgFi" ["v" | "m"].

Arguments: "v": Verbose format.

"m": Microsoft format.

Default: -WmsgFiv

Description If the assembler is started without additional arguments (e.g. files
to be assembled together with Assembler options), the assembler
is in the interactive mode (that is, a window is visible).

By default, the assembler uses the verbose error file format to
write the assembler messages (errors, warnings, information
messages).

With this option, the default format may be changed from the ver-
bose format (with source, line and column information) to the
Microsoft format (only line information).

With this option, the default format may be changed from the
Microsoft format (only line information) to a more verbose error
format with line, column and source information.

Note: Using the Microsoft format may speed up the assembly
process, because the assembler has to write less informa-
tion to the screen.

Example By default, the assembler following error output in the assembler
window if it is running in interactive mode.

>> in "X:\TWE.ASM", line 12, col 0, pos 215
 endif
 endif
^
ERROR A1001: Conditional else not allowed here
© Copyright 1987-2003 Metrowerks

Assembler 143
Setting the format to Microsoft, less information is displayed:

ASMOPTIONS=-WmsgFim
X:\TWE.ASM(12): ERROR: conditional else not allowed here

See also Environment variable ERRORFILE
Option -WmsgFob
Option -WmsgFb
Option -WmsgFonp
Option -WmsgFoi
Option -WmsgFonf
© Copyright 1987-2003 Metrowerks

144 Assembler
-WmsgFob

-WmsgFob: Message Format for Batch Mode
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgFob"<string>.

Arguments: <string>: format string (see below).

Default: -WmsgFob"%f%e(%l): %K %d: %m\n"

Description With this option it is possible modify the default message format
in batch mode. The following formats are supported (supposed
that the source file is x:\metrowerks\sourcefile.asmx)

Format Description Example

%s Source Extract
%p Path x:\metrowerks\
%f Path and name x:\metrowerks\sourcefile
%n File name sourcefile
%e Extension .asmx
%N File (8 chars) sourcefi
%E Extension (3 chars) .asm
%l Line 3
%c Column 47
%o Pos 1234
%K Uppercase kind ERROR
%k Lowercase kind error
%d Number A1051
%m Message text
%% Percent %
\n New line

Example ASMOPTIONS=-WmsgFob”%f%e(%l): %k %d: %m\n”

produces a message in following format:

x:\metrowerks\sourcefile.asmx(3): error A1051: Right
parenthesis expected

See also Environment variable ERRORFILE
Option -WmsgFb
Option -WmsgFi
Option -WmsgFonp
© Copyright 1987-2003 Metrowerks

Assembler 145
Option -WmsgFonf
Option -WmsgFoi
© Copyright 1987-2003 Metrowerks

146 Assembler
-WmsgFoi

-WmsgFoi: Message Format for Interactive
Mode

Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgFoi"<string>.

Arguments: <string>: format string (see below).

Default: -WmsgFoi"\n>> in \"%f%e\", line %l, col %c, pos %o\n%s\n%K
%d: %m\n"

Description With this option it is possible modify the default message format
in interactive mode. The following formats are supported (sup-
posed that the source file is
x:\metrowerks\sourcefile.asmx):

Format Description Example

%s Source Extract
%p Path x:\metrowerks\
%f Path and name x:\metrowerks\sourcefile
%n File name sourcefile
%e Extension .asmx
%N File (8 chars) sourcefi
%E Extension (3 chars) .asm
%l Line 3
%c Column 47
%o Pos 1234
%K Uppercase kind ERROR
%k Lowercase kind error
%d Number A1051
%m Message text
%% Percent %
\n New line

Example ASMOPTIONS=-WmsgFoi”%f%e(%l): %k %d: %m\n”

produces a message in following format:

x:\metrowerks\sourcefile.asmx(3): error A1051: Right
parenthesis expected
© Copyright 1987-2003 Metrowerks

Assembler 147
See also Environment variable ERRORFILE
Option -WmsgFb
Option -WmsgFi
Option -WmsgFonp
Option -WmsgFonf
Option -WmsgFob
© Copyright 1987-2003 Metrowerks

148 Assembler
-WmsgFonf

-WmsgFonf: Message Format for no File
Information

Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgFonf"<string>.

Arguments: <string>: format string (see below).

Default: -WmsgFonf"%K %d: %m\n"

Description Sometimes there is no file information available for a message
(e.g. if a message not related to a specific file). Then this message
format string is used. The following formats are supported:

Format Description Example

%K Uppercase kind ERROR
%k Lowercase kind error
%d Number L10324
%m Message text
%% Percent %
\n New line

Example ASMOPTIONS=-WmsgFonf”%k %d: %m\n”

produces a message in following format:

information L10324: Linking successful

See also Environment variable ERRORFILE
Option -WmsgFb
Option -WmsgFi
Option -WmsgFonp
Option -WmsgFoi
Option -WmsgFob
© Copyright 1987-2003 Metrowerks

Assembler 149
-WmsgFonp

-WmsgFonp: Message Format for no Position
Information

Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgFonp"<string>.

Arguments: <string>: format string (see below).

Default: -WmsgFonp"%f%e: %K %d: %m\n"

Description Sometimes there is no position information available for a mes-
sage (e.g. if a message not related to a certain position). Then this
message format string is used. The following formats are sup-
ported (supposed that the source file is
x:\metrowerks\sourcefile.asmx)

Format Description Example

%p Path x:\metrowerks\
%f Path and name x:\metrowerks\sourcefile
%n File name sourcefile
%e Extension .asmx
%N File (8 chars) sourcefi
%E Extension (3 chars) .asm
%K Uppercase kind ERROR
%k Lowercase kind error
%d Number L10324
%m Message text
%% Percent %
\n New line

Example ASMOPTIONS=-WmsgFonf”%k %d: %m\n”

produces a message in following format:

information L10324: Linking successful

See also Environment variable ERRORFILE
Option -WmsgFb
Option -WmsgFi
Option -WmsgFonf
Option -WmsgFoi
© Copyright 1987-2003 Metrowerks

150 Assembler
Option -WmsgFonfob
© Copyright 1987-2003 Metrowerks

Assembler 151
-WmsgNe

-WmsgNe: Number of Error Messages
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgNe" <number>.

Arguments: <number>: Maximum number of error messages.

Default: 50

Description With this option the amount of error messages can be reported
until the assembler stops assembling. Note that subsequent error
messages which depends on a previous one may be confusing.

Example ASMOPTIONS=-WmsgNe2

The assembler stops assembling after two error messages.

See also Option -WmsgNi
Option -WmsgNw
© Copyright 1987-2003 Metrowerks

152 Assembler
-WmsgNi

-WmsgNi: Number of Information Messages
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgNi" <number>.

Arguments: <number>: Maximum number of information messages.

Default: 50

Description With this option the amount of information messages can be set.

Example ASMOPTIONS=-WmsgNi10

Only ten information messages are logged.

See also Option -WmsgNe
Option -WmsgNw
© Copyright 1987-2003 Metrowerks

Assembler 153
-WmsgNu

-WmsgNu: Disable User Messages
Group: MESSAGE

Scope: None.

Syntax: "-WmsgNu" ["=" {"a" | "b" | "c" | "d"}].

Arguments: “a”: Disable messages about include files
“b”: Disable messages about reading files
“c”: Disable messages about generated files
“d”: Disable messages about processing statistics
“e”: Disable informal messages

Default: none.

Description The application produces some messages which are not in the
normal message categories (WARNING, INFORMATION,
WRROR, FATAL). With this option such messages can be dis-
abled. The idea of this option is to reduce the amount of messages
and to simplify the error parsing of other tools.
“a”: The application informs about all included files. With this
suboption this can be disabled.
“b”: With this suboption messages about reading files e.g. the
files used as input can be disabled.
“c”: Disables messages informing about generated files.
“d”: At the end the application may inform about statistics, e.g.
code size, RAM/ROM usage and so on. With this suboption this
can be disabled.
“e”: With this option informal messages (e.g. memory model,
floating point format, ...) can be disabled.

Note: Depending on the application, not all suboptions may
make sense. In this case they are just ignored for compati-
bility.

Example -WmsgNu=c

See also none.
© Copyright 1987-2003 Metrowerks

154 Assembler
-WmsgNw

-WmsgNw: Number of Warning Messages
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgNw" <number>.

Arguments: <number>: Maximum number of warning messages.

Default: 50

Description With this option the amount of warning messages can be set.

Example ASMOPTIONS=-WmsgNw15

Only 15 warning messages are logged.

See also Option -WmsgNe
Option -WmsgNi
© Copyright 1987-2003 Metrowerks

Assembler 155
-WmsgSd

-WmsgSd: Setting a Message to Disable
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgSd" <number>.

Arguments: <number>: Message number to be disabled, e.g. 1801

Default: none.

Description With this option a message can be disabled, so it does not appear
in the error output.

Example -WmsgSd1801

See also Option -WmsgSi
Option -WmsgSw
Option -WmsgSe
© Copyright 1987-2003 Metrowerks

156 Assembler
-WmsgSe

-WmsgSe: Setting a Message to Error
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgSe" <number>.

Arguments: <number>: Message number to be an error, e.g. 1853

Default: none.

Description Allows changing a message to an error message.

Example -WmsgSe1853

See also Option -WmsgSd
Option -WmsgSi
Option -WmsgSw
© Copyright 1987-2003 Metrowerks

Assembler 157
-WmsgSi

-WmsgSi: Setting a Message to Information
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgSi" <number>.

Arguments: <number>: Message number to be an information, e.g. 1853

Default: none.

Description With this option a message can be set to an information message.

Example -WmsgSi1853

See also Option -WmsgSd
Option -WmsgSw
Option -WmsgSe
© Copyright 1987-2003 Metrowerks

158 Assembler
-WmsgSw

-WmsgSw: Setting a Message to Warning
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgSw" <number>.

Arguments: <number>: Error number to be a warning, e.g. 2901

Default: none.

Description With this option a message can be set to a warning message.

Example -WmsgSw2901

See also Option -WmsgSd
Option -WmsgSi
Option -WmsgSe
© Copyright 1987-2003 Metrowerks

Assembler 159
-WOutFile

-WOutFile: Create Error Listing File
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WOutFile" ("On" | "Off").

Arguments: none.

Default: Error listing file is created.

Description This option controls if a error listing file should be created at all.
The error listing file contains a list of all messages and errors
which are created during a assembly process. Since the text error
feedback can now also be handled with pipes to the calling appli-
cation, it is possible to obtain this feedback without an explicit
file. The name of the listing file is controlled by the environment
variable ERRORFILE.

Example

-WOutFileOn

The error file is created as specified with ERRORFILE.

-WErrFileOff

No error file is created.

See also Option -WErrFile
Option -WStdout
© Copyright 1987-2003 Metrowerks

160 Assembler
-WStdout

-WStdout: Write to Standard Output
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WStdout" ("On" | "Off").

Arguments: none.

Default: output is written to stdout.

Description With Windows applications, the usual standard streams are avail-
able. But text written into them does not appear anywhere unless
explicitly requested by the calling application. With this option is
can be controlled if the text to error file should also be written into
the stdout.

Example

-WStdoutOn

All messages are written to stdout.

-WErrFileOff

Nothing is written to stdout.

See also Option -WErrFile
Option -WOutFile

Directive

Assembler directives are described in the Assembler Directives chapter.
© Copyright 1987-2003 Metrowerks

Assembler 161
Sections
Sections are portions of code or data, which cannot be split into smaller element.
Each section has a name, a type and some attributes.

Each assembly source file contains at least one section. The number of sections in
an assembly source file is only limited by the amount of memory available on the
system at assembly time. If inside of a single source file, several sections with the
same name are detected, the code is concatenated in one large section.

Sections from different modules, but with the same name will be combined in a sin-
gle section at linking time.

Each section is defined trough an attribute and a type.

Section Attribute
According to their content each section an attribute is associated with each section.
A section may be:

 • a data section

 • a constant data section

 • a code section.

Code Sections

A section containing at least an instruction is considered to be a code section. Code
sections are always allocated in the target processor ROM area.

Code sections should not contain any variable definition (variable defined using the
DS directive). You will not have any write access on variables defined in a code
section. Additionally, these variables cannot be displayed in the debugger as data.

Constant Sections

A section containing only constant data definition (variables defined using the DC
or DCB directives) is considered to be a constant section. Constant sections should
be allocated in the target processor ROM area, otherwise they cannot be initialized
at application loading time.

We strongly recommend you to define separate sections for the definition of vari-
ables and constant variables. This will avoid any problems in the initialization of
© Copyright 1987-2003 Metrowerks

162 Assembler
constant variables.

Data Sections

A section containing only variables (variable defined using the DS directive) is con-
sidered to be a data section. Data sections are always allocated in the target proces-
sor RAM area.

Note: A section containing variables (DS) and constants (DC) or code is not a data
section. Such a section with mixed content is put in ROM by default.

We strongly recommend to define separate sections for the definition of variables
and constant variables. This will avoid any problems in the initialization of constant
variables.

Section Type
First of all a programmer should decide whether he wants to use relocatable or
absolute code in his application. The assembler allows to mix usage of absolute and
relocatable sections in a single application and also in a single source file. The main
difference between absolute and relocatable sections is the way symbol addresses
are determined.

Absolute Section

Relocatable Section

Absolute Sections

The starting address of an absolute section is known at assembly time. An absolute
section is defined trough the directive ORG. The operand specified in the ORG
directive determines the start address of the absolute section.

Example

 XDEF entry
 ORG $A00 ; Absolute constant data section.
cst1: DC.B $A6
cst2: DC.B $BC
...
 ORG $800 ; Absolute data section.
var: DS.B 1
© Copyright 1987-2003 Metrowerks

Assembler 163
 ORG $C00 ; Absolute code section.
entry:
 LDAA cst1 ; Load value in cst1
 ADDA cst2 ; Add value in cst2
 STAA var ; Store in var
 BRA entry

In the above example, two bytes of storage are allocated starting at address $A00.
Symbol ‘cst1’ will be allocated at address $A00 and ‘cst2’ will be allocated at
address $A01. All subsequent instructions or data allocation directives will be
located in the absolute section until another section is specified using the ORG or
SECTION directive.

When using absolute sections, it is the user responsibility to ensure that there is no
overlap between the different absolute sections defined in his application. In the
previous example, the programmer should ensure that the size of the section starting
at address $A00 is not bigger than $200 bytes, otherwise section starting at $A00
and section starting at $C00 will overlap.

When object files are generated, even applications containing only absolute sec-
tions must be linked. In that case, there should not be any overlap between the
address ranges from the absolute sections defined in the assembly file and the
address ranges defined in the linker parameter file.

Example

The PRM file used to assemble the example above, can be defined as follows:

LINK test.abs /* Name of the executable file generated. */
NAMES
 test.o /* Name of the object files in the application. */
END
SECTIONS
/* READ_ONLY memory area. There should be no overlap between this
 memory area and the absolute sections defined in the assembly
 source file. */
 MY_ROM = READ_ONLY 0x1000 TO 0x1FFF;
/* READ_WRITE memory area. There should be no overlap between this
 memory area and the absolute sections defined in the assembly
 source file. */
 MY_RAM = READ_WRITE 0x2000 TO 0x2FFF;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */
 DEFAULT_RAM INTO MY_RAM;
/* Relocatable code and constant sections are allocated in MY_ROM. */
© Copyright 1987-2003 Metrowerks

164 Assembler
 DEFAULT_ROM INTO MY_ROM;
END
INIT entry /* Application entry point. */
VECTOR ADDRESS 0xFFFE entry /* Initialization of the reset vector. */

The linker PRM file contains at least:

 • The name of the absolute file (command LINK).

 • The name of the object file which should be linked (command NAMES).

 • The specification of a memory area where the sections containing variables must
be allocated. At least the predefined section DEFAULT_RAM (or its ELF alias
‘.data’) must be placed there. For applications containing only absolute sections,
nothing will be allocated there (commands SECTIONS and PLACEMENT).

 • The specification of a memory area where the sections containing code or con-
stants must be allocated. At least the predefined section DEFAULT_ROM (or its
ELF alias ‘.text’) must be placed there. For applications containing only absolute
sections, nothing will be allocated there (commands SECTIONS and PLACE-
MENT).

 • The specification of the application entry point (command INIT)

 • The definition of the reset vector (command VECTOR ADDRESS)

Relocatable Sections

The starting address of a relocatable section is evaluated at linking time, according
to the information stored in the linker parameter file. A relocatable section is
defined trough the directive SECTION.

Example

 XDEF entry
constSec: SECTION ; Relocatable constant data section.
cst1: DC.B $A6
cst2: DC.B $BC
...
dataSec: SECTION ; Relocatable data section.
var: DS.B 1

codeSec: SECTION ; Relocatable code section.
entry:
 LDAA cst1 ; Load value in cst1
 ADDA cst2 ; Add value in cst2
 STAA var ; Store in var
 BRA entry
© Copyright 1987-2003 Metrowerks

Assembler 165
In the previous example, two bytes of storage are allocated in section ‘constSec’.
Symbol ‘cst1’ will be allocated at offset 0 and ‘cst2’ at offset 1 from the beginning
of the section. All subsequent instructions or data allocation directives will be
located in the relocatable section ‘constSec’ until another section is specified using
the ORG or SECTION directive.

When using relocatable sections, the user do not need to care about overlapping
sections. The linker will assign a start address to each section according to the input
from the linker parameter file.

The customer can decide to define only one memory area for the code and constant
sections and another one for the variable sections or to split his sections over several
memory area.

Example: Defining one RAM and one ROM Area.

When all constant and code sections as well as data sections can be allocated con-
secutively, the PRM file used to assemble the example above, can be defined as fol-
lows:

LINK test.abs /* Name of the executable file generated. */
NAMES
 test.o /* Name of the object files in the application. */
END
SECTIONS
/* READ_ONLY memory area. */
 MY_ROM = READ_ONLY 0x0B00 TO 0x0BFF;
/* READ_WRITE memory area. */
 MY_RAM = READ_WRITE 0x0800 TO 0x08FF;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */
 DEFAULT_RAM INTO MY_RAM;
/* Relocatable code and constant sections are allocated in MY_ROM. */
 DEFAULT_ROM INTO MY_ROM;
END
INIT entry /* Application entry point. */
VECTOR ADDRESS 0xFFFE entry /* Initialization of the reset vector. */

The linker PRM file contains at least:

 • The name of the absolute file (command LINK).

 • The name of the object file which should be linked (command NAMES).
© Copyright 1987-2003 Metrowerks

166 Assembler
 • The specification of a memory area where the sections containing variables must
be allocated At least the predefined section DEFAULT_RAM (or its ELF alias
‘.data’) must be placed there. (commands SECTIONS and PLACEMENT).

 • The specification of a memory area where the sections containing code or con-
stants must be allocated. At least the predefined section DEFAULT_ROM (or its
ELF alias ‘.text’) must be placed there. (commands SECTIONS and PLACE-
MENT).

 • The specification of the application entry point (command INIT)

 • The definition of the reset vector (command VECTOR ADDRESS)

According to the PRM file above,

 • the section ‘dataSec’ will be allocated starting at 0x0800.

 • the section ‘constSec’ will be allocated starting at 0x0B00.

 • the section ‘codeSec will be allocated next to the section ‘constSec’.

Example: Defining multiple RAM and ROM Areas.

When all constant and code sections as well as data sections cannot be allocated
consecutively, the PRM file used to assemble the example above, can be defined as
follows:

LINK test.abs /* Name of the executable file generated. */
NAMES
 test.o /* Name of the object files in the application. */
END
SECTIONS
 ROM_AREA_1= READ_ONLY 0xB00 TO 0xB7F; /* READ_ONLY memory area. */
 ROM_AREA_2= READ_ONLY 0xC00 TO 0xC7F;/* READ_ONLY memory area. */
 RAM_AREA_1= READ_WRITE 0x800 TO 0x87F;/* READ_WRITE memory area. */
 RAM_AREA_2= READ_WRITE 0x900 TO 0x97F;/* READ_WRITE memory area. */
END
PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */
 dataSec INTO RAM_AREA_2;
 DEFAULT_RAM INTO RAM_AREA_1;
/* Relocatable code and constant sections are allocated in MY_ROM. */
 constSec INTO ROM_AREA_2;
 codeSec, DEFAULT_ROM INTO ROM_AREA_1;
END
INIT entry /* Application entry point. */
VECTOR ADDRESS 0xFFFE entry /* Initialization of the reset vector. */

The linker PRM file contains at least:
© Copyright 1987-2003 Metrowerks

Assembler 167
 • The name of the absolute file (command LINK).

 • The name of the object file which should be linked (command NAMES).

 • The specification of memory areas where the sections containing variables must
be allocated At least the predefined section DEFAULT_RAM (or its ELF alias
‘.data’) must be placed there (commands SECTIONS and PLACEMENT).

 • The specification of memory areas where the sections containing code or con-
stants must be allocated. At least the predefined section DEFAULT_ROM (or its
ELF alias ‘.text’) must be placed there. (commands SECTIONS and PLACE-
MENT).

 • The specification of the application entry point (command INIT)

 • The definition of the reset vector (command VECTOR ADDRESS)

According to the PRM file above,

 • the section ‘dataSec’ will be allocated starting at 0x0900.

 • the section ‘constsec will be allocated starting at 0x0C00.

 • the section ‘codeSec’ will be allocated starting at 0x0B00.

Relocatable vs. Absolute Section

Generally we recommend to develop application using relocatable sections.Relo-
catable sections offers several advantages.

Modularity

An application is more modular when programming can be divided into smaller
units called sections. The sections themselves can be distributed among different
source files.

Multiple Developers

When an application is split over different files, multiple developers can be
involved in the development of the application. In order to avoid major problems
when merging the different files, attention must be paid to following items:

 • An include file must be available for each assembly source file, containing XREF
directives for each exported variables, constants and functions. Additionally, the
interface to the function should be described there (parameter passing rules as
well as function return value).

 • When accessing variables, constants or function from another module, the corre-
sponding include file must be included.
© Copyright 1987-2003 Metrowerks

168 Assembler
 • Variables or constants defined by another developer must always be referenced
by their names.

 • Before invoking a function implemented in another file, the developer should
ensure he respect the function interface (parameters are passed as expected,
return value is retrieved correctly).

Early Development

The whole application can be developed before the application memory map is
known. Often the definitive application memory map can only be determined once
the size required for code and data can be evaluated. The size required for code or
data can only be quantified once the major part of the application is implemented.
When absolute sections are used, defining the definitive memory map is an iterative
process of mapping and remapping the code. The assembly files must be edited,
assembled and linked several times. When relocatable sections are used, this can be
achieved by editing the PRM file and linking the application.

Enhanced Portability

As the memory map is not the same for all MCU derivatives, using relocatable sec-
tions allow to easily port the code for another MCU. When porting relocatable code
to another target you only need to link the application again, with the appropriate
memory map.

Tracking Overlaps

When using absolute sections, the programmer must ensure there is no overlap
between his sections. When using relocatable sections, the programmer do not need
to take care about sections overlapping. The label offsets are all evaluated relatively
to the beginning of the section. Absolute addresses are determined and assigned by
the linker.

Reusability

When using relocatable sections, code implemented to handle a specific I/O device
(serial communication device), can be reused in another application without any
modification.
© Copyright 1987-2003 Metrowerks

Assembler 169
Assembler Syntax
An assembler source program is a sequence of source statements. Each source state-
ment is coded on one single line of text and can be:

 • a comment line

 • a source line

Comment Line
A comment can occupy an entire line to explain the purpose and usage of a block of
statements or to describe an algorithm. A comment line contains a semicolon fol-
lowed by a text. Comments are included in the assembly listing, but are not signifi-
cant to the assembler.

An empty line is also considered as a comment line.

Example:

; This is a comment line

Source Line
Each source statement includes one or more of the following four fields:

 • a label

 • an operation field

 • one or several operand

 • a comment

Characters on the source line may be either upper or lower case. Directives and
instructions are case insensitive, whereas symbols are case sensitive unless option
for case insensitivity on label names (-Ci) is activated.

Label Field

The label field is the first field in a source line. A label is a symbol followed by a
colon. Labels can include letters (‘A’.. ‘Z’ or ‘a’.. ‘z’), underscores, periods and
numbers. The first character must not be a number.

Note: For compatibility with other macro assembler vendor, an identifier starting
© Copyright 1987-2003 Metrowerks

170 Assembler
on column 1 is considered to be a label, even when it is not terminated by a
colon.
When option -MCUasm (Switch ON MCUasm Compatibility Mode) is acti-
vated, labels MUST be terminated with a colon. An error message is issued,
when a label is not followed by a colon.

Labels are required on assembler directives that define the value of a symbol (SET
or EQU). For these directives, labels are assigned the value corresponding to the
expression in the operand field.

Labels specified in front of another directive, an instruction or a comment are
assigned the value of the location counter in the current section.

Note: When the macro assembler expands macro it generates internal symbols
starting with an ‘_’. Therefore, to avoid potential conflicts, user defined
symbols should not begin with an underscore

Note: For the macro assembler, a .B or .W at the end of a label has a specific
meaning. Therefore, to avoid potential conflicts, user defined symbols
should not end with .B or .W.

Operation Field

The operation field follows the label field and is separated from it by a white space.
The operation field must not begin in the first column. An entry in the operation
field is one of the following:

 • an instruction mnemonic

 • a directive name

 • a macro name

Instruction

Executable instructions for the M68HC12 processor are defined in the “CPU Refer-
ence Manual CPU12RM/AD”.

The following table presents an overview of the instruction available:

Instruction Description

ABA Add accumulator A and B

ABX Add accumulator B and register X

ABY Add accumulator B and register Y
© Copyright 1987-2003 Metrowerks

Assembler 171
ADCA Add with carry to accumulator A

ADCB Add with carry to accumulator B

ADDA Add without carry to accumulator A

ADDB Add without carry to accumulator B

ADDD Add without carry to accumulator D

ANDA Logical AND with accumulator A

ANDB Logical AND with accumulator B

ANDCC Logical AND with CCR

ASL Arithmetic shift left in memory

ASLA Arithmetic shift left accumulator A

ASLB Arithmetic shift left accumulator B

ASLD Arithmetic shift left accumulator D

ASR Arithmetic shift left in memory

ASRA Arithmetic shift right accumulator A

ASRB Arithmetic shift right accumulator B

BCC Branch if carry clear

BCLR Clear bits in memory

BCS Branch if carry Set

BEQ Branch if equal

BGE Branch if greater than or equal

BGND Place in BGND mode

BGT Branch if greater than

BHI Branch if higher

BHS Branch if higher or same

BITA Logical AND accumulator A and memory

BITB Logical AND accumulator B and memory

BLE Branch if Less Than or equal

BLO Branch if lower (Same as BCS)

BLS Branch if lower or Same

BLT Branch if less than

Instruction Description
© Copyright 1987-2003 Metrowerks

172 Assembler
BMI Branch if Minus

BNE Branch if not equal

BPL Branch if Plus

BRA Branch Always

BRCLR Branch if bit clear

BRN Branch never

BRSET Branch if bits set

BSET Set bits in memory

BSR Branch subroutine

BVC Branch if overflow cleared

BVS Branch if overflow set

CALL call subroutine in extended memory

CBA Compare accumulator A and B

CLC Clear carry bit

CLI Clear interrupt bit

CLR Clear memory

CLRA Clear accumulator A

CLRB Clear accumulator B

CLV Clear two’s complement overflow bit

CMPA Compare memory with accumulator A

CMPB Compare memory with accumulator B

COM One’s complement on memory location

COMA One’s complement on accumulator A

COMB One’s complement on accumulator B

CPD Compare accumulator D and memory

CPS Compare register SP and memory

CPX Compare register X and memory

CPY Compare register Y and memory

DAA Decimal adjust accumulator A

DBEQ Decrement counter and branch if null

Instruction Description
© Copyright 1987-2003 Metrowerks

Assembler 173
DBNE Decrement counter and branch if not null

DEC Decrement memory location

DECA Decrement accumulator A

DECB Decrement accumulator B

DES Decrement register SP

DEX Decrement index register X

DEY Decrement index register Y

EDIV Unsigned division 32-bits/16 bits

EDIVS Signed division 32-bits/16 bits

EMACS Multiply and accumulate signed

EMAXD Get maximum of 2 unsigned integer in accumulator D

EMAXM Get maximum of 2 unsigned integer in memory

EMIND Get minimum of 2 unsigned integer in accumulator D

EMINM Get minimum of 2 unsigned integer in memory

EMUL 16-bit * 16-bit multiplication (unsigned)

EMULS 16-bit * 16-bit multiplication (signed)

EORA Logical XOR with accumulator A

EORB Logical XOR with accumulator B

ETBL 16-Bit Table Lookup and Interpolate

EXG Exchange register content

FDIV 16-bit / 16-bits fractional divide

IBEQ Increment counter and branch if null

IBNE Increment counter and branch if not null

IDIV 16-bit / 16-bit integer division (unsigned)

IDIVS 16-bit / 16-bit integer division (signed)

INC Increment memory location

INCA Increment accumulator A

INCB Increment accumulator B

INS Increment register SP

INX Increment register X

Instruction Description
© Copyright 1987-2003 Metrowerks

174 Assembler
INY Increment register Y

JMP Jump to label

JSR Jump to subroutine

LBCC Long branch if carry clear

LBCS Long branch if carry Set

LBEQ Long branch if equal

LBGE Long branch if greater than or equal

LBGT Long branch if greater than

LBHI Long branch if higher

LBHS Long branch if higher or same

LBLE Long branch if Less Than or equal

LBLO Long branch if lower (Same as BCS)

LBLS Long branch if lower or Same

LBLT Long branch if less than

LBMI Long branch if Minus

LBNE Long branch if not equal

LBPL Long branch if Plus

LBRA Long branch Always

LBRN Long branch never

LBSR Long branch subroutine

LBVC Long branch if overflow clear

LBVS Long branch if overflow set

LDAA Load accumulator A

LDAB Load accumulator B

LDD Load accumulator D

LDS Load register SP

LDX Load index register X

LDY Load index register Y

LEAS Load SP with effective Address

LEAX Load X with effective Address

Instruction Description
© Copyright 1987-2003 Metrowerks

Assembler 175
LEAY Load Y with effective Address

LSL Logical shift left in memory

LSLA Logical shift left accumulator A

LSLB Logical shift left accumulator B

LSLD Logical shift left accumulator D

LSR Logical shift right in memory

LSRA Logical shift right accumulator A

LSRB Logical shift right accumulator B

LSRD Logical shift right accumulator D

MAXA Get maximum of 2 unsigned byte in accumulator A

MAXM Get maximum of 2 unsigned byte in memory

MEM Membership Function

MINA Get minimum of 2 unsigned byte in accumulator A

MINM Get minimum of 2 unsigned byte in memory

MOVB Memory to memory byte move

MOVW Memory to memory word move

MUL 8 * 8 bit unsigned multiplication

NEG 2’s complement in memory

NEGA 2’s complement accumulator A

NEGB 2’s complement accumulator B

NOP No operation

ORAA Logical OR with accumulator A

ORAB Logical OR with accumulator B

ORCC Logical OR with CCR

PSHA Push register A

PSHB Push register B

PSHC Push register CCR

PSHD Push register D

PSHX Push register X

PSHY Push register Y

Instruction Description
© Copyright 1987-2003 Metrowerks

176 Assembler
PULA Pop register A

PULB Pop register B

PULC Pop register CCR

PULD Pop register D

PULX Pop register X

PULY Pop register Y

REV MIN-MAX Rule Evaluation for 8-bits values

REVW MIN-MAX Rule Evaluation for 16-bits values

ROL Rotate memory left

ROLA Rotate accumulator A left

ROLB Rotate accumulator B left

ROR Rotate memory right

RORA Rotate accumulator A right

RORB Rotate accumulator B right

RTC Return from CALL

RTI Return from Interrupt

RTS return from subroutine

SBA Subtract accumulator A and B

SBCA Subtract with carry from accumulator A

SBCB Subtract with carry from accumulator B

SEC Set carry bit

SEI Set interrupt bit

SEV Set two’s complement overflow bit

SEX Sign extend into 16 bit register

STAA Store accumulator A

STAB Store accumulator B

STD Store accumulator D

STOP Stop

STS Store register SP

STX Store register X

Instruction Description
© Copyright 1987-2003 Metrowerks

Assembler 177
Directive

Assembler directives are described in the “Assembler Directives” chapter in this
manual.

STY Store register Y

SUBA Subtract without carry from accumulator A

SUBB Subtract without carry from accumulator B

SUBD Subtract without carry from accumulator D

SWI Software interrupt

TAB Transfer A to B

TAP Transfer A to CCR

TBA Transfer B to A

TBEQ Test counter and branch if null

TBL 8-Bit Table Lookup and Interpolate

TBNE Test counter and branch if not null

TFR Transfer register to register

TPA Transfer CCR to A

TRAP Software Interrupt

TST Test memory for 0 or minus

TSTA Test accumulator A for 0 or minus

TSTB Test accumulator B for 0 or minus

TSX Transfer SP to X

TSY Transfer SP to Y

TXS Transfer X to SP

TYS Transfer Y to SP

WAI Wait for Interrupt

WAV Weighted Average Calculation

XGDX Exchange D with X

XGDY Exchange D with Y

Instruction Description
© Copyright 1987-2003 Metrowerks

178 Assembler
Macro Name

A user-defined macro can be invoked in the assembler source program. This results
in the expansion of the code defined in the macro. Definition and usage of macros
are described in the “Macros” chapter in this manual.

Operand Field: Addressing Modes

The operand fields, when present, follow the operation field and are separated from
it by a white space. When two or more operand subfields appear within a statement,
a comma must separate them.

The following addressing mode notations are allowed in the operand field:

In the table above:

• xysp stand for one of the index register X, Y, SP, PC or PCR

Addressing Mode Notation

Inherent No operands

Direct <8-bit address>

Extended <16-bit address>

Relative <PC relative, 8-Bit offset> or
<PC relative, 16-Bit offset>

Immediate #<immediate 8-bit expression> or
#<immediate 16-bit expression>

Indexed, 5-bit offset <5-bit offset>, xysp

Indexed, pre-decrement <3-bit offset>, -xys

Indexed, pre-increment <3-bit offset>, +xys

Indexed, post-decrement <3-bit offset>, xys-

Indexed, post-increment <3-bit offset>, xys+

Indexed, accumulator offset abd, xysp

Indexed, 9-bit offset <9-bit offset>, xysp

Indexed, 16-bit offset <16-bit offset>, xysp

Indexed-Indirect, 16-bit offset [<16-bit offset>, xysp]

Indexed-Indirect, D accumulator offset [D, xysp]
© Copyright 1987-2003 Metrowerks

Assembler 179
• xys stand for one of the index register X, Y or SP

• abd stands for one of the accumulator A, B or D

Inherent

Instructions using this addressing mode have no operands or all operands are stored
in internal CPU registers. The CPU do not need to perform any memory access to
complete the instruction..

Example

 NOP ; Instruction with no operand
 CLRA ; The operand is in the CPU register A

Immediate

The opcode contains the value to use with the instruction rather than the address of
this value. The character ‘#’ is used to indicate an immediate addressing mode oper-
and.

Example

main: LDAA #$64
 LDX #$AFE
 BRA main

In this example, the hexadecimal value $64 is loaded in register A.
The size of the immediate operand is implied by the instruction context. The regis-
ter A is a 8-bit register, so the instruction LDAA expect a 8-bit immediate operand.
The register X is a 16-bit register, so the instruction LDX expect a 16-bit immediate
operand.

The immediate addressing mode can also be used to refer to the address of a sym-
bol.

Example

 ORG $80
var1: DC.B $45, $67
 ORG $800
main:
 LDX #var1
 BRA main

In this example, the address of the variable ‘var1’ ($80) is loaded in register X.

Be careful

One very common programming error is to omit the # character. This cause the
© Copyright 1987-2003 Metrowerks

180 Assembler
assembler to misinterpret the expression as an address rather than an explicit data.

Example

 LDAA $60

means load accumulator A with the value stored at address $60.

Direct

The direct addressing mode is used to address operands in the direct page of the
memory (location $0000 to $00FF).

This addressing mode is used to access operands in the address range $00 to $FF.
Access on this memory range (also called zero page) are faster and require less code
than the extended addressing mode (see below). In order to speed up his application
a programmer can decide to place the most commonly accessed data in this area of
memory.

Example

 ORG $50
data: DS.B 1

MyCode: SECTION
Entry:
 LDS #$AFE ; init Stack Pointer
 LDAA #$01
main: STAA data
 BRA main

In this example, the value in the register A is stored in the variable data which is
located at address $50.

Example

MyData: SECTION SHORT
data1: DS.B 1
 XREF.B data2
MyCode: SECTION
Entry:
 LDS #$AFE ; init Stack Pointer
 LDAA data1
main: STAA data2
 BRA main

Here data1 is located in a relocatable section. To inform the assembler that this sec-
tion will be placed in the zero page, the SHORT qualifier after SECTION is used.
The label data2 is imported into this code. To inform the assembler that this label
can also be used with the direct addressing mode, the directive “XREF.B” is used.
© Copyright 1987-2003 Metrowerks

Assembler 181
Extended

The extended addressing mode is used to access any memory location in the 64-
Kilobyte memory map.

Example

 XDEF Entry
 ORG $100
data: DS.B 1
MyCode: SECTION
Entry:
 LDS #$AFE ; init Stack Pointer
 LDAA #$01
main: STAA data
 BRA main

In this example, the value in the register A is stored in the variable data. This vari-
able is located at address $0100 in the memory map.

Relative

This addressing mode is used to determine the destination address of branch
instructions. Each conditional branch instruction tests some bits in the condition
code register. If the bits are in the expected state, the specified offset is added to the
address of the instruction following the branch instruction, and execution continues
at that address.

Short branch instructions (BRA, BEQ, ...) expect a signed offset encoded on one
byte. The valid range for a short branch offset is [-128..127].

Example

main:
 NOP
 NOP
 BRA main

In this example, after the two NOPs have been executed, the application branches
on the first NOP and continues execution.

Long branch instructions (LBRA, LBEQ, ...) expect a signed offset encoded on two
bytes. The valid range for a long branch offset is [-32768..32767].

Using the special symbol for location counter, you can also specify a offset to the
location pointer as target for a branch instruction. The * refer to the beginning of the
instruction where it is specified.

Example
© Copyright 1987-2003 Metrowerks

182 Assembler
main:
 NOP
 NOP
 BRA *-2

In this example, after the two NOPs have been executed, the application branches at
offset -2 from the BRA instruction (i.e. on label ‘main’).

Inside of an absolute section, expressions specified in a PC relative addressing
mode may be:

 • a label defined in any absolute section

 • a label defined in any relocatable section

 • an external label (defined in a XREF directive)

 • an absolute EQU or SET label.

Inside of a relocatable section, expressions specified in a PC relative addressing
mode may be:

 • a label defined in any absolute section

 • a label defined in any relocatable section

 • an external label (defined in a XREF directive)

Indexed, 5-bit offset

This addressing mode add a 5-bit signed offset to the base index register to form the
memory address, which is referenced in the instruction. The valid range for a 5-bit
signed offset is [-16..15]. The base index register may be X, Y, SP, PC or PCR.

For information about Indexed PC and Indexed PC Relative addressing mode, see
section ‘Indexed PC vs. Indexed PC Relative Addressing Mode’ below.

This addressing mode may be used to access elements in an n-element table, which
size is smaller than 16 bytes.

Example

 ORG $1000
CST_TBL: DC.B $5, $10, $18, $20, $28, $30
 ORG $800
DATA_TBL: DS.B 10
main:
 LDX #CST_TBL
 LDAA 3,X

 LDY #DATA_TBL
 STAA 8, Y
© Copyright 1987-2003 Metrowerks

Assembler 183
The accumulator A is loaded with the byte value stored in memory location $1003
($1000 + 3).
Then the value of accumulator A is stored at address $808 ($800 + 8).

Indexed, 9-bit offset

This addressing mode add a 9-bit signed offset to the base index register to form the
memory address, which is referenced in the instruction. The valid range for a 9-bit
signed offset is [-256..255]. The base index register may be X, Y, SP, PC or PCR.

For information about Indexed PC and Indexed PC Relative addressing mode, see
section ‘Indexed PC vs. Indexed PC Relative Addressing Mode’ below.

This addressing mode may be used to access elements in an n-element table, which
size is smaller than 256 bytes

Example

 ORG $1000
CST_TBL: DC.B $5, $10, $18, $20, $28, $30, $38, $40, $48
 DC.B $50, $58, $60, $68, $70, $78, $80, $88, $90
 DC.B $98, $A0, $A8, $B0, $B8, $C0, $C8, $D0, $D8
 ORG $800
DATA_TBL: DS.B 40
main:
 LDX #CST_TBL
 LDAA 20,X

 LDY #DATA_TBL
 STAA 18, Y

The accumulator A is loaded with the byte value stored in memory location $1014
($1000 + 20).
Then the value of accumulator A is stored at address $812 ($800 + 18).

Indexed, 16-bit offset

This addressing mode add a 16-bit offset to the base index register to form the
memory address, which is referenced in the instruction. The 16-bit offset may be
considered either as signed or unsigned ($FFFF may be considered to be -1 or
65’535). The base index register may be X, Y, SP, PC or PCR.

For information about Indexed PC and Indexed PC Relative addressing mode, see
section ‘Indexed PC vs. Indexed PC Relative Addressing Mode’ below.

Example

main:
© Copyright 1987-2003 Metrowerks

184 Assembler
 LDX #$600
 LDAA $300,X

 LDY #$1000
 STAA $140, Y

The accumulator A is loaded with the byte value stored in memory location $900
($600 + $300).
Then the value of accumulator A is stored at address $1140 ($1000 + $140).

Indexed, Indirect 16-bit offset

This addressing mode add a 16-bit offset to the base index register to form the
address of a memory location containing a pointer to the memory location refer-
enced in the instruction. The 16-bit offset may be considered either as signed or
unsigned ($FFFF may be considered to be -1 or 65’535). The base index register
may be X, Y, SP, PC or PCR.

For information about Indexed PC and Indexed PC Relative addressing mode, see
section ‘Indexed PC vs. Indexed PC Relative Addressing Mode’ below.

Example

 ORG $1000
CST_TBL1: DC.W $1020, $1050, $2001
 ORG $2000
CST_TBL: DC.B $10, $35, $46
 ORG $3000
main:
 LDX #CST_TBL1
 LDAA [4,X]

The offset ‘4’ is added to the value of register ‘X’ ($1000) to form the address
$1004.
Then an address pointer ($2001) is read from memory at $1004.
The accumulator A is loaded with $35, the value stored at address $2001.

Indexed, pre-decrement

This addressing mode allow you to decrement the base register by a specified value,
before indexing takes place. The base register is decremented by the specified value
and the content of the modified base register is referenced in the instruction.

The valid range for a pre-decrement value is [1..8]. The base index register may be
X, Y, SP.

Example
© Copyright 1987-2003 Metrowerks

Assembler 185
 ORG $1000
CST_TBL: DC.B $5, $10, $18, $20, $28, $30
END_TBL: DC.B $0
main:
 CLRA
 CLRB
 LDX #END_TBL
loop:
 ADDD 1,-X
 CPX #CST_TBL
 BNE loop

The base register X is loaded with the address of the element following the table
CST_TBL ($1006).
The register X is decremented by 1 (its value is $1005) and the value at this address
($30) is added to register D.
X is not equal to the address of CST_TBL, so it is decremented again and the con-
tent of address ($1004) is added to D.
This loop is repeated as long as the register X did not reach the beginning of the
table CST_TBL ($1000).

Indexed, pre-increment

This addressing mode allow you to increment the base register by a specified value,
before indexing takes place. The base register is incremented by the specified value
and the content of the modified base register is referenced in the instruction.

The valid range for a pre-increment value is [1..8]. The base index register may be
X, Y, SP.

Example

 ORG $1000
CST_TBL: DC.B $5, $10, $18, $20, $28, $30
END_TBL: DC.B $0
main:
 CLRA
 CLRB
 LDX #CST_TBL
loop:
 ADDD 2,+X
 CPX #END_TBL
 BNE loop

The base register X is loaded with the address of the table CST_TBL ($1000).
The register X is incremented by 2 (its value is $1002) and the value at this address
© Copyright 1987-2003 Metrowerks

186 Assembler
($18) is added to register D.
X is not equal to the address of END_TBL, so it is incremented again and the con-
tent of address ($1004) is added to D.
This loop is repeated as long as the register X did not reach the end of the table
END_TBL ($1006).

Indexed, post-decrement

This addressing mode allow you to decrement the base register by a specified value,
after indexing takes place. The content of the base register is read and then the base
register is decremented by the specified value.

The valid range for a pre-decrement value is [1..8]. The base index register may be
X, Y, SP.

Example

 ORG $1000
CST_TBL: DC.B $5, $10, $18, $20, $28, $30
END_TBL: DC.B $0
main:
 CLRA
 CLRB
 LDX #END_TBL
loop:
 ADDD 2,X-
 CPX #CST_TBL
 BNE loop

The base register X is loaded with the address of the element following the table
CST_TBL ($1006).
The value at address $1006 ($0) is added to register D and the X is decremented by
2 (its value is $1004).
X is not equal to the address of CST_TBL, so the value at address $1004 is added to
D and X is decremented by two again (its value is now $1002).
This loop is repeated as long as the register X did not reach the beginning of the
table CST_TBL ($1000).

Indexed, post-increment

This addressing mode allow you to increment the base register by a specified value,
after indexing takes place. The content of the base register is read and then the base
register is incremented by the specified value.

The valid range for a pre-increment value is [1..8]. The base index register may be
© Copyright 1987-2003 Metrowerks

Assembler 187
X, Y, SP.

Example

 ORG $1000
CST_TBL: DC.B $5, $10, $18, $20, $28, $30
END_TBL: DC.B $0
main:
 CLRA
 CLRB
 LDX #CST_TBL
loop:
 ADDD 1,X+
 CPX #END_TBL
 BNE loop

The base register X is loaded with the address of the table CST_TBL ($1000).
The value at address $1000 ($5) is added to register D and then the register X is
incremented by 1 (its value is $1001).
X is not equal to the address of END_TBL, so the value at address $1001 ($10) is
added to register D and then the register X is incremented by 1 (its value is $1002).
This loop is repeated as long as the register X did not reach the end of the table
END_TBL ($1006).

Indexed, Accumulator offset

This addressing mode add the value in the specified accumulator to the base index
register to form the address, which is referenced in the instruction. The base index
register may be X, Y, SP or PC. The accumulator may be A, B or D.

Example

main:
 LDAB #$20
 LDX #$600
 LDAA B,X

 LDY #$1000
 STAA $140, Y

The value stored in B ($20) is added to the value of X ($600) to form a memory
address ($620). The value stored at $620 is loaded in accumulator A.

Indexed-Indirect, D Accumulator offset

This addressing mode add the value in D to the base index register to form the
address of a memory location containing a pointer to the memory location refer-
© Copyright 1987-2003 Metrowerks

188 Assembler
enced in the instruction. The base index register may be X, Y, SP or PC.

Example

entry1: NOP
 NOP
entry2: NOP
 NOP
entry3: NOP
 NOP
main:
 LDD #2
 JMP [D, PC]
goto1: DC.W entry1
goto2: DC.W entry2
goto3: DC.W entry3

This example is an example of jump table. The values beginning at goto1 are poten-
tial destination for the jump instruction.
When JMP [D, PC] is executed, PC points to goto1 and D holds the value 2.
The JMP instruction adds the value in D and PC to form the address of goto2.
The CPU reads the address stored there (the address of the label entry2) and jump
there.

Indexed PC vs. Indexed PC Relative Addressing Mode

When using the indexed addressing mode with PC as base register, the macro
assembler allow you to use either Indexed PC (<offset>, PC) or Indexed PC Rela-
tive (<offset>, PCR) notation.

When Indexed PC notation is used, the offset specified in inserted directly in the
opcode.

Example

main:
 LDAB 3, PC
 DC.B $20, $30, $40, $50

In the example above, the register B is loaded with the value stored at address PC +
3 ($50).

When Indexed PC Relative notation is used, the offset between the current location
counter and the specified expression is computed and inserted in the opcode.

Example

main:
 LDAB x4, PCR
© Copyright 1987-2003 Metrowerks

Assembler 189
x1: DC.B $20
x2: DC.B $30
x3: DC.B $40
x4: DC.B $50

In the example above, the register B is loaded with the value at stored at label ‘X4’
($50). The macro assembler evaluates the offset between the current location
counter and the symbol ‘x4’ to determine the value, which must be stored in the
opcode.

Inside of an absolute section, expressions specified in an indexed PC relative
addressing mode may be:

 • a label defined in any absolute section

 • a label defined in any relocatable section

 • an external label (defined in a XREF directive)

 • an absolute EQU or SET label.

Inside of a relocatable section, expressions specified in an indexed PC relative
addressing mode may be:

 • a label defined in any absolute section

 • a label defined in any relocatable section

 • an external label (defined in a XREF directive)

Comment Field

The last field in a source statement is an optional comment field. A semicolon (;) is
the first character in the comment field.

Example:

 NOP ; Comment following an instruction
© Copyright 1987-2003 Metrowerks

190 Assembler
Symbols

User Defined Symbols

Symbols identify memory locations in program or data sections in an assembly
module. A symbol has two attributes:

 • The section, in which the memory location is defined

 • The offset from the beginning of that section.

Symbols can be defined with an absolute or relocatable value, depending on the
section in which the labeled memory location is found. If the memory location is
located within a relocatable section (defined with the SECTION directive), the label
has a relocatable value relative to the section start address.

Symbols can be defined relocatable in the label field of an instruction or data defini-
tion source line.

Example

Sec: SECTION
label1: DC.B 2 ; label1 is assigned offset 0 within Sec.
label2: DC.B 5 ; label2 is assigned offset 2 within Sec.
label3: DC.B 1 ; label3 is assigned offset 7 within Sec.

It is also possible to define a label with either an absolute or a previously defined
relocatable value, using a SET or EQU directives.

Symbols with absolute values must be defined with constant expressions.

Example

Sec: SECTION
label1: DC.B 2 ; label1 is assigned offset 0 within Sec.
label2: EQU 5 ; label2 is assigned value 5.
label3: EQU label1 ; label3 is assigned the address of label1.

External Symbols

A symbol may be made external using the XDEF directive. In another source file a
XREF directives must reference it. Since its address is unknown in the referencing
file, it is considered to be relocatable.

Example

 XREF extLabel ; symbol defined in an other module.
 ; extLabel is imported in the current module
© Copyright 1987-2003 Metrowerks

Assembler 191
 XDEF label ; symbol is made external for other modules
 ; label is exported from the current module
constSec: SECTION
label: DC.W 1, extLabel

Undefined Symbols

If a label is neither defined in the source file, nor declared external using XREF, the
assembler considers it to be undefined and generates an error.

Example:

codeSec: SECTION
entry:
 NOP
 BNE entry
 NOP
 JMP end
 JMP label ; <- Undeclared user defined symbol: label
end:RTS
 END

Reserved Symbols

Reserved symbols cannot be used for user defined symbols.

Register names are reserved identifiers.

For the HC12 processor these reserved identifiers are:

A, B, CCR, D, X, Y, SP, PC, PCR, TEMP1, TEMP2.

Additionally, the keywords HIGH, LOW and PAGE are also a reserved identifier.
It is used to refer to the bits 16-23 of a 24-bit value.

Constants
The assembler supports integer and ASCII string constants:

Integer Constants

The assembler supports four representations of integer constants:
© Copyright 1987-2003 Metrowerks

192 Assembler
 • A decimal constant is defined by a sequence of decimal digits (0-9).
Example 5, 512, 1024

 • A hexadecimal constant is defined by a dollar character ($) followed by a
sequence of hexadecimal digits (0-9, a-f, A-F).
Example $5, $200, $400

 • An octal constant is defined by the commercial at character (@) followed by a
sequence of octal digits (0-7).
Example @5, @1000, @2000

 • A binary constant is defined by a percent character followed by a sequence of
binary digits (0-1).
Example %101, %1000000000, %10000000000

The default base for integer constant is initially decimal, but it can be changed using
the BASE directive. When the default base is not decimal, decimal values cannot be
represented, because they do not have a prefix character.

String Constants

A string constant is a series of printable characters enclosed in single (‘) or double
quote (“). Double quotes are only allowed within strings delimited by single quotes.
Single quotes are only allowed within strings delimited by double quotes.

Example

'ABCD', "ABCD", 'A', "'B", "A'B", 'A"B'

Floating-Point Constants

The macro assembler does not support floating-point constants.

Operators
Operators recognized by the assembler in expressions are:

Addition and Subtraction Operators (binary)

Syntax

Addition: <operand> + <operand>
Subtraction: <operand> – <operand>.
© Copyright 1987-2003 Metrowerks

Assembler 193
Description

The + operator adds two operands, whereas the – operator subtracts them. The oper-
ands can be any expression evaluating to an absolute or relocatable expression.

Addition between two relocatable operands is not allowed.

Example

$A3216 + $42 ; Addition of two absolute operands (= $A3258).
label - $10 ; Subtraction with value of ‘label’

Multiplication, Division and Modulo Operators (binary)

Syntax

Multiplication: <operand> * <operand>
Division: <operand> / <operand>
Modulo: <operand> % <operand>

Description

The * operator multiplies two operands, the / operator performs an integer division
of the two operands and returns the quotient of the operation. The % operator per-
forms an integer division of the two operands and returns the remainder of the oper-
ation

The operands can be any expression evaluating to an absolute expression. The sec-
ond operand in a division or modulo operation cannot be zero.

Example

23 * 4 ; multiplication (= $92).
23 / 4 ; division (= 5).
23 % 4 ; remainder(= 3).

Sign Operators (unary)

Syntax

Plus: +<operand>
Minus: -<operand>

Description

The + operator do not change the operand, whereas the – operator changes the oper-
© Copyright 1987-2003 Metrowerks

194 Assembler
and to its two’s complement. These operators are valid for absolute expression
operands.

Example

+$32 ; (= $32).
-$32 ; (= $CE = -$32).

Shift Operators (binary)

Syntax

Shift left: <operand> << <count>
Shift right: <operand> >> <count>

Description

The << operator shifts its left operand left by the number of bytes specified in the
right operand.

The >> operator shifts its left operand right by the number of bytes specified in the
right operand.

The operands can be any expression evaluating to an absolute expression.

Example

$25 << 2 ; shift left (= $94).
$A5 >> 3 ; shift right(= $14).

Bitwise Operators (binary)

Syntax

Bitwise AND: <operand> & <operand>
Bitwise OR: <operand> | <operand>
Bitwise XOR: <operand> ^ <operand>

Description

The & operator performs an AND between the two operands on bit level.

The | operator performs an OR between the two operands on bit level.

The ^ operator performs a XOR between the two operands on bit level.

The operands can be any expression evaluating to an absolute expression.
© Copyright 1987-2003 Metrowerks

Assembler 195
Example

$E & 3 ; = $2 (%1110 & %0011 = %0010)
$E | 3 ; = $F (%1110 | %0011 = %1111)
$E ^ 3 ; = $D (%1110 ^ %0011 = %1101)

Bitwise Operators (unary)

Syntax

One’s complement: ~<operand>

Description

The ~ operator evaluates the one’s complement of the operand.

The operand can be any expression evaluating to an absolute expression.

Example

~$C ; = $FFFFFFF3 (~%00000000 00000000 00000000 00001100
 =%11111111 11111111 11111111 11110011)

Logical Operators (unary)

Syntax

Logical NOT: !<operand>

Description

The ! operator returns 1 (true) if the operand is 0, otherwise it returns 0 (false).

The operand can be any expression evaluating to an absolute expression.

Example

!(8<5) ; = $1 (TRUE)

Relational Operators (binary)

Syntax

Equal: <operand> = <operand>
 <operand> == <operand>
Not equal: <operand> != <operand>
© Copyright 1987-2003 Metrowerks

196 Assembler
 <operand> <> <operand>
Less than: <operand> < <operand>
Less than or equal: <operand> <= <operand>
Greater than: <operand> > <operand>
Greater than or equal:<operand> >= <operand>

Description

These operators compares the two operands and return 1 if the condition is ‘true’ or
0 if the condition is ‘false’.

The operands can be any expression evaluating to an absolute expression.

Example

3 >= 4 ; = 0 (FALSE)
label = 4 ; = 1 (TRUE) if label is 4, 0 (FALSE) otherwise.
9 < $B ; = 1 (TRUE)

HIGH Operator

Syntax

High Byte: HIGH(<operand>)

Description

This operator returns the high byte of the address of a memory location.

Example:

Assume data1 is a word located at address $1050 in the memory.

LDAA #HIGH(data1)

This instruction will load the immediate value of the high byte of the address of
data1 ($10) in register A.

LDAA HIGH(data1)

This instruction will load the direct value at memory location of the higher byte of
the address of data1 (i.e. the value in memory location $10) in register A.
© Copyright 1987-2003 Metrowerks

Assembler 197
LOW Operator

Syntax

LOW Byte: LOW(<operand>)

Description

This operator returns the low byte of the address of a memory location.

Example:

Assume data1 is a word located at address $1050 in the memory.

LDAA #LOW(data1)

This instruction will load the immediate value of the lower byte of the address of
data1 ($50) in register A.

LDAA LOW(data1)

This instruction will load the direct value at memory location of the lower byte of
the address of data1 (i.e. the value in memory location $50) in register A.

PAGE Operator

Syntax

PAGE Byte: PAGE(<operand>)

Description

This operator returns the page byte of the address of a memory location.

Example:

Assume data1 is a word located at address $28050 in the memory.

LDAA #PAGE(data1)

This instruction will load the immediate value of the page byte of the address of
data1 ($2).

LDAA PAGE(data1)

This instruction will load the direct value at memory location of the page byte of the
address of data1 (i.e. the value in memory location $2).
© Copyright 1987-2003 Metrowerks

198 Assembler
Force Operator (unary)

Syntax

8-bit address: <<operand>
 <operand>.B
16-bit address: ><operand>
 <operand>.W

Description

The < or .B operators force the operand to be an 8-bit operand, whereas the > or .W
operators force the operand to be a 16-bit operand.

< operator may be useful to force the 8-bit immediate, 8-bit indexed or direct
addressing mode for an instruction.

> operator may be useful to force the 16-bit immediate, 16-bit indexed or extended
addressing mode for an instruction.

The operand can be any expression evaluating to an absolute or relocatable expres-
sion.

Example:

<label ; label is a 8-bit address.
label.B ; label is a 8-bit address.
>label ; label is a 16-bit address.
label.W ; label is a 16-bit address.

Operator Precedence

Operator precedence follows the rules for ANSI - C operators.

Operator Description Associativity

() Parenthesis Right to Left

~
+
-

One’s complement
Unary Plus
Unary minus

Left to Right

*
/
%

Integer multiplication
Integer division
Integer modulo

Left to Right
© Copyright 1987-2003 Metrowerks

Assembler 199
Expression
An expression is composed of one or more symbols or constants, which are com-
bined with unary or binary operators. Valid symbols in expressions are:

 • User defined symbols

 • External symbols

 • The special symbol ‘*’ represents the value of the location counter at the begin-
ning of the instruction or directive, even when several arguments are specified. In
the following example, the asterisk represents the location counter at the begin-
ning of the DC directive:
DC.W 1, 2, *-2

Once a valid expression has been fully evaluated by the assembler, it is reduced as
one of the following type of expressions:

 • Absolute expression: The expression has been reduced to an absolute value,
which is independent of the start address of any relocatable section. Thus it is a
constant.

 • Simple relocatable expression: The expression evaluates to an absolute offset
from the start of a single relocatable section.

 • Complex relocatable expression: The expression neither evaluates to an abso-
lute expression nor to a simple relocatable expression. The assembler does not

+
-

Integer addition
Integer subtraction

Left to Right

<<
>>

Shift Left
Shift Right

Left to Right

<
<=
>
>=

Less than
Less or equal to
Greater than
Greater or equal to

Left to Right

=, ==
!=, <>

Equal to
Not Equal to

Left to Right

& Bitwise AND Left to Right

^ Bitwise Exclusive OR Left to Right

| Bitwise OR Left to Right

Operator Description Associativity
© Copyright 1987-2003 Metrowerks

200 Assembler
support such expressions.

All valid user defined symbols representing memory locations are simple relocat-
able expressions. This includes labels specified in XREF directives, which are
assumed to be relocatable symbols.

Absolute Expression

An absolute expression is an expression involving constants or known absolute
labels or expressions . An expression containing an operation between an absolute
expression and a constant value is also an absolute expression.

Example of absolute expression:

Base: SET $100
Label: EQU Base * $5 + 3

Expressions involving the difference between two relocatable symbols defined in
the same file and in the same section evaluate to an absolute expression. An expres-
sion as “label2-label1” can be translated as:

(<offset label2> + <start section address >) –
(<offset label1> + <start section address >)

This can be simplified as:

<offset label2> + <start section address > –
<offset label1> - <start section address>
= <offset label2> - <offset label1>

Example

In the following example the expression “tabEnd-tabBegin” evaluates to an
absolute expression, and is assigned the value of the difference between the offset
of tabEnd and tabBegin in the section DataSec.

DataSec: SECTION
tabBegin: DS.B 5
tabEnd: DS.B 1

ConstSec: SECTION
label: EQU tabEnd-tabBegin ; Absolute expression

CodeSec: SECTION
entry: NOP
© Copyright 1987-2003 Metrowerks

Assembler 201
Simple Relocatable Expression

A simple relocatable expression results from an operation like:

 • <relocatable expression> + <absolute expression>

 • <relocatable expression> - <absolute expression>

 • < absolute expression> + < relocatable expression>

Example

 XREF XtrnLabel
DataSec: SECTION
tabBegin: DS.B 5
tabEnd: DS.B 1
CodeSec: SECTION
entry:
 LDAA tabBegin+2 ; Simple relocatable expression
 BRA *-3 ; Simple relocatable expression
 LDAA XtrnLabel+6 ; Simple relocatable expression

Unary Operation Result

The following table describes the type of an expression according to the operator in
an unary operation:

Binary Operations Result

The following table describes the type of an expression according to the left and
right operators in a binary operation:

Operator Operand Expression

-, !, ~ absolute absolute

-, !, ~ relocatable complex

+ absolute absolute

+ relocatable relocatable

Operator Left Operand
Right
Operand

Expression

- absolute absolute absolute
© Copyright 1987-2003 Metrowerks

202 Assembler
Translation Limits
The following limitations apply to the macro assembler:

 • Floating-point constants are not supported.

 • Complex relocatable expressions are not supported.

 • Lists of operands or symbols must be separated with a comma.

 • Include may be nested up to 50.

 • The maximum line length is 1023.

- relocatable absolute relocatable

- absolute relocatable complex

- relocatable relocatable absolute

+ absolute absolute absolute

+ relocatable absolute relocatable

+ absolute relocatable relocatable

+ relocatable relocatable complex

*, /, %, <<, >>, |, &, ^ absolute absolute absolute

*, /, %, <<, >>, |, &, ^ relocatable absolute complex

*, /, %, <<, >>, |, &, ^ absolute relocatable complex

*, /, %, <<, >>, |, &, ^ relocatable relocatable complex

Operator Left Operand
Right
Operand

Expression
© Copyright 1987-2003 Metrowerks

Assembler 203
Assembler Directives
There are different class of assembler directives. The following tables gives you an
overview over the different directives and their class:

Directive Overview

Section Definition Directives

These directives are used to define new sections.

Constant Definition Directives

These directives are used to define assembly constants.

Data Allocation Directives

These directives are used to allocate variables.

Directive Description

ORG Define an absolute section

SECTION Define a relocatable section

OFFSET Define an offset section

Directive Description

EQU Assign a name to an expression (cannot be redefined)

SET Assign a name to an expression (can be redefined)

Directive Description

DC Define a constant variable

DCB Define a constant block

DS Define storage for a variable

RAD50 RAD50 encoded string constants
© Copyright 1987-2003 Metrowerks

204 Assembler
Symbol Linkage Directives

These directives are used to export or import global symbols.

Assembly Control Directives

These directives are general purpose directives used to control the assembly pro-
cess.

Directive Description

ABSENTRY Specify the application entry point when an absolute file
is generated

XDEF Make a symbol public (Visible from outside)

XREF Import reference to an external symbol.

XREFB Import reference to an external symbol located on the
direct page.

Directive Description

ALIGN Define Alignment Constraint

BASE Specify default base for constant definition

END End of assembly unit

ENDFOR End of FOR block

EVEN Define 2 Byte alignment constraint

FAIL Generate user defined error or warning messages

FOR Repeat assembly blocks

INCLUDE Include text from another file.

LONGEVEN Define 4 Byte alignment constraint
© Copyright 1987-2003 Metrowerks

Assembler 205
Listing File Control Directives

These directives controls the generation of the assembler listing file.

Macro Control Directives

These directives are used for the definition, expansion of macros.

Conditional Assembly Directives

Directive Description

CLIST Specify if all instructions in a conditional assembly
block must be inserted in the listing file or not.

LIST Specify that all subsequent instructions must be inserted
in the listing file.

LLEN Define line length in assembly listing file.

MLIST Specify if the macro expansions must be inserted in the
listing file.

NOLIST Specify that all subsequent instruction must not be
inserted in the listing file.

NOPAGE Disable paging in the assembly listing file.

PAGE Insert page break.

PLEN Define page length in the assembler listing file.

SPC Insert an empty line in the assembly listing file.

TABS Define number of character to insert in the assembler
listing file for a TAB character.

TITLE Define the user defined title for the assembler listing
file.

Directive Description

ENDM End of user defined macro.

MACRO Start of user defined macro.

MEXIT Exit from macro expansion.
© Copyright 1987-2003 Metrowerks

206 Assembler
These directives are used for conditional assembling.

Directive Description

ELSE alternate block

ENDIF End of conditional block

IF Start of conditional block. A boolean expression follows
this directive.

IFC Test if two string expressions are equal.

IFDEF Test if a symbol is defined.

IFEQ Test if an expression is null.

IFGE Test if an expression is greater or equal to 0.

IFGT Test if an expression is greater than 0.

IFLE Test if an expression is less or equal to 0.

IFLT Test if an expression is less than 0.

IFNC Test if two string expressions are different.

IFNDEF Test if a symbol is undefined

IFNE Test if an expression is not null.
© Copyright 1987-2003 Metrowerks

Assembler 207
ABSENTRY - Application Entry Point

Syntax:

ABSENTRY <label>

Synonym:

None

Description

This directive allow to specify the application Entry Point when the assembler gen-
erates directly an absolute file (the option -FA2 ELF/DWARF 2.0 Absolute File
must be enabled).

Using this directive, the entry point of the assembly application is written in the
header of the generated absolute file. When this file is loaded in the debugger, the
line where the entry point label is defined is highlighted in the source window.

This directive is ignored, when the assembler generates an object file.

Note: This instruction does only affect the loading on an application by a debugger. It
tells the debugger which initial PC should be used. In order to start the applica-
tion on a target, initialize the reset vector.

Example

If the example below is assembled using the -FA2 option, an Elf/Dwarf 2.0
Absolute file is generated.
 ABSENTRY entry

 ORG $fffe
Reset: DC.W entry
 ORG $70
entry: NOP
 NOP
main: LDS #$1FFF
 NOP
 BRA main

According to the ABSENTRY directive, the Entry Point will be set to the address of
entry in the header of the absolute file.
© Copyright 1987-2003 Metrowerks

208 Assembler
ALIGN - Align Location Counter

Syntax:

ALIGN <n>

Synonym:

None

Description

This directive forces the next instruction to a boundary that is a multiple of <n>, rel-
ative to the start of the section. The value of <n> must be a positive number
between 1 and 32767. The ALIGN directive can force alignment to any size. The
filling bytes inserted for alignment purpose are initialized with ‘\0’.

ALIGN can be used in code or data sections.

Example

The following example aligns the HEX label to a location, which is a multiple of 16
(in this case, location 00010 (Hex))

Assembler

Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
 1 1
 2 2 000000 6869 6768 DC.B "high"
 3 3 000004 0000 0000 ALIGN 16
 000008 0000 0000
 00000C 0000 0000
 4 4
 5 5
 6 6 000010 7F HEX: DC.B 127 ; HEX is allocated
 7 7 ; on an address,
 8 8 ; which is a
 9 9 ; multiple of 16.
© Copyright 1987-2003 Metrowerks

Assembler 209
BASE - Set Number Base

Syntax:

BASE <n>

Synonym:

None

Description

The directive sets the default number base for constants to <n>. The operand <n>
may be prefixed to indicate its number base; otherwise, the operand is considered to
be in the current default base. Valid values of <n> are 2, 8, 10, 16. Unless a default
base is specified using the BASE directive, the default number base is decimal.

Example

 4 4 base 10 ; default base: decimal
 5 5 000000 64 dc.b 100
 6 6 base 16 ; default base: hex.
 7 7 000001 0A dc.b 0a
 8 8 base 2 ; default base: binary
 9 9 000002 04 dc.b 100
 10 10 000003 04 dc.b %100
 11 11 base @12 ; default base: decimal
 12 12 000004 64 dc.b 100
 13 13 base $a ; default base: decimal
 14 14 000005 64 dc.b 100
 15 15
 16 16 base 8 ; default base: octal
 17 17 000006 40 dc.b 100

Be careful

Even if the base value is set to 16, hexadecimal constants terminated by a ‘D’ must
be prefixed by the $ character, otherwise they are supposed to be decimal constants
in old style format. For example, constant 45D is interpreted as decimal constant
45, not as hexadecimal constant 45D.
© Copyright 1987-2003 Metrowerks

210 Assembler
CLIST - List Conditional Assembly

Syntax:

CLIST [ON | OFF]

Synonym:

None

Description

The CLIST directive controls the listing of subsequent conditional assembly
blocks. It precedes the first directive of the conditional assembly block to which it
applies, and remains effective until the next CLIST directive is read.

When the ON keyword is specified in a CLIST directive, the listing file includes all
directives and instructions in the conditional assembly block, even those which do
not generate code (which are skipped).

When the OFF keyword is entered, only the directives and instructions that gener-
ates code are listed.

A soon as the option –L is activated, the assembler defaults to CLIST ON.

Example

Listing file with CLIST OFF

 CLIST OFF
Try: EQU 0
 IFEQ Try
 LDAA #103
 ELSE
 LDAA #0
 ENDIF

The corresponding listing file is:

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 2 2 0000 0000 Try: EQU 0
 3 3 0000 0000 IFEQ Try
 4 4 000000 8667 LDAA #103
 5 5 ELSE
 7 7 ENDIF
© Copyright 1987-2003 Metrowerks

Assembler 211
Listing file with CLIST ON

When assembling the code:

 CLIST ON
Try: EQU 0
 IFEQ Try
 LDAA #103
 ELSE
 LDAA #0
 ENDIF

The corresponding listing file is:

HC12-Assembler

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 2 2 0000 0000 Try: EQU 0
 3 3 0000 0000 IFEQ Try
 4 4 000000 8667 LDAA #103
 5 5 ELSE
 6 6 LDAA #0
 7 7 ENDIF
© Copyright 1987-2003 Metrowerks

212 Assembler
DC - Define Constant

Syntax:

[<label>:] DC [.<size>] <expression> [, <expression>]...

where <size> = B (default), W or L.

Synonym:

DCW (= 2 byte DC’s), DCL (= 4 byte DC’s), FCB (= DC.B), FDB (== 2 byte
DC’s), FQB (= 4 byte DC’s)

Description

The DC directive defines constants in memory. It can have one or more <expres-
sion> operands, which are separated by commas. The <expression> can con-
tain an actual value (binary, octal, decimal, hexadecimal or ASCII). Alternatively,
the <expression> can be a symbol or expression that can be evaluated by the
assembler as an absolute or simple relocatable expression. One memory block is
allocated and initialized for each expression.

The following rules apply to size specifications for DC directives:

 • DC.B: One byte is allocated for numeric expressions. One byte is allocated per
ASCII character for strings.

 • DC.W: Two bytes are allocated for numeric expressions. ASCII strings are right
aligned on a two-byte boundary.

 • DC.L: Four bytes are allocated for numeric expressions. ASCII strings are right
aligned on a four byte boundary

Example for DC.B:

000000 4142 4344 Label: DC.B "ABCDE"
000004 45
000005 0A0A 010A DC.B %1010, @12, 1,$A

Example for DC.W:

000000 0041 4243 Label: DC.W "ABCDE"
000004 4445
000006 000A 000A DC.W %1010, @12, 1, $A
00000A 0001 000A
© Copyright 1987-2003 Metrowerks

Assembler 213
00000E xxxx DC.W Label

Example for DC.L:

000000 0000 0041 Label: DC.L "ABCDE"
000004 4243 4445
000008 0000 000A DC.L %1010, @12, 1, $A
00000C 0000 000A
000010 0000 0001
000014 0000 000A
000018 xxxx xxxx DC.L Label

If the value in an operand expression exceeds the size of the operand, the value is
truncated and a warning message is generated.

See also

SECTION Directive

ORG Directive

DCB Directive

DS Directive
© Copyright 1987-2003 Metrowerks

214 Assembler
DCB - Define Constant Block

Syntax:

[<label>:] DCB [.<size>] <count>, <value>

where <size> = B (default), W or L.

Description

The DCB directive causes the assembler to allocate a memory block initialized with
the specified <value>. The length of the block is <size> * <count>.

<count> may not contain undefined, forward, or external references. It may range
from 1 to 4096.

The value of each storage unit allocated is the sign-extended expression <value>,
which may contain forward references. The <count> cannot be relocatable. This
directive does not perform any alignment.

The following rules apply to size specifications for DCB directives:

 • DCB.B: One byte is allocated for numeric expressions.

 • DCB.W: Two bytes are allocated for numeric expressions.

 • DCB.L: Four bytes are allocated for numeric expressions.

Example

000000 FFFF FF Label: DCB.B 3, $FF
000003 FFFE FFFE DCB.W 3, $FFFE
000007 FFFE
000009 0000 FFFE DCB.L 3, $FFFE
00000D 0000 FFFE
000011 0000 FFFE

See also

SECTION Directive

ORG Directive

DC Directive

DS Directive
© Copyright 1987-2003 Metrowerks

Assembler 215
© Copyright 1987-2003 Metrowerks

216 Assembler
DS - Define Space

Syntax:

[<label>:] DS [.<size>] <count>

where <size> = B (default), W or L.

Synonym:

RMB (= DS.B)
RMD (2 bytes)
RMQ (4 bytes)

Description

The DS directive is used to reserve memory for variables. The content of the mem-
ory reserved is not initialized. The length of the block is <size> * <count>.

<count> may not contain undefined, forward, or external references. It may range
from 1to 4096.

Example

Counter: DS.B 2 ; 2 continuous bytes in memory
 DS.B 2 ; 2 continuous bytes in memory
 ; can only be accessed trough the label Counter
 DS.W 5 ; 5 continuous words in memory

The label ‘Counter’ references the lowest address of the defined storage area.

Note: Storage allocated with a DS directive may end up in constant data section or
even in a code section, if the same section contains constants or code as well.
The assembler allocates only a complete section at once.
Example:

; How it should NOT be done ...
Counter: DS 1 ; 1 byte space
InitialCounter: DC.B $f5 ; constant $f5
main: NOP ; NOP instruction

In the example code above, a variable, a constant and code are put
into the same section. Because code has to be in ROM, all 3 ele-
ments are put into ROM. In order to allocate them separately, put
them in different sections:
© Copyright 1987-2003 Metrowerks

Assembler 217
; How it should be done ...
DataSecti: SECTION ; section for variables
Counter: DS 1 ; 1 byte space

ConstSect: SECTION ; section for constants
InitialCounter: DC.B $f5 ; constant $f5

CodeSect: SECTION ; section for code
main: NOP ; NOP instruction

An ORG directive does also start a new section.

See also

SECTION Directive

ORG Directive

DC Directive
© Copyright 1987-2003 Metrowerks

218 Assembler
ELSE - Conditional Assembly

Syntax:

IF <condition>
 [<assembly language statements>]
[ELSE]
 [<assembly language statements>]
ENDIF

Synonym:

ELSEC

Description

If <condition> is true, the statements between IF and the corresponding ELSE
directive are assembled (generate code).

If <condition> is false, the statements between ELSE and the corresponding
ENDIF directive are assembled. Nesting of conditional blocks is allowed. The max-
imum level of nesting is limited by the available memory at assembly time.

Example

The following is an example of the use of conditional assembly directives:

Try: EQU 1
 IF Try != 0
 LDAA #103
 ELSE
 LDAA #0
 ENDIF

The value of Try determines the instruction to be assembled in the program. As
shown, the “ldaa #103” instruction is assembled. Changing the operand of the
“equ” directive to one causes the “ldaa #0” instruction to be assembled instead.
The following shows the listing provided by the assembler for these lines of code:

Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
 1 1 0000 0001 Try: EQU 1
 2 2 0000 0001 IF Try != 0
 3 3 000000 8667 LDAA #103
 4 4 ELSE
© Copyright 1987-2003 Metrowerks

Assembler 219
 6 6 ENDIF
© Copyright 1987-2003 Metrowerks

220 Assembler
END - End Assembly

Syntax:

END

Synonym:

None

Description

The END directive indicates the end of the source code. Subsequent source state-
ments in this file are ignored. The END directive in included files skips only subse-
quent source statements in this include file. The assembly continues in the including
file in a regular way.

Example

Source File

Label: DC.W $1234
 DC.W $5678
 END
 DC.W $90AB ; no code generated
 DC.W $CDEF ; no code generated

Generated listing file

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 000000 1234 Label: DC.W $1234
 2 2 000002 5678 DC.W $5678
© Copyright 1987-2003 Metrowerks

Assembler 221
ENDFOR - End of FOR block

Syntax:

ENDFOR

Synonym:

None

Description

The ENDFOR directive indicates the end of a FOR block.

Note: The FOR directive is only available when the assembly option -Compat=b is
used. By default, the FOR directive is not supported.

Example

see example of directive FOR.

See also

Directive FOR

Option -Compat
© Copyright 1987-2003 Metrowerks

222 Assembler
ENDIF - End Conditional Assembly

Syntax:

ENDIF

Synonym:

ENDC

Description

The ENDIF directive indicates the end of a conditional block. Nesting of condi-
tional blocks is allowed. The maximum level of nesting is limited by the available
memory at assembly time.

Example

see example of directive IF.
© Copyright 1987-2003 Metrowerks

Assembler 223
ENDM - End Macro Definition

Syntax:

ENDM

Synonym:

None

Description

The ENDM directive terminates the macro definition.

Example

cpChar: MACRO
 LDAA \1
 STAA \2
 ENDM
DataSec: SECTION
char1: DS 1
char2: DS 1
CodeSec: SECTION
Start:
 cpChar char1, char2
© Copyright 1987-2003 Metrowerks

224 Assembler
EQU - Equate Symbol Value

Syntax:

<label>: EQU <expression>

Synonym:

None

Description

The EQU directive assigns the value of the <expression> in the operand field
to <label>. The <label> and <expression> fields are both required, and
the <label> cannot be defined anywhere else in the program. The <expres-
sion> cannot include a symbol, which is undefined or not defined yet.

The EQU directive does not allow forward references.

Example

 0000 0014 MaxElement: EQU 20
 0000 0050 MaxSize: EQU MaxElement * 4

 000000 Time: DS.B 3
 0000 0000 Hour: EQU Time ; first byte addr.
 0000 0002 Minute: EQU Time+1; second byte addr
 0000 0004 Second: EQU Time+2; third byte addr
© Copyright 1987-2003 Metrowerks

Assembler 225
EVEN - Force Word Alignment

Syntax:

EVEN

Synonym:

None

Description

This directive forces the next instruction to the next even address relative to the start
of the section. EVEN is an abbreviation for ALIGN 2. Some processors require word
and long word operations to begin at even address boundaries. In such cases, the use
of the EVEN directive ensures correct alignment, omission of the directive can
result in an error message.

Example

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 000000 ds.b 4
 2 2 ; location count has an even value
 3 3 ; no padding byte inserted.
 4 4 even
 5 5 000004 ds.b 1
 6 6 ; location count has an odd value
 7 7 ; one padding byte inserted.
 8 8 000005 even
 9 9 000006 ds.b 3
 10 10 ; location count has an odd value
 11 11 ; one padding byte inserted.
 12 12 000009 even
 13 13 0000 000A aaa: equ 10
© Copyright 1987-2003 Metrowerks

226 Assembler
FAIL - Generate Error Message

Syntax:

FAIL <arg> | <string>

Synonym:

None

Description

The FAIL directive comes in three flavors, depending on the operand specified:

 • If <arg> is a number in the range [0– 499], the assembler generates an error mes-
sage, including the line number and argument of the directive. The assembler
does not generate an object file.

 • If <arg> is a number in the range [500–$FFFFFFFF], the assembler generates a
warning message, including the line number and argument of the directive.

 • If a string is supplied as operand, the assembler generates an error message,
including the line number and the <string>. The assembler does not generate
any object file.

The FAIL directive is primarily intended for use with conditional assembly, to
detect user defined errors or warning conditions.

Example:

The following portion of code:

cpChar: MACRO
 IFC "\1", ""
 FAIL 200
 MEXIT
 ELSE
 LDAA \1
 ENDIF

 IFC "\2", ""
 FAIL 600
 ELSE
 STAA \2
 ENDIF
 ENDM
© Copyright 1987-2003 Metrowerks

Assembler 227
codSec: SECTION
Start:
 cpChar char1

Generates the following error message:

>> in "C:\metrowerks\demo\warnfail.asm", line 13, col 19, pos 226

 IFC "\2", ""
 FAIL 600
 ^
WARNING A2332: FAIL found
Macro Call : FAIL 600

The following portion of code:

cpChar: MACRO
 IFC "\1", ""
 FAIL 200
 MEXIT
 ELSE
 LDAA \1
 ENDIF

 IFC "\2", ""
 FAIL 600
 ELSE
 STAA \2
 ENDIF
 ENDM
codeSec: SECTION
Start:
 cpChar , char2

Generates the following error message:

>> in "C:\metrowerks\demo\errfail.asm", line 6, col 19, pos 96

 IFC "\1", ""
 FAIL 200
 ^
ERROR A2329: FAIL found
Macro Call : FAIL 200

The following portion of code:

cpChar: MACRO
 IFC "\1", ""
© Copyright 1987-2003 Metrowerks

228 Assembler
 FAIL "A character must be specified as first parameter"
 MEXIT
 ELSE
 LDAA \1
 ENDIF

 IFC "\2", ""
 FAIL 600
 ELSE
 STAA \2
 ENDIF
 ENDM
codeSec: SECTION
Start:
 cpChar , char2

Generates the following error message:

>> in "C:\metrowerks\demo\failmes.asm", line 7, col 17, pos 110

 IFC "\1", ""
 FAIL "A character must be specified as first parameter"
 ^
ERROR A2338: A character must be specified as first parameter
Macro Call : FAIL "A character must be specified as first parameter"
© Copyright 1987-2003 Metrowerks

Assembler 229
FOR - Repeat assembly block

Syntax:

FAIL <arg> | <string>

Synonym:

None

Description

The FOR directive is an inline macro, since it can generate multiple lines of assem-
bly code from only one line of input code.

FOR takes an absolute expression and assembles the portion of code following it,
the number of time represented by the expression. The FOR expression may be
either a constant or a label previously defined using EQU or SET.

Note: The FOR directive is only available when the assembly option -Compat=b is
used. By default, the FOR directive is not supported.

Example:

 FOR label=2 TO 6
 DC.B label*7
 ENDFOR

Following code is generated by the above source:

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 FOR label=2 TO 6
 2 2 DC.B label*7
 3 3 ENDFOR
 4 2 000000 0E DC.B label*7
 5 3 ENDFOR
 6 2 000001 15 DC.B label*7
 7 3 ENDFOR
 8 2 000002 1C DC.B label*7
 9 3 ENDFOR
 10 2 000003 23 DC.B label*7
 11 3 ENDFOR
 12 2 000004 2A DC.B label*7
 13 3 ENDFOR
© Copyright 1987-2003 Metrowerks

230 Assembler
See also

Directive ENDFOR

Option -Compat
© Copyright 1987-2003 Metrowerks

Assembler 231
IF - Conditional Assembly

Syntax:

IF <condition>
 [<assembly language statements>]
[ELSE]
 [<assembly language statements>]
ENDIF

Synonym:

None

Description

If <condition> is true, the statements immediately following the IF directive
are assembled. Assembly continues until the corresponding ELSE or ENDIF direc-
tive is reached. Then all the statements until the corresponding ENDIF directive are
ignored. Nesting of conditional blocks is allowed. The maximum level of nesting is
limited by the available memory at assembly time.

The expected syntax for <condition> is:

<condition> := <expression> <relation> <expression>
<relation> := "=" | "!=" | " >=" | ">" | "<=" | "<" | "<>"
The <expression> must be absolute (It must be known at assembly
time).

Example

The following is an example of the use of conditional assembly directives:

Try: EQU 0
 IF Try != 0
 LDAA #103
 ELSE
 LDAA #0
 ENDIF

The value of Try determines the instruction to be assembled in the program. As
shown, the “ldaa #0” instruction is assembled. Changing the operand of the “equ”
directive to one causes the “ldaa #103” instruction to be assembled instead. The
© Copyright 1987-2003 Metrowerks

232 Assembler
following shows the listing provided by the assembler for these lines of code:

 1 1 0000 0000 Try: EQU 0
 2 2 0000 0000 IF Try != 0
 4 4 ELSE
 4 4 000000 8667 LDAA #103
 6 6 ENDIF
© Copyright 1987-2003 Metrowerks

Assembler 233
IFcc - Conditional Assembly

Syntax:

IFcc <condition>
 [<assembly language statements>]
[ELSE]
 [<assembly language statements>]
ENDIF

Synonym:

None

Description

These directives can be replaced by the IF directive Ifcc <condition> is true,
the statements immediately following the Ifcc directive are assembled. Assembly
continues until the corresponding ELSE or ENDIF directive is reached, after which
assembly moves to the statements following the ENDIF directive. Nesting of condi-
tional blocks is allowed. The maximum level of nesting is limited by the available
memory at assembly time.

The following table lists the available conditional types:

Ifcc Condition Meaning

ifeq <expression> if <expression> == 0

ifne <expression> if <expression> != 0

iflt <expression> if <expression> < 0

ifle <expression> if <expression> <= 0

ifgt <expression> if <expression> > 0

ifge <expression> if <expression> >= 0

ifc <string1>, <string2> if <string1> == <string2>

ifnc <string1>, <string2> if <string1> != <string2>

ifdef <label> if <label> was defined

ifndef <label> if <label> was not defined
© Copyright 1987-2003 Metrowerks

234 Assembler
Example

The following is an example of the use of conditional assembly directives:

Try: EQU 0
 IFNE Try
 LDAA #103
 ELSE
 LDAA #0
 ENDIF

The value of Try determines the instruction to be assembled in the program. As
shown, the “ldaa #0” instruction is assembled. Changing the directive to “IFEQ”
causes the “ldaa #103” instruction to be assembled instead. The following shows
the listing provided by the assembler for these lines of code:

 1 1 0000 0000 Try: EQU 0
 2 2 0000 0000 IFNE Try
 4 4 ELSE
 5 5 000000 8600 LDAA #0
 6 6 ENDIF
© Copyright 1987-2003 Metrowerks

Assembler 235
INCLUDE - Include Text from Another File

Syntax:

INCLUDE <file specification>

Synonym:

None

Description

This directive causes the included file to be inserted in the source input stream. The
<file specification> is not case sensitive, and must be enclosed in quota-
tion marks.

The assembler attempts to open <file specification> relative to the cur-
rent working directory. If the file is not found there, then it is searched for relative to
each path specified in the environment variable GENPATH.

Example

INCLUDE "..\LIBRARY\macros.inc"
© Copyright 1987-2003 Metrowerks

236 Assembler
LIST - Enable Listing

Syntax

LIST

Synonym:

None

Description

Specifies that the following instructions must be inserted in the listing and in the
debug file. This option is selected by default. The listing file is only generated if the
option -L is specified on the command line.

The source text following the LIST directive is listed until a NOLIST or an END is
reached

This directive is not written to the listing and debug file.

Example:

The following portion of code:

aaa: NOP

 LIST
bbb: NOP
 NOP

 NOLIST
ccc: NOP
 NOP

 LIST
ddd: NOP
 NOP

generates the following listing file:

Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
 1 1 000000 A7 aaa: NOP
 2 2
 4 4 000001 A7 bbb: NOP
© Copyright 1987-2003 Metrowerks

Assembler 237
 5 5 000002 A7 NOP
 6 6
 12 12 000005 A7 ddd: NOP
 13 13 000006 A7 NOP

See Also

NOLIST
© Copyright 1987-2003 Metrowerks

238 Assembler
LLEN - Set Line Length

Syntax:

LLEN <n>

Synonym:

None

Description

Sets the number of characters from the source line that are included on the listing
line to <n>. The values allowed for <n> are in the range [0 – 132]. If a value
smaller than 0 is specified, the line length is set to 0. If a value bigger than 132 is
specified, the line length is set to 132.

Lines of the source file that exceed the specified number of characters are truncated
in the listing file.

Example:

The following portion of code:

 DC.B $55

 LLEN 32
 DC.W $1234, $4567

 LLEN 24
 DC.W $1234, $4567
 EVEN

generates the following listing file:

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 000000 55 DC.B $55
 2 2
 4 4 000001 1234 4567 DC.W $1234, $4567
 5 5
 7 7 000005 1234 4567 DC.W $1234, $
 8 8 000009 00 EVEN
© Copyright 1987-2003 Metrowerks

Assembler 239
LONGEVEN - Forcing Long-Word Alignment

Syntax:

LONGEVEN

Synonym:

None

Description

This directive forces the next instruction to the next long-word address relative to
the start of the section. LONGEVEN is an abbreviation for ALIGN 4.

Example

 2 2 000000 01 dcb.b 1,1
 ; location counter is not a multiple of 4, 3 filling
 ; bytes are required.
 3 3 000001 0000 00 longeven
 4 4 000004 0002 0002 dcb.w 2,2
 ; location counter is already a multiple of 4, no filling
 ; bytes are required.
 5 5 longeven
 6 6 000008 0202 dcb.b 2,2
 7 7 ; following is for text section
 8 8 s27 SECTION 27
 9 9 000000 9D nop
 ; location counter is not a multiple of 4, 3 filling
 ; bytes are required.
 10 10 000001 0000 00 longeven
 11 11 000004 9D nop
© Copyright 1987-2003 Metrowerks

240 Assembler
MACRO - Begin Macro Definition

Syntax:

<label>: MACRO

Synonym:

None

Description

The <label> of the MACRO directive is the name by which the macro is called.
This name must not be a processor machine instruction or assembler directive
name. For more information on macros, see the Macros chapter.

Example

 XDEF Start
MyData: SECTION
char1: DS.B 1
char2: DS.B 1
cpChar: MACRO
 LDAA \1
 STAA \2
 ENDM
CodeSec: SECTION
Start:
 cpChar char1, char2
© Copyright 1987-2003 Metrowerks

Assembler 241
MEXIT - Terminate Macro Expansion

Syntax:

MEXIT

Synonym:

None

Description

MEXIT is usually used together with conditional assembly within a macro. In that
case it may happen that the macro expansion should terminate prior to termination
of the macro definition. The MEXIT directive causes macro expansion to skip any
remaining source lines ahead of the ENDM directive.

Example

The following portion of code:

 XDEF entry

storage: EQU $00FF

save: MACRO ; Start macro definition
 LDX #storage
 LDAA \1
 STAA 0,x ;save first arg
 LDAA \2
 STAA 2,x ;save second arg
 IFC '\3', '';is there a 3rd arg?
 MEXIT ; no, exit from macro.
 ENDC
 LDAA \3 ; save third arg
 STAA 4,X
 ENDM ; End of macro definition

datSec: SECTION
char1: ds.b 1
char2: ds.b 1

codSec: SECTION
entry:
 save char1, char2
© Copyright 1987-2003 Metrowerks

242 Assembler
generates the following listing file:

HC12-Assembler

 Abs.Rel. Loc Obj. code Source line
 -------- ------ --------- -----------
 1 1 XDEF entry
 2 2
 3 3 0000 00FF storage: EQU $00FF
 4 4
 5 5 save: MACRO ; Start macro definition
 6 6 LDX #storage
 7 7 LDAA \1
 8 8 STAA 0,x ;save first arg
 9 9 LDAA \2
 10 10 STAA 2,x ;save second arg
 11 11 IFC '\3', '';is there a 3rd arg?
 12 12 MEXIT ; no, exit from macro.
 13 13 ENDC
 14 14 LDAA \3 ; save third arg
 15 15 STAA 4,X
 16 16 ENDM ; End of macro definition
 17 17
 18 18 datSec: SECTION
 19 19 000000 char1: ds.b 1
 20 20 000001 char2: ds.b 1
 21 21
 22 22 codSec: SECTION
 23 23 entry:
 24 24 save char1, char2
 25 6m 000000 CE 00FF + LDX #storage
 26 7m 000003 B6 xxxx + LDAA char1
 27 8m 000006 6A00 + STAA 0,x ; save first arg
 28 9m 000008 B6 xxxx + LDAA char2
 29 10m 00000B 6A02 + STAA 2,x ; save second arg
 30 11m 0000 0001 + IFC '', '' ;is there a 3rd arg?
 32 12m + MEXIT ;no, exit from macro.
 33 13m + ENDC
 34 14m + LDAA ; save third argument
 35 15m + STAA 4,X
© Copyright 1987-2003 Metrowerks

Assembler 243
MLIST - List Macro Expansions

Syntax:

MLIST [ON | OFF]

Description

When the ON keyword is entered with an MLIST directive, the assembler includes
the macro expansions in the listing and in the debug file.

When the OFF keyword is entered, the macro expansions are omitted from the list-
ing and from the debug file.

This directive is not written to the listing and debug file, and the default value is ON.

Synonym:

None

Example

For the following code, with MLIST ON,

 XDEF entry
 MLIST ON
swap: MACRO
 LDD \1
 LDX \2
 STD \2
 STX \1
 ENDM
codSec: SECTION
entry:
 LDD #$F0
 LDX #$0F
main:
 STD first
 STX second
 swap first, second
 NOP
 BRA main
datSec: SECTION
first: DS.W 1
second: DS.W 1
© Copyright 1987-2003 Metrowerks

244 Assembler
the assembler listing file is:

HC12-Assembler

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 XDEF entry
 3 3 swap: MACRO
 4 4 LDD \1
 5 5 LDX \2
 6 6 STD \2
 7 7 STX \1
 8 8 ENDM
 9 9 codSec: SECTION
 10 10 entry:
 11 11 000000 CC 00F0 LDD #$F0
 12 12 000003 CE 000F LDX #$0F
 13 13 main:
 14 14 000006 7C xxxx STD first
 15 15 000009 7E xxxx STX second
 16 16 swap first, second
 17 4m 00000C FC xxxx + LDD first
 18 5m 00000F FE xxxx + LDX second
 19 6m 000012 7C xxxx + STD second
 20 7m 000015 7E xxxx + STX first
 21 17 000018 A7 NOP
 22 18 000019 20EB BRA main
 23 19 datSec: SECTION
 24 20 000000 first: DS.W 1
 25 21 000002 second: DS.W 1

For the same code, with MLIST OFF, the listing file is:

HC12-Assembler

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 XDEF entry
 3 3 swap: MACRO
 4 4 LDD \1
 5 5 LDX \2
 6 6 STD \2
 7 7 STX \1
 8 8 ENDM
 9 9 codSec: SECTION
 10 10 entry:
 11 11 000000 CC 00F0 LDD #$F0
 12 12 000003 CE 000F LDX #$0F
 13 13 main:
© Copyright 1987-2003 Metrowerks

Assembler 245
 14 14 000006 7C xxxx STD first
 15 15 000009 7E xxxx STX second
 16 16 swap first, second
 21 17 000018 A7 NOP
 22 18 000019 20EB BRA main
 23 19 datSec: SECTION
 24 20 000000 first: DS.W 1
 25 21 000002 second: DS.W 1

The MLIST directive does not appear in the listing file. When a macro is called
after a MLIST ON, it is expanded in the listing file. If the MLIST OFF is encoun-
tered before the macro call, the macro is not expanded in the listing file.
© Copyright 1987-2003 Metrowerks

246 Assembler
NOLIST - Disable Listing

Syntax:

NOLIST

Synonym:

NOL

Description

Suppresses the printing of the following instructions in the assembly listing and
debug file until a LIST directive is reached.

Example

The following portion of code:

aaa: NOP

 LIST
bbb: NOP
 NOP

 NOLIST
ccc: NOP
 NOP

 LIST
ddd: NOP
 NOP

generates the following listing file:

HC12-Assembler

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 000000 A7 aaa: NOP
 2 2
 4 4 000001 A7 bbb: NOP
 5 5 000002 A7 NOP
 6 6
 12 12 000005 A7 ddd: NOP
 13 13 000006 A7 NOP
© Copyright 1987-2003 Metrowerks

Assembler 247
See Also

LIST Directive
© Copyright 1987-2003 Metrowerks

248 Assembler
NOPAGE - Disable Paging

Syntax:

NOPAGE

Synonym:

None

Description

Disables pagination in the listing file. Program lines are listed continuously, without
headings or top or bottom margins.
© Copyright 1987-2003 Metrowerks

Assembler 249
OFFSET - Create Absolute Symbols

Syntax:

OFFSET <expression>

Synonym:

None

Description

The OFFSET directive declares an offset section and initializes the location counter
to the value specified in <expression>. The <expression> must be absolute
and may not contain references to external, undefined or forward defined labels.

An offset section is useful to simulate data structures or a stack frame.

Example:

The following example shows how you can use the OFFSET directive to access ele-
ments of a structure.

 OFFSET 0
ID: DS.B 1
COUNT: DS.W 1
VALUE: DS.L 1
SIZE: EQU *

DataSec: SECTION
Struct: DS.B SIZE

CodeSec: SECTION
entry:
 LDX #Struct
 LDAA #0
 STAA ID, X
 INC COUNT, X
 INCA
 STAA VALUE, X

When a statement affecting the location counter other than EVEN, LONGEVEN,
ALIGN or DS is encountered after the OFFSET directive, the offset section is
ended up. The preceding section is activated again, and the location counter is
restored to the next available location in this section.
© Copyright 1987-2003 Metrowerks

250 Assembler
Example:

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 OFFSET 0
 2 2 000000 ID: DS.B 1
 3 3 000001 COUNT: DS.W 1
 4 4 000003 VALUE: DS.L 1
 5 5 0000 0007 SIZE: EQU *
 6 6
 7 7 DataSec: SECTION
 8 8 000000 Struct: DS.B SIZE
 9 9
 10 10 CodeSec: SECTION
 11 11 entry:
 12 12 000000 CExx xx LDX #Struct
 13 13 000003 8600 LDAA #0
 14 14 000005 6A00 STAA ID, X
 15 15 000007 6201 INC COUNT, X
 16 16 000009 42 INCA
 17 17 00000A 6A03 STAA VALUE, X

In the example above, the symbol ‘cst3’, defined after the OFFSET
directive, defines a constant byte value. This symbol is appended to
the section ‘ConstSec’, which precedes the OFFSET directive.
© Copyright 1987-2003 Metrowerks

Assembler 251
ORG - Set Location Counter

Syntax:

ORG <expression>

Synonym:

None

Description

The ORG directive sets the location counter to the value specified by <expres-
sion>. Subsequent statements are assigned memory locations starting with the
new location counter value. The <expression> must be absolute and may not
contain any forward, undefined, or external references. The ORG directive generates
an internal section, which is absolute (see the Sections chapter).

Example

 org $2000
b1: nop
b2: rts

Label b1 is located at address $2000 and label b2 at address $2001:

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 org $2000
 2 2 a002000 A7 b1: nop
 3 3 a002001 3D b2: rts

See also

SECTION Directive

DC Directive

DCB Directive

DS Directive
© Copyright 1987-2003 Metrowerks

252 Assembler
PAGE - Insert Page Break

Syntax:

PAGE

Synonym:

None

Description

Insert a page break in the assembly listing.

Example

The following portion of code:

code: SECTION
 DC.B $00,$12
 DC.B $00,$34
 PAGE
 DC.B $00,$56
 DC.B $00,$78

generates the following listing file:

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 code: SECTION
 2 2 000000 0012 DC.B $00,$12
 3 3 000002 0034 DC.B $00,$34

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 5 5 000004 0056 DC.B $00,$56
 6 6 000006 0078 DC.B $00,$78
© Copyright 1987-2003 Metrowerks

Assembler 253
PLEN - Set Page Length

Syntax:

PLEN <n>

Synonym:

None

Description

Sets the listings page length to <n> lines. <n> may range from 10 to 10000. If the
number of lines already listed on the current page is greater than or equal to <n>,
listing will continue on the next page with the new page length setting.

The default page length is 65 lines.
© Copyright 1987-2003 Metrowerks

254 Assembler
RAD50 - Rad50 encoded string constants

Syntax:

RAD50 <str>[, cnt]

Synonym:

None

Description

This directive places strings encoded with the RAD50 encoding into constants. The
RAD50 encoding does place 3 string characters out of a reduced character set into 2
bytes. It therefore saves memory when comparing it with a plain ASCII representa-
tion. It also has some drawbacks, however. The only 40 different character values
are supported and the strings have to be decoded before they can be used. This
decoding does include some computations including divisions (not just shifts) and
is therefore rather expensive.

The encode takes three bytes, looks them up in a string table.

unsigned short LookUpPos(char x) {
 static const char translate[]=
 " ABCDEFGHIJKLMNOPQRSTUVWXYZ$.?0123456789";
 const char* pos= strchr(translate, x);
 if (pos == NULL) { EncodingError(); return 0; }
 return pos-translate;
}
unsigned short Encode(char a, char b, char c) {
 return LookUpPos(a)*40*40 + LookUpPos(b)*40 + LookUpPos(c);
}

If the remaining string is shorter than 3 bytes, it is filled with spaces (which corre-
spond to the RAD50 character 0).

The optional argument cnt can be used to explicitly state how many 16 bit values
should be written. If the string is shorter than 3*cnt, then it is filled with spaces.

See the example C code below how to decode it.

Example:

The data in the following file:
© Copyright 1987-2003 Metrowerks

Assembler 255
 XDEF rad50, rad50Len
DataSection SECTION
rad50:
 RAD50 "Hello World"
rad50Len: EQU (*-rad50)/2

assembles to the following data:

 $32D4 $4D58 $922A $4BA0

This C code takes the data and actually prints “Hello World”:

#include "stdio.h"
extern unsigned short rad50[];
extern int rad50Len; /* address is value. Exported asm label */
#define rad50len ((int) &rad50Len)

void printRadChar(char ch) {
 static const char translate[]=
 " ABCDEFGHIJKLMNOPQRSTUVWXYZ$.?0123456789";
 char asciiChar= translate[ch];
 (void)putchar(asciiChar);
}
void PrintHallo(void) {
 unsigned char values= rad50len;
 unsigned char i;
 for (i=0; i < values; i++) {
 unsigned short val= rad50[i];
 printRadChar(val / (40 * 40));
 printRadChar((val / 40) % 40);
 printRadChar(val % 40);
 }
}

© Copyright 1987-2003 Metrowerks

256 Assembler
SECTION - Declare Relocatable Section

Syntax:

<name>: SECTION [SHORT][<number>]

Synonym:

None

Description

This directive declares a relocatable section and initializes the location counter for
the following code. The first SECTION directive for a section sets the location
counter to zero. Subsequent SECTION directives for that section restore the loca-
tion counter to the value that follows the address of the last code in the section.

<name> is the name assigned to the section. Two SECTION directives with the
same name specified refer to the same section.

<number> is optional and is only specified for compatibility with MASM assem-
bler.

A section is a code section when it contains at least one assembly instruction. It is
considered to be a constant section if it contains only DC or DCB directives. A sec-
tion is considered to be a data section when it contains at least a DS directive or if it
is empty.

Example

The following example demonstrates the definition of a section aaa, which is split-
ted in two blocks, with section bbb in-between them.

The location counter associated with the label zz is 1, because a NOP instruction
was already defined in this section at label xx.

Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------

 1 1 aaa: SECTION 4
 2 2 000000 A7 xx: NOP
 3 3 bbb: SECTION 5
 4 4 000000 A7 yy: NOP
© Copyright 1987-2003 Metrowerks

Assembler 257
 5 5 000001 A7 NOP
 6 6 000002 A7 NOP
 7 7 aaa: SECTION 4
 8 8 000001 A7 zz: NOP

The optional qualifier SHORT specifies that the section is a short section, That
means than the objects defined there can be accessed using the direct addressing
mode.

Example:

The following example demonstrates the definition and usage of a SHORT section.

In following example, the symbol data is accessed using the direct addressing
mode.

HC12-Assembler
 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 dataSec: SECTION SHORT
 2 2 000000 data: DS.B 1
 3 3
 4 4 codeSec: SECTION
 5 5
 6 6 entry:
 7 7 000000 87 CLRA
 8 8 000001 5Axx STAA data

See also

ORG Directive

DC Directive

DCB Directive

DS Directive
© Copyright 1987-2003 Metrowerks

258 Assembler
SET - Set Symbol Value

Syntax:

<label>: SET <expression>

Synonym:

None

Description

Similar to the EQU directive, the SET directive assigns the value of the <expres-
sion> in the operand field to the symbol in the <label> field. The <expres-
sion> must resolve as an absolute expression and cannot include a symbol that is
undefined or not yet defined. The <label> is an assembly time constant, SET
does not generate any machine code.

The value is temporary; a subsequent SET directive can redefine it.

Example

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 0000 0002 count: SET 2
 2 2 000000 02 one: DC.B count
 3 3
 4 4 0000 0001 count: SET count-1
 5 5 000001 01 DC.B count
 6 6
 7 7 0000 0001 IFNE count
 8 8 0000 0000 count: SET count-1
 9 9 ENDIF
 10 10 000002 00 DC.B count

The value associated with the label count is decremented after each DC.B instruc-
tion.
© Copyright 1987-2003 Metrowerks

Assembler 259
SPC - Insert Blank Lines

Syntax:

SPC <count>

Synonym:

None

Description

Inserts <count> blank lines in the assembly listing. <count> may range from 0
to 65. This has the same effect as writing that number of blank lines in the assembly
source. A blank line is a line containing only a carriage return.
© Copyright 1987-2003 Metrowerks

260 Assembler
TABS - Set Tab Length

Syntax:

TABS <n>

Synonym:

None

Description

Sets the tab length to <n> spaces. The default tab length is eight. <n> may range
from 0 to 128.
© Copyright 1987-2003 Metrowerks

Assembler 261
TITLE - Provide Listing Title

Syntax:

TITLE "title"

Synonym:

TTL

Description

Print the <title> on the head of every page of the listing file. This directive must
be the first source code line. A title consists of a string of characters enclosed in
quotes (").

The title specified will be written on the top of each page in the assembly listing
file.
© Copyright 1987-2003 Metrowerks

262 Assembler
XDEF - External Symbol Definition

Syntax:

XDEF [.<size>] <label>[,<label>]...

where <size> = W(default)

Synonym:

GLOBAL, PUBLIC

Description

This directive specifies labels defined in the current module that are to be passed to
the linker as labels that can be referenced by other modules linked to the current
module.

The number of symbols enumerated in a XDEF directive is only limited by the
memory available at assembly time.

Example

 XDEF Count, main
 ;; variable Count can be referenced in other modules,
 ;; same for label main. Note that linker and assembler
 ;; are case-sensitive, i.e., Count != count.

Count: DS.W 2

code: SECTION
main: DC.B 1
© Copyright 1987-2003 Metrowerks

Assembler 263
XREF - External Symbol Reference

Syntax:

XREF [.<size>] <symbol>[,<symbol>]...

where <size> = W(default)

Synonym:

EXTERNAL

Description

This directive specifies symbols referenced in the current module but defined in
another module. The list of symbols and corresponding 32 - bit values is passed to
the linker.

The number of symbols enumerated in a XREF directive is only limited by the
memory available at assembly time.

Example

 XREF OtherGlobal ; Reference "OtherGlobal" defined in another
 ; module (See XDEF directive example.)
© Copyright 1987-2003 Metrowerks

264 Assembler
XREFB - External Reference for Symbols
located on the Direct Page

Syntax:

XREFB <symbol>[,<symbol>]...

Synonym:

None

Description:

This directive specifies symbols referenced in the current module but defined in
another module. Symbols enumerated in a XREFB directive, can be accessed using
the direct address mode. The list of symbols and corresponding 8-bit values is
passed to the linker.

The number of symbols enumerated in a XREFB directive is only limited by the
memory available at assembly time.

Example:

 XREFB OtherDirect ; Reference "OtherDirect" defined in another
 ; module (See XDEF directive example.)
© Copyright 1987-2003 Metrowerks

Assembler 265
Macros
A macro is a template for a code sequence. Once a macro is defined, subsequent ref-
erence to the macro name are replaced by its code sequence.

Macro Overview
A macro must be defined before it is called. When a macro is defined, it is given a
name. This name becomes the mnemonic by which the macro is subsequently
called.

The assembler expands the macro definition each time the macro is called. The
macro call causes source statements to be generated, which may include macro
arguments. A macro definition may contain any code or directive except nested
macro definitions. Calling previously defined macros is also allowed. Source state-
ments generated by a macro call are inserted in the source file at the position where
the macro is invoked.

To call a macro, write the macro name in the operation field of a source statement.
Place the arguments in the operand field. The macro may contain conditional
assembly directives that cause the assembler to produce in-line-coding variations of
the macro definition.

Macros call produces in-line code to perform a predefined function. Each time the
macro is called, code is inserted in the normal flow of the program so that the gener-
ated instructions are executed in line with the rest of the program.

Defining a Macro
The definition of a macro consists of four parts:

 • The header statement, a MACRO directive with a label that names the macro.

 • The body of the macro, a sequential list of assembler statements, some possibly
including argument placeholders.

 • The ENDM directive, terminating the macro definition.

 • eventually an instruction MEXIT, which stops macro expansion.

See Section Assembler Directives for information about the MACRO, ENDM, MEXIT,
MLIST directives.

The body of a macro is a sequence of assembler source statements. Macro parame-
© Copyright 1987-2003 Metrowerks

266 Assembler
ters are defined by the appearance of parameter designators within these source
statements. Valid macro definition statements includes the set of processor assem-
bly language instructions, assembler directives, and calls to previously defined
macros. However, macro definitions may not be nested.

Calling Macros
The form of a macro call is:

[<label>:] <name>[.<sizearg>] [<argument> [,<argument>]...]

Although a macro may be referenced by another macro prior to its definition in the
source module, a macro must be defined before its first call. The name of the called
macro must appear in the operation field of the source statement. Arguments are
supplied in the operand field of the source statement, separated by commas.

The macro call produces in-line code at the location of the call, according to the
macro definition and the arguments specified in the macro call. The source state-
ments of the expanded macro are then assembled subject to the same conditions and
restrictions affecting any source statement. Nested macros calls are also expanded
at this time.

Macro Parameters
As many as 36 different substitutable parameters can be used in the source state-
ments that constitute the body of a macro. These parameters are replaced by the cor-
responding arguments in a subsequent call to that macro.

A parameter designator consists of a backlashes character (\), followed by a digit (0
- 9) or an uppercase letter (A - Z). Parameter designator \0 corresponds to a size
argument that follows the macro name, separated by a period (.).

Example

Consider the following macro definition:

MyMacro: MACRO
 DC.\0 \1, \2
 ENDM

When this macro is used in a program, e.g.:

 MyMacro.B $10, $56

the assembler expands it to:
© Copyright 1987-2003 Metrowerks

Assembler 267
 DC.B $10, $56

Arguments in the operand field of the macro call refer to parameter designator \1
through \9 and \A through \Z, in that order. The argument list (operand field) of a
macro call cannot be extended onto additional lines.

At the time of a macro call, arguments from the macro call are substituted for
parameter designators in the body of the macro as literal (string) substitutions. The
string corresponding to a given argument is substituted literally wherever that
parameter designator occurs in a source statement as the macro is expanded. Each
statement generated in the execution is assembled in line.

It is possible to specify a null argument in a macro call by a comma with no charac-
ter (not even a space) between the comma and the preceding macro name or comma
that follows an argument. When a null argument itself is passed as an argument in a
nested macro call, a null value is passed. All arguments have a default value of null
at the time of a macro call.

Macro Argument Grouping

To pass text including commas as a single macro argument, the assembler supports
a special syntax. This grouping starts with the [? prefix and ends with the ?] suffix.
If the [? or ?] patterns occur inside of the argument text, they have to be in pairs.
Alternatively, brackets, question marks and backward slashes can also be escaped
with a backward slash as prefix.

Note: This escaping only takes place inside of [? ?] arguments. A backward slash is
only removed in this process if it is just before a bracket ([]), a question mark
(?) or a second backwards slash (\).

Example

MyMacro: MACRO
 DC \1
 ENDM
MyMacro1: MACRO
 \1
 ENDM

Here some macro calls with rather complicated arguments:

 MyMacro [?$10, $56?]
 MyMacro [?"\[?"?]
 MyMacro1 [?MyMacro [?$10, $56?]?]
 MyMacro1 [?MyMacro \[?$10, $56\?]?]

These macro calls expand to the following lines:
© Copyright 1987-2003 Metrowerks

268 Assembler
 DC $10, $56
 DC "[?"
 DC $10, $56
 DC $10, $56

The macro assembler does also supports for compatibility with previous versions
macro grouping with a angle bracket syntax:

 MyMacro <$10, $56>

However, this old syntax is ambiguous as < and > are also used as compare opera-
tors. For example the following code does not produce the expected result:

 MyMacro <1 > 2, 2 > 3> ; Wrong!

Because of this the old angle brace syntax should be avoided in new code. There is
also and option to disable it explicitly.

See also the option -CMacBrackets and the option -CMacAngBrack.

Labels Inside Macros
To avoid the problem of multiple-defined labels resulting from multiple calls to a
macro that has labels in its source statements, the programmer can direct the assem-
bler to generate unique labels on each call to a macro.

Assembler-generated labels include a string of the form _nnnnn where nnnnn is a 5
digit value. The programmer requests an assembler-generated label by specifying
\@ in a label field within a macro body. Each successive label definition that speci-
fies a \@ directive generates a successive value of _nnnnn, thereby creating a
unique label on each macro call. Note that \@ may be preceded or followed by
additional characters for clarity and to prevent ambiguity.

Example

This is the definition of the clear macro:

clear: MACRO
 LDX #\1
 LDAA #16
\@LOOP: CLR 1,X+
 DBNE A,\@LOOP
 ENDM

This macro is called in the application:

Data: Section
temporary: DS 16
© Copyright 1987-2003 Metrowerks

Assembler 269
data: DS 16

Code: Section
 clear temporary
 clear data

The two macro calls of clear are expanded in the following manner:

HC12-Assembler
 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 clear: MACRO
 2 2 LDX #\1
 3 3 LDAA #16
 4 4 \@LOOP: CLR 1,X+
 5 5 DBNE A,\@LOOP
 6 6 ENDM
 7 7
 8 8 Data: Section
 9 9 000000 temporary: DS 16
 10 10 000010 data: DS 16
 11 11
 12 12 Code: Section
 13 13 clear temporary
 14 2m 000000 CE xxxx + LDX #temporary
 15 3m 000003 8610 + LDAA #16
 16 4m 000005 6930 +_00001LOOP: CLR 1,X+
 17 5m 000007 0430 FB + DBNE A,_00001LOOP
 18 14 clear data
 19 2m 00000A CE xxxx + LDX #data
 20 3m 00000D 8610 + LDAA #16
 21 4m 00000F 6930 +_00002LOOP: CLR 1,X+
 22 5m 000011 0430 FB + DBNE A,_00002LOOP

Macro Expansion
When the assembler reads a statement in a source program calling a previously
defined macro, it processes the call as described in the following paragraphs.

The symbol table is searched for the macro name. If it is not in the symbol table, an
undefined symbol error message is issued.

The rest of the line is scanned for arguments. Any argument in the macro call is
saved as a literal or null value in one of the 35 possible parameter fields. When the
number of arguments in the call is less than the number of parameters used in the
macro the argument, which have not been defined at invocation time are initialize
with ““ (empty string).
© Copyright 1987-2003 Metrowerks

270 Assembler
Starting with the line following the MACRO directive, each line of the macro body is
saved and is associated with the named macro. Each line is retrieved in turn, with
parameter designators replaced by argument strings or assembler-generated label
strings.

Once the macro is expanded, the source lines are evaluated and object code is pro-
duced.

Nested Macros
Macro expansion is performed at invocation time, which is also the case for nested
macros. If the macro definition contains nested macro call, the nested macro expan-
sion takes place in line. Recursive macro call are also supported.

A macro call is limited to the length of one line, i.e. 1024 characters.
© Copyright 1987-2003 Metrowerks

Assembler 271
Assembler Listing File
The assembly listing file is the output file of the assembler, which contains informa-
tion about the generated code. The listing file is generated when the option –L is
activated. When an error is detected during assembling from the file, there is no list-
ing file generated.

The amount of information available depends on following assembly options:

Option -L
Option -Lc
Option -Ld
Option -Le
Option -Li

The information in the listing file also depends on following assembly directives:

LIST, NOLIST, CLIST, MLIST.

The format from the listing file is influenced by following directives:

PLEN, LLEN, TABS, SPC, PAGE, NOPAGE, TITLE.

The name of the listing file generated is <base name>.lst

Page Header
The page header consist on 3 lines:

 • The first line contains an optional user string defined in the directive TITLE.

 • The second line contains the name of the assembler vendor (METROWERKS) as
well as the target processor name (HC12).

 • The third line contains a copyright notice.

Example

Demo Application
Metrowerks HC12-Assembler
(c) COPYRIGHT METROWERKS 1991-2001

Source Listing
The printed columns can be configured with the option -Lasmc. By default the fol-
lowing 5 columns are contained:
© Copyright 1987-2003 Metrowerks

272 Assembler
Abs.

This column contains the absolute line number for each instruction. The absolute
line number is the line number in the debug listing file, which contains all included
files and where all macro calls have been expanded.

Example

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 ;-------------------------------
 2 2 ; File: test.o
 3 3 ;-------------------------------
 4 4
 5 5 XDEF Start
 6 6 MyData: SECTION
 7 7 000000 char1: DS.B 1
 8 8 000001 char2: DS.B 1
 9 9 INCLUDE "macro.inc"
 10 1i cpChar: MACRO
 11 2i LDAA \1
 12 3i STAA \2
 13 4i ENDM
 14 10 CodeSec: SECTION
 15 11 Start:
 16 12 cpChar char1, char2
 17 2m 000000 B6 xxxx + LDAA char1
 18 3m 000003 7A xxxx + STAA char2
 19 13 000006 A7 NOP
 20 14 000007 A7 NOP

In the previous example, the line number displayed in the column ‘Abs.’ are incre-
mented for each line.

Rel.

This column contains the relative line number for each instruction. The relative line
number is the line number in the source file. For included files, the relative line
number is the line number in the included file. For macro call expansion, the rela-
tive line number is the line number of the instruction in the macro definition.

A ‘i’ suffix is appended to the relative line number, when the line comes from an
included file. A ‘m’ suffix is appended to the relative line number, when the line is
generated by a macro call.
© Copyright 1987-2003 Metrowerks

Assembler 273
Example

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 ;-------------------------------
 2 2 ; File: test.o
 3 3 ;-------------------------------
 4 4
 5 5 XDEF Start
 6 6 MyData: SECTION
 7 7 000000 char1: DS.B 1
 8 8 000001 char2: DS.B 1
 9 9 INCLUDE "macro.inc"
 10 1i cpChar: MACRO
 11 2i LDAA \1
 12 3i STAA \2
 13 4i ENDM
 14 10 CodeSec: SECTION
 15 11 Start:
 16 12 cpChar char1, char2
 17 2m 000000 B6 xxxx + LDAA char1
 18 3m 000003 7A xxxx + STAA char2
 19 13 000006 A7 NOP
 20 14 000007 A7 NOP

In the previous example, the line number displayed in the column ‘Rel.’ represent
the line number of the corresponding instruction in the source file.

‘1i’ on absolute line number 10 denotes that the instruction ‘cpChar: MACRO’ is
located in an included file.

‘2m’ on absolute line number 17 denotes that the instruction ‘LDAA char1’ is gener-
ated by a macro expansion.

Loc

This column contains the address of the instruction. For absolute sections, the
address is preceded by a ‘a’ and contains the absolute address of the instruction. For
relocatable sections, this address is the offset of the instruction from the beginning
of the relocatable section.. This offset is a hexadecimal number coded on 6 digits.

A value is written in this column in front of each instruction generating code or allo-
cating storage. This column is empty in front of each instruction which does not
generate code (for example SECTION, XDEF, …).
© Copyright 1987-2003 Metrowerks

274 Assembler
Example

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ---------- --------- -----------
 1 1 ;-------------------------------
 2 2 ; File: test.o
 3 3 ;-------------------------------
 4 4
 5 5 XDEF Start
 6 6 MyData: SECTION
 7 7 000000 char1: DS.B 1
 8 8 000001 char2: DS.B 1
 9 9 INCLUDE "macro.inc"
 10 1i cpChar: MACRO
 11 2i LDAA \1
 12 3i STAA \2
 13 4i ENDM
 14 10 CodeSec: SECTION
 15 11 Start:
 16 12 cpChar char1, char2
 17 2m 000000 B6 xxxx + LDAA char1
 18 3m 000003 7A xxxx + STAA char2
 19 13 000006 A7 NOP
 20 14 000007 A7 NOP

In the previous example, the hexadecimal number displayed in the column ‘Loc.’ is
the offset of each instruction in the section ‘codeSec’.

There is no location counter specified in front of the instruction ‘INCLUDE
"macro.inc"’ because this instruction does not generate code.

The instruction ‘LDAA char1’ is located at offset 0 from the section ‘codeSec’ start
address.

The instruction ‘STAA char2’ is located at offset 3 from the section ‘codeSec’ start
address.

Obj. Code

This column contains the hexadecimal code of each instruction in hexadecimal for-
mat. This code is not identical to the code stored in the object file. The letter ‘x’ is
displayed at the position where the address of an external or relocatable label is
expected. Code at position when ‘x’ are written will be determined at link time.
© Copyright 1987-2003 Metrowerks

Assembler 275
Example

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ ----------- -----------
 1 1 ;-------------------------------
 2 2 ; File: test.o
 3 3 ;-------------------------------
 4 4
 5 5 XDEF Start
 6 6 MyData: SECTION
 7 7 000000 char1: DS.B 1
 8 8 000001 char2: DS.B 1
 9 9 INCLUDE "macro.inc"
 10 1i cpChar: MACRO
 11 2i LDAA \1
 12 3i STAA \2
 13 4i ENDM
 14 10 CodeSec: SECTION
 15 11 Start:
 16 12 cpChar char1, char2
 17 2m 000000 B6 xxxx + LDAA char1
 18 3m 000003 7A xxxx + STAA char2
 19 13 000006 A7 NOP
 20 14 000007 A7 NOP

Source Line

This column contains the source statement. This is a copy of the source line from
the source module. For lines resulting from a macro expansion, the source line is the
expanded line, where parameter substitution has been done.

Example

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 ;-------------------------------
 2 2 ; File: test.o
 3 3 ;-------------------------------
 4 4
 5 5 XDEF Start
 6 6 MyData: SECTION
 7 7 000000 char1: DS.B 1
 8 8 000001 char2: DS.B 1
 9 9 INCLUDE "macro.inc"
 10 1i cpChar: MACRO
 11 2i LDAA \1
 12 3i STAA \2
© Copyright 1987-2003 Metrowerks

276 Assembler
 13 4i ENDM
 14 10 CodeSec: SECTION
 15 11 Start:
 16 12 cpChar char1, char2
 17 2m 000000 B6 xxxx + LDAA char1
 18 3m 000003 7A xxxx + STAA char2
 19 13 000006 A7 NOP
 20 14 000007 A7 NOP
© Copyright 1987-2003 Metrowerks

Assembler 277
MASM Compatibility
The macro assembler has been extended to ensure compatibility with the MASM
assembler.

Comment Line
A line starting with a ‘*’ character is considered to be a comment line by the assem-
bler.

Constants

Integer Constants

For compatibility with the MASM assembler, following notations are also sup-
ported for integer constants:

 • A decimal constant is defined by a sequence of decimal digits (0-9) followed by a
‘d’ or ‘D’ character.

 • A hexadecimal constant is defined by a sequence of hexadecimal digits (0-9, a-f,
A-F) followed by a ‘h’ or ‘H’ character.

 • An octal constant is defined by a sequence of octal digits (0-7) followed by a ‘o’,
‘O’, ‘q’, or ‘Q’ character.

 • A binary constant is defined by a sequence of binary digits (0-1) followed by a
‘b’ or ‘B’ character.

Example

512d ; decimal representation
512D ; decimal representation
200h ; hexadecimal representation
200H ; hexadecimal representation
1000o ; octal representation
1000O ; octal representation
1000q ; octal representation
1000Q ; octal representation
1000000000b ; binary representation
1000000000B ; binary representation
© Copyright 1987-2003 Metrowerks

278 Assembler
Operators
For compatibility with the MASM assembler, following notations are also sup-
ported for operators:

Directives
The following table enumerates the directives, which are supported by the macro
assembler for compatibility with MASM:

Operator Notation

Shift left !<

Shift right !>

Bitwize AND !.

Bitwize OR !+

Bitwize XOR !x, !X

Operator Notation Description

RMB DS Define storage for a variable. Argument
specifies the byte size

RMD DS 2* Define storage for a variable. Argument
specifies the number of 2 byte blocks

RMQ DS 4* Define storage for a variable Argument
specifies the number of 4 byte blocks

ELSEC ELSE Alternate of conditional block

ENDC ENDIF End of conditional block

NOL NOLIST Specify that all subsequent instructions
must not be inserted in the listing file.

TTL TITLE Define the user defined title for the
assembler listing file.

GLOBAL XDEF Make a symbol public (Visible from
outside)

PUBLIC XDEF Make a symbol public (Visible from
outside)

EXTERNAL XREF Import reference to an external symbol.
© Copyright 1987-2003 Metrowerks

Assembler 279
XREFB XREF.B Import reference to an external symbol
located on the direct page.

SWITCH Allows to switch to a section which
have been defined previously.

ASCT Creates a predefined section which
name id ASCT.

BSCT Creates a predefined section which
name id BSCT. Variable defined in this
section are accessed using the direct
addressing mode.

CSCT Creates a predefined section which
name id CSCT.

DSCT Creates a predefined section which
name id DSCT.

IDSCT Creates a predefined section which
name id IDSCT.

IPSCT Creates a predefined section which
name id IPSCT.

PSCT Creates a predefined section which
name id PSCT.

Operator Notation Description
© Copyright 1987-2003 Metrowerks

280 Assembler
© Copyright 1987-2003 Metrowerks

Assembler 281
MCUasm Compatibility
The macro assembler has been extended to ensure compatibility with the MCUasm
assembler.

MCUasm compatibility mode can be activated, specifying the option -MCUasm.

Labels
When MCUasm compatibility mode is activated, labels must be followed by a
colon, even when they start on column 1.

Example

When MCUasm compatibility mode is activated, following portion of code gener-
ate an error message, because the label ‘label’ is not followed by a colon.

label DC.B 1

When MCUasm compatibility mode is not activated, the previous portion of code
does not generate any error message.

SET Directive
When MCUasm compatibility mode is activated, relocatable expressions are also
allowed in a SET directive.

Example

When MCUasm compatibility mode is activated, following portion of code does
not generate any error message:

label: SET *

When MCUasm compatibility mode is not activated, the previous portion of code
generates any error message, because SET label can only refer to absolute expres-
sions.

Obsolete Directives
The following table enumerates the directives, which are not recognized any more,
© Copyright 1987-2003 Metrowerks

282 Assembler
when MCUasm compatibility mode is switched ON.:

Operator Notation Description

RMB DS Define storage for a variable

NOL NOLIST Specify that all subsequent instructions
must not be inserted in the listing file.

TTL TITLE Define the user defined title for the
assembler listing file.

GLOBAL XDEF Make a symbol public (Visible from
outside)

PUBLIC XDEF Make a symbol public (Visible from
outside)

EXTERNAL XREF Import reference to an external symbol.
© Copyright 1987-2003 Metrowerks

Assembler 283
Semi-Avocet Compatibility
The macro assembler has been extended to ensure compatibility with the Avocet
assembler.

Avocet compatibility mode can be activated, specifying the option -C=SAvocet.
The compatibility does not cover all Avocet specific features but only some of
them.

Directives

Macro Parameters

Section Definition

Structured Assembly

Directives
The following table enumerates the directives, which are supported when the
Avocet Assembler compatibility mode is activated.:

Directive Notation Description

DEFSEG Segment definition (See section “Section
Definition” below).

ELSEIF Conditional directive, checking a specific
condition.
 IF ((label1 & label2) != 0)
 LDD #label1
 ELSIF (label1 = 0)
 LDD #label2
 ELSE
 LDD #0
 ENDIF

EXITM MEXIT Define an exit condition for a macro.
Copy MACRO source, dest
 IFB "source"
 EXITM
 ENDIF
 LDD source
 STD dest
 ENDM
© Copyright 1987-2003 Metrowerks

284 Assembler
Section Definition
Section definition is performed using the directive DEFSEG. The correct syntax for
a DEFSEG directive is:

 DEFSEG <name> [START=<start address>] [<section qualifier>]

Where:

IFB Param IFC Param, ““ Test if a macro parameter is empty. The
syntax is IFB "param".
Copy MACRO source, des
 IFB "source"
 LDD #0
 STD dest
 ELSE
 LDD source
 STD dest
 ENDIF
 ENDM

IFNB Param IFNC Param ““ Test if a macro parameter is not empty. The
syntax is IFNB "param"
Copy MACRO source, dest
 IFNB "source"
 LDD source
 STD dest
 ELSE
 LDD #0
 STD dest
 ENDIF
 ENDM

NOSM MLIST OFF Do not insert macro expansion in listing
file.

SEG SWITCH Switch to a previously defined segment
(See section “Section Definition” below).

SM MLIST ON Insert macro expansion in listing file.

SUBTITLE Defines a subtitle for the input file. This
subtitle is written to the listing file.
 SUBTITLE title2: Main File

TEQ SET Define a constant, which value may be
modified in the source file

Directive Notation Description
© Copyright 1987-2003 Metrowerks

Assembler 285
 • name: is the name of the section.

 • start address: is the start address for the section. This parameter is optional.

 • section qualifier: is the qualifier which applies to the section. This parameter is
optional and may take the value:

Example:

 DEFSEG myDataSection
 DEFSEG D_ATC_TABLES START=$0EA0
 DEFSEG myDirectData PAGE0

Note: Because of an incompatibility in the object file format, an absolute section
implementation must entirely reside in a single assembly unit. You cannot
split the code from an absolute section over several object files. An absolute
section is a section associated with a start address.

Note: In order to split a section over different assembly units, you better define the
section as relocatable (without START) and you can specify in the linker
PRM file the address where you want to load the section.

Example:

In the assembly source file:

DEFSEG D_ATC_TABLES ;START=$0EA0

In the linker parameter file:

...
SECTION
 ...
 MY_TABLE = READ_WRITE 0x0EA0 TO 0x0EFF;
PLACEMENT
 ...
 D_ATC_TABLES INTO MY_TABLE:
...

Qualifier Meaning

PAGE0 for data section located on the direct page

DATA for data section

CODE for code section
© Copyright 1987-2003 Metrowerks

286 Assembler
The directive SEG is then used to activate the corresponding section in the assem-
bly source file.

The name specified in a SEG directive was always previously specified in a DEF-
SEG directive.

Following syntax will be accepted for SEG:

 SEG <name>

where

name: is the name of the section, which was previously defined in a DEFSEG direc-
tive.

Example:

 SEG myDataSection

Macro Parameters
When Avocet Compatibility is switched ON, names can be associated with macro
parameters. A macro definition can now look as follows:

Copy MACRO source, destination
 LDD source
 STD destination
 ENDM

Support for Structured Assembly
When the Avocet compatibility is switched ON, SWITCH or FOR construct are
available in Macro assembler.

Switch Block

The SWITCH directive evaluates an expression and assembles the code following
the particular CASE statement, which satisfies the switch expression. If no CASE
statement corresponds to the value of the expression, the code following the
DEFAULT (if present) is assembled.

ENDSW terminates the SWITCH directive.

The expression specified in a SWITCH directive must be an absolute expression.
© Copyright 1987-2003 Metrowerks

Assembler 287
Example:

xxx equ 5
 …
 SWITCH xxx
 CASE 0
 LDD #1
 CASE 1
 LDD 2
 CASE 3
 LDD #6
 DEFAULT
 LDD #0
 ENDSW

Following set of instructions are generated by the above portion of code:

xxx equ 5
 …
 LDD #0

FOR Block

In the Avocet compatibility mode, the FOR direct§ive is supported.

Example:

 FOR l=2 TO 6
 NOP
 ENDF

Following set of instructions are generated by the above portion of code:

 NOP
 NOP
 NOP
 NOP
 NOP
© Copyright 1987-2003 Metrowerks

288 Assembler
© Copyright 1987-2003 Metrowerks

Assembler 289
Mix C and Assembler Applications
When you intend to mix Assembly source file and ANSI C source files in a single
application, following issues are important:

 • Memory Models

 • Parameter Passing Scheme

 • Return Value Location

 • Accessing assembly variables in an ANSI C source file

 • Accessing ANSI C variables in an assembly source file

 • Invoking an assembly function in an ANSI C source file

 • Support for Structured Types

To build mixed C and Assembler applications, you have to know how the C - Com-
piler uses registers and calls procedures. The following sections will describe this
for compatibility with the compiler. If you are working with another vendor ANSI
C compiler, refer to your Compiler Manual to get the information about parameter
passing rules.

Memory Models
The memory models are only important if you mix C and assembler code. In this
case all sources must be compiled or assembled with the same memory model.

The assembler supports all memory models of the compiler. Depending on your
hardware use the smallest memory model suitable for your programming needs.

The table below summarizes the different memory models. It shows when to use a
particular memory model and which assembler switch to use.

Option
Memory
Model

Local
Data

Global
Data

Suggested Use

–Ms SMALL SP rel extended Small applications which fit into the 64k
address space or which do only have limited
places where paged area is accessed.
© Copyright 1987-2003 Metrowerks

290 Assembler
Note: The default pointer size for the compiler is also affected by the memory
model chosen.

Parameter Passing Scheme
When you are using the HC12 compiler, the parameter passing scheme is the fol-
lowing:

The Pascal calling convention is used for functions with a fixed number of parame-
ters: The caller pushes the arguments from left to right. After the call, the caller
removes the parameters from the stack again.

The C calling convention is used only for functions with a variable number of
parameters. In this case the caller pushes the arguments from right to left.

If the last parameter of a function with a fixed number of arguments has a simple
type, it is not pushed but passed in a register. This results in shorter code because
pushing the last parameter can be saved. The following table shows an overview of
the registers used for argument passing.

–Mb BANKED SP rel extended Larger applications which code does not fit
into the 64k address space. Data is limited to
the 64 k address space. The code generated
by the compiler is not much larger as in the
SMALL memory model because the CPU
supports the CALL instruction. Usually
there is one additional byte per function call.

–Ml LARGE SP rel far Applications which data does not fit into 64k
address space. The code generated by the
compiler is significantly larger then in the
other memory models.

Size of Last Parameter Type example Register

1 byte char B

2 bytes int, array D

3 bytes far data
pointer

X(L), B(H)

4 bytes long D(L), X(H)

Option
Memory
Model

Local
Data

Global
Data

Suggested Use
© Copyright 1987-2003 Metrowerks

Assembler 291
Parameters having a type not listed are passed on the stack (i.e. all those having a
size greater than 4 bytes).

Return Value
Function results usually are returned in registers, except if the function returns a
result larger than 4 bytes (see below). Depending on the size of the return type, dif-
ferent registers are used:

Functions returning a result larger than two words are called with an additional
parameter. This parameter is the address where the result should get copied to.

Accessing Assembly Variables in an ANSI C
Source File

A variable or constant defined in an assembly source file is accessible in an ANSI C
source file.

The variable or constant is defined in the assembly source file using the standard
assembly syntax.

Variables and constants must be exported using the directive XDEF to make them
visible from other modules.

Example of Data and Constant Definition:

 XDEF ASMData, ASMConst
DataSec: SECTION
ASMData: DS.W 1 ; Definition of a variable

Size of return value Type example Register

1 byte char B

2 bytes int D

3 bytes far data
pointer

X(L), B(H)

4 bytes long D(L), X(H)
© Copyright 1987-2003 Metrowerks

292 Assembler
ConstSec: SECTION
ASMConst: DC.W $44A6 ; Definition of a constant

We recommend to generate a header file for each assembler source file. This header
file should contain the interface to the assembly module.

An external declaration for the variable or constant must be inserted in the header
file.

Example of Data and Constant Declaration:

extern int ASMData; /* External declaration of a variable */
extern const int ASMConst; /* External declaration of a constant */

The variable or constant can then be accessed in the usual way, using their name.

Example of Data and Constant Reference:

 ASMData = ASMConst + 3;

Accessing ANSI C Variables in an Assembly
Source File

A variable or constant defined in an ANSI C source file is accessible in an Assem-
bly source file.

The variable or constant is defined in the ANSI C source file using the standard
ANSI C syntax.

Example of Data and Constant Definition:

unsigned int CData; /* Definition of a variable */
unsigned const int CConst; /* Definition of a constant */

An external declaration for the variable or constant must be inserted in the assembly
source file.

This can also be done in a separate file, included in the assembly source file.

Example of Data and Constant Declaration:

 XREF CData ; External declaration of a variable

 XREF CConst; External declaration of a constant

The variable or constant can then be accessed in the usual way, using their name.
© Copyright 1987-2003 Metrowerks

Assembler 293
Note: The compiler supports also the automatic generation of assembler include files.
See in the compiler manual the description of the compiler option “-la”.

Example of Data and Constant Reference:

 LDAA CConst

 LDAA CData

Invoking an Assembly Function in an ANSI C
Source File

An function implemented in an assembly source file can be invoked in a C source
file. During the implementation of the function in the assembly source file, the pro-
grammer should pay attention to the parameter passing scheme of the ANSI C com-
piler he is using, in order to retrieve the parameter from the right place.

Example of assembler file: mixasm.asm

 XREF CData
 XDEF AddVar
 XDEF ASMData

DataSec: SECTION
ASMData: DS.B 1
CodeSec: SECTION
AddVar:
 ADDB CData ; add CData to the parameter in register B
 STAB ASMData ; result of the addition in ASMData
 RTS

We recommend to generate a header file for each assembler source file. This header
file should contain the interface to the assembly module.

/* mixasm.h */
#ifndef _MIXASM_H_
#define _MIXASM_H_

void AddVar(unsigned char value);
/* function which adds the paramater value to the global CData */
/* and then stores the result in ASMData */

extern char ASMData;
© Copyright 1987-2003 Metrowerks

294 Assembler
/* variable which receives the result of AddVar */
#endif /* _MIXASM_H_ */

The function can then be invoked in the usual way, using its name.

Example of C file:

mixc.c (compile it with the compiler option -CC when using the HIWARE Object
File Format).

static int Error = 0;
const unsigned char CData=12;
#include "mixasm.h"

void main (void) {
 AddVar(10);
 if (ASMData != CData + 10){
 Error = 1;
 } else {
 Error = 0;
 }
 for(;;); // wait forever
}

Note: Be careful, the assembler will not make any check on the number and type of
the function parameters.

The application must be correctly linked.

 For these C and .asm file, a possible linker parameter file is:

Example of linker parameter file: mixasm.prm

LINK mixasm.abs
NAMES
 mixc.o mixasm.o
END
SECTIONS
 MY_ROM = READ_ONLY 0x4000 TO 0x4FFF;
 MY_RAM = READ_WRITE 0x2400 TO 0x2FFF;
 MY_STACK = READ_WRITE 0x2000 TO 0x23FF;
END
PLACEMENT
 DEFAULT_RAM INTO MY_RAM;
 DEFAULT_ROM INTO MY_ROM;
 SSTACK INTO MY_STACK;
END
INIT main

Note: Be careful, use the same memory model and object file format for all the
© Copyright 1987-2003 Metrowerks

Assembler 295
generated object files.

Support for Structured Types
When option “-Struct: Support for Structured Types” is activated, the macro assem-
bler also supports definition and usage of structured types. This allows an easier
way to access ANSI C structured variable in the macro assembler.

In order to provide an efficient support for structured type the macro assembler
should provide notation to:

 • Define a structured type

 • Define a structured variable

 • Declare a structured variable

 • Access the address of a field inside of a structured variable

 • Access the offset of a field inside of a structured variable

Note: Some limitation apply in the usage of the structured type in the macro
assembler (See section Limitation below).

Structured Type Definition

The macro assembler will be extended with following new keywords, in order to
support ANSI C type definition.

STRUCT
UNION

The structured type definition can be encoded as:

typeName: STRUCT
 lab1: DS.W 1
 lab2: DS.W 1
 ...
 ENDSTRUCT

where:

'typeName' is the name associated with the defined type. The type name will
be considered as a user define keyword. The macro assembler will
be case insensitive on type name.

'STRUCT' specifies that the type is a structured type.

'lab1', 'lab2' are the fields defined inside of the type 'typeName'. The fields
© Copyright 1987-2003 Metrowerks

296 Assembler
will be considered as user defined labels and the macro assembler
will be case sensitive on label names.

As all other directive in assembler, the directives STRUCT and UNION are case
insensitive.

The directive STRUCT and UNION cannot start on column 1 and must be preceded
by a label.

Type allowed for Structured Type Fields

Field inside of a structured type may be:

 • another structured type

 • a base type, which can be mapped on 1, 2 or 4 bytes.

The following table shows how the ANSI C standard types are converted in the
assembler notation:

Variable Definition

The macro assembler should provide a way to define a variable with a specific type.
This can be done using following syntax:

ANSI C type Assembler Notation

char DS.B

short DS.W

int DS.W

long DS.L

enum DS.W

bitfield -- not supported --

float -- not supported --

double -- not supported --

data pointer DS.W

function pointer -- not supported --
© Copyright 1987-2003 Metrowerks

Assembler 297
var: typeName

Where

'var' is the name of the variable.

'typeName' is the type associated with the variable.

Example

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
field5: DS.W 1
 ENDSTRUCT

DataSection: SECTION
structVar: TYPE myType ; variable ‘structVar’ is from type ‘myType’

Variable Declaration

The macro assembler should provide a way to associated a type with a symbol
which is defined externally. This can be done extending the XREF syntax:

 XREF var: typeName, var2

Where

'var' is the name of an externally defined symbol.

'typeName' is the type associated with the variable 'var'.

'var2' is the name of another externally defined symbol. This symbol is
not associated with any type.

Example

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
field5: DS.W 1
 ENDSTRUCT

 XREF extData:myType ; variable ‘extData’ is from type ‘myType’
© Copyright 1987-2003 Metrowerks

298 Assembler
Accessing Structured Variable

The macro assembler should provide a way to access each structured type field
absolute address and offset.

Accessing a Field Address

To access a structured type field address, the assembler will use the character ':'.

var:field

Where

'var' is the name of a variable, which was associated with a structured
type.

'field' is the name of a field in the structured type associated with the
variable.

Example

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
field5: DS.W 1
 ENDSTRUCT

 XREF myData:myType
 XDEF entry

CodeSec: SECTION
entry:
 LDAA myData:field3 ; Loads register A with the content of
 ; field field3 from variable myData.

Note: The period cannot be used as separator, because in assembler it is a valid
character inside of a symbol name.

Accessing a Field Offset

To access a structured type field offset, the assembler will use following notation:

<typeName>-><field>

Where

'typeName' is the name of a structured type.
© Copyright 1987-2003 Metrowerks

Assembler 299
'field' is the name of a field in the structured type associated with the
variable.

Example

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
field5: DS.W 1
 ENDSTRUCT
 XREF.B myData
 XDEF entry

CodeSec: SECTION
entry:
 LDX #myData
 LDAA myType->field3,X ;Adds the offset of field 'field3'
 ; (4) to X and loads A with the
 ; content of the pointed address

Structured Type: Limitations

Field inside of a structured type may be:

 • another structured type

 • a base type, which can be mapped on 1, 2 or 4 bytes.

The macro assembler is not able to process bitfields or pointer types.

The type referenced in a variable definition or declaration must be defined previ-
ously. A variable cannot be associated with a type defined afterwards.
© Copyright 1987-2003 Metrowerks

300 Assembler
© Copyright 1987-2003 Metrowerks

Assembler 301
Make Applications

Assembler Applications

Generating directly an Absolute File

When an absolute file is directly generated by the assembler:

 • the application entry point must be specified in the assembly source file using the
directive ABSENTRY.

 • The whole application must be encoded in a single assembly unit.

 • The application should only contain absolute sections.

Generating Object Files

The entry point of the application must be mentioned in the Linker parameter file
using the command "INIT funcname". The application is build of the different
object files with the Linker. The Linker is document in a separate document.

Your assembly source files must be separately assembled. Then the list of all the
object files building the application must be enumerated in the application PRM
file.

Mixed C and assembler Applications
Normally the application starts with the main procedure of a C file. All necessary
object files - assembler or C- are linked with the Linker in the same fashion like
pure C applications. The Linker is documented in a separate document.

Memory Maps and Segmentation
Relocatable Code Sections are placed in the DEFAULT_ROM or .text Segment.

Relocatable Data Sections are placed in the DEFAULT_RAM or .data Segment.

Note: The .text and .data names are only supported when the ELF object file format is
used.

There are no checks at all that variables are in a RAM. If you mix code and data in a
section you can't place the section into ROM. That's why we suggest to separate code
© Copyright 1987-2003 Metrowerks

302 Assembler
and data into different sections.

If you want to place a section in a specific address range, you have to put the section
name in the linker parameter file in the placement list.

SECTIONS
 ROM1 = READ_ONLY 0x0200 TO 0x0FFF;
 SpecialROM = READ_ONLY 0x8000 TO 0x8FFF;
 RAM = READ_WRITE 0x4000 TO 0x4FFF;
PLACEMENT
 DEFAULT_ROM INTO ROM1;
 mySection INTO SpecialROM;
 DEFAULT_RAM INTO RAM;
END
© Copyright 1987-2003 Metrowerks

Assembler 303
How To ...
This section covers the following topics:

How to Work with Absolute Sections

How to Work with Relocatable Sections

How to Initialize the vector Table

Splitting an Application between Different Modules

Using Direct Addressing Mode to Access Symbols

How To Work with Absolute Sections
An absolute section is a section which start address is known at assembly time.

(See modules fiboorg.asm and fiboorg.prm in the demo directory)

Defining Absolute Sections in the Assembly Source File

An absolute section is defined using the directive ORG. In that case the macro
assembler generates a pseudo section, which name is “ORG_<index>”, where
index is an integer which is incremented each time an absolute section is encoun-
tered.

Example

Defining an absolute section containing data:

 ORG $800 ; Absolute data section.
var: DS.B 1
 ORG $A00 ; Absolute constant data section.
cst1: DC.B $A6
cst2: DC.B $BC

In the previous portion of code, the label cst1 will be located at address $A00,
and label cst2 will be located at address $A01.

1 1 ORG $800
2 2 a000800 var: DS.B 1
3 3 ORG $A00
4 4 a000A00 A6 cst1: DC.B $A6
5 5 a000A01 BC cst2: DC.B $BC
© Copyright 1987-2003 Metrowerks

304 Assembler
Defining an absolute section containing code:

 XDEF entry
 ORG $C00 ; Absolute code section.
entry:
 LDAA cst1 ; Load value in cst1
 ADDA cst2 ; Add value in cst2
 STAA var ; Store in var
 BRA entry

In the previous portion of code, the instruction LDAA will be located at address
$C00, and instruction ADDA at address $C03.

 6 6 ORG $C00 ; Absolute code section.
 7 7 entry:
 8 8 a000C00 B6 0A00 LDAA cst1 ; Load value in cst1
 9 9 a000C03 BB 0A01 ADDA cst2 ; Add value in cst2
 10 10 a000C06 7A 0800 STAA var ; Store in var
 11 11 a000C09 20F5 BRA entry

In order to avoid problems during linking or execution from an application, an
assembly file should at least:

 • Initialize the stack pointer if the stack is used.
The instruction LDS can be used to initialize the stack pointer.

 • Publish the application entry point using XDEF.

 • The programmer should ensure that the addresses specified in the source file are
valid addresses for the MCU being used.

Linking an Application containing Absolute Sections

When the assembler is generating an object file, applications containing only abso-
lute sections must be linked. The linker parameter file must contain at least:

 • The name of the absolute file.

 • The name of the object file which should be linked.

 • The specification of a memory area where the sections containing variables must
be allocated. For applications containing only absolute sections, nothing will be
allocated there.

 • The specification of a memory area where the sections containing code or con-
stants must be allocated. For applications containing only absolute sections,
nothing will be allocated there.

 • The specification of the application entry point.
© Copyright 1987-2003 Metrowerks

Assembler 305
 • The definition of the reset vector.

 The minimal linker parameter file will look as follows:

LINK test.abs /* Name of the executable file generated. */
NAMES
 test.o /* Name of the object files in the application. */
END
SECTIONS
/* READ_ONLY memory area. There should be no overlap between this
 memory area and the absolute sections defined in the assembly
 source file. */
 MY_ROM = READ_ONLY 0x4000 TO 0x4FFF;
/* READ_WRITE memory area. There should be no overlap between this
 memory area and the absolute sections defined in the assembly
 source file. */
 MY_RAM = READ_WRITE 0x2000 TO 0x2FFF;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */
 DEFAULT_RAM INTO MY_RAM;
/* Relocatable code and constant sections are allocated in MY_ROM. */
 DEFAULT_ROM INTO MY_ROM;
END
INIT entry /* Application entry point. */
VECTOR ADDRESS 0xFFFE entry /* Initialization of the reset vector. */

Note: There should be no overlap between the absolute section defined in the
assembly source file and the memory area defined in the PRM file

Note: As the memory areas (segments) specified in the PRM file are only used to
allocate relocatable sections, nothing will be allocated there, when the
application contains only absolute sections. In that case you can even spec-
ify invalid address ranges in the PRM file

How To Work with Relocatable Sections
A relocatable section is a section which start address is determined at linking time.

(See modules fibo.asm and fibo.prm in the demo directory)

Defining Relocatable Sections in the Source File

A relocatable section is defined using the directive SECTION.
© Copyright 1987-2003 Metrowerks

306 Assembler
Example

Defining a relocatable section containing data:

constSec: SECTION ; Relocatable constant data section.
cst1: DC.B $A6
cst2: DC.B $BC

dataSec: SECTION ; Relocatable data section.
var: DS.B 1

In the previous portion of code, the label cst1 will be located at offset 0 from the
section constSec start address, and label cst2 will be located at offset 1 from
the section constSec start address.

 2 2 constSec: SECTION ; Relocatable
 3 3 000000 A6 cst1: DC.B $A6
 4 4 000001 BC cst2: DC.B $BC
 5 5
 6 6 dataSec: SECTION ; Relocatable
 7 7 000000 var: DS.B 1

Defining a relocatable section containing code:

 XDEF entry
codeSec: SECTION ; Relocatable code section.
entry:
 LDAA cst1 ; Load value in cst1
 ADDA cst2 ; Add value in cst2
 STAA var ; Store in var
 BRA entry

In the previous portion of code, the instruction LDAA will be located at offset 0
from the section codeSec start address, and instruction ADDA at offset 3 from the
section codeSec start address.

In order to avoid problems during linking or execution from an application, an
assembly file should at least:

 • Initialize the stack pointer if the stack is used.
The instruction LDS can be used to initialize the stack pointer.

 • Publish the application entry point using the directive XDEF.

Linking an Application containing Relocatable Sections

Applications containing relocatable sections must be linked. The linker parameter
file must contain at least:
© Copyright 1987-2003 Metrowerks

Assembler 307
 • The name of the absolute file.

 • The name of the object file which should be linked.

 • The specification of a memory area where the sections containing variables must
be allocated.

 • The specification of a memory area where the sections containing code or con-
stants must be allocated.

 • The specification of the application entry point

 • The definition of the reset vector

The minimal linker parameter file will look as follows:

LINK test.abs /* Name of the executable file generated. */
NAMES
 test.o /* Name of the object files in the application. */
END
SECTIONS
/* READ_ONLY memory area. */
 MY_ROM = READ_ONLY 0x2B00 TO 0x2BFF;
/* READ_WRITE memory area. */
 MY_RAM = READ_WRITE 0x2800 TO 0x28FF;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */
 DEFAULT_RAM INTO MY_RAM;
/* Relocatable code and constant sections are allocated in MY_ROM. */
 DEFAULT_ROM, constSec INTO MY_ROM;
END
INIT entry /* Application entry point. */
VECTOR ADDRESS 0xFFFE entry /* Initialization of the reset vector. */

Note: The programmer should ensure that the memory ranges he specifies in the
SECTIONS block are valid addresses for the controller he is using. Addi-
tionally, when using the SDI debugger the addresses specified for code or
constant sections must be located in the target board ROM area, otherwise
the debugger will not be able to load the application

The module fibo.asm located in the demo directory is a small example of usage
of relocatable sections in an application.

How To Initialize the Vector Table
The vector table can be initialized in the assembly source file or in the linker param-
eter file. We recommend to initialize it in the linker parameter file.
© Copyright 1987-2003 Metrowerks

308 Assembler
Initialize the Vector Table in the PRM File

Initializing the vector table in the Source File using a Relocatable Section

Initializing the vector table in the Source File using an Absolute Section

Initializing the Vector Table in the Linker PRM File

Initializing the vector table from the PRM file allows you to initialize single entries
in the table. The user can decide if he wants to initialize all the entries in the vector
table or not.

The labels or functions, which should be inserted in the vector table, must be imple-
mented in the assembly source file. All these labels must be published otherwise
they cannot be addressed in the linker PRM file.

Example:

 XDEF IRQFunc, XIRQFunc, SWIFunc, OpCodeFunc, ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element in the table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQFunc:
 LDAB #0
 BRA int
XIRQFunc:
 LDAB #2
 BRA int
SWIFunc:
 LDAB #4
 BRA int
OpCodeFunc:
 LDAB #6
 BRA int
ResetFunc:
 LDAB #8
 BRA entry
int:
 LDX #Data ; Load address of symbol Data in X
 ABX ; X <- address of the appropriate element in the table
 INC 0, X ; The table element is incremented
 RTI
entry:
 LDS #$AFE
loop: BRA loop

Note: The functions ‘IRQFunc’, ‘XIRQFunc’, ‘SWIFunc’, ‘OpCodeFunc’, ‘Reset-
© Copyright 1987-2003 Metrowerks

Assembler 309
Func’ are published. This is required because they are referenced in the
linker PRM file.

Note: As the processor automatically pushes all registers on the stack on occur-
rence of an interrupt, the interrupt function do not need to save and restore
the registers it is using

Note: All Interrupt functions must be terminated with an RTI instruction

 The vector table is initialized using the linker command VECTOR ADDRESS.

 Example:

 LINK test.abs
 NAMES
 test.o
 END

 SECTIONS
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0B00 TO 0x0CFF;
 END
 PLACEMENT
 DEFAULT_RAM INTO MY_RAM;
 DEFAULT_ROM INTO MY_ROM;
 END

 INIT ResetFunc
 VECTOR ADDRESS 0xFFF2 IRQFunc
 VECTOR ADDRESS 0xFFF4 XIRQFunc
 VECTOR ADDRESS 0xFFF6 SWIFunc
 VECTOR ADDRESS 0xFFF8 OpCodeFunc
 VECTOR ADDRESS 0xFFFE ResetFunc

Note: The statement ‘INIT ResetFunc’ defines the application entry point. Usu-
ally, this entry point is initialized with the same address as the reset vector.

Note: The statement ‘VECTOR ADDRESS 0xFFF2 IRQFunc’ specifies that the
address of function ‘IRQFunc’ should be written at address 0xFFF2.

Initializing the Vector Table in the Source File using a Relo-
catable Section

Initializing the vector table in the assembly source file requires that all the entries in
the table are initialized. Interrupts, which are not used, must be associated with a
standard handler.
© Copyright 1987-2003 Metrowerks

310 Assembler
The labels or functions, which should be inserted in the vector table must be imple-
mented in the assembler source file or an external reference must be available for
them. The vector table can be defined in an assembly source file in an additional
section containing constant variables.

 Example:

 XDEF ResetFunc
 DataSec: SECTION
 Data: DS.W 5 ; Each interrupt increments an element of the table.
 CodeSec: SECTION
 ; Implementation of the interrupt functions.
 IRQFunc:
 LDAB #0
 BRA int
 XIRQFunc:
 LDAB #2
 BRA int
 SWIFunc:
 LDAB #4
 BRA int
 OpCodeFunc:
 LDAB #6
 BRA int
 ResetFunc:
 LDAB #8
 BRA entry
 DummyFunc:
 RTI
 int:
 LDX #Data
 ABX
 INC 0, X
 RTI
 entry:
 LDS #$AFE
 loop: BRA loop

 VectorTable:SECTION
 ; Definition of the vector table.
 IRQInt: DC.W IRQFunc
 XIRQInt: DC.W XIRQFunc
 SWIInt: DC.W SWIFunc
 OpCodeInt: DC.W OpCodeFunc
 COPResetInt: DC.W DummyFunc; No function attached to COP Reset.
 ClMonResInt: DC.W DummyFunc; No function attached to Clock
 ; MonitorReset.
 ResetInt : DC.W ResetFunc
© Copyright 1987-2003 Metrowerks

Assembler 311
Note: Each constant in the section ‘VectorTable’ is defined as a word (2 Byte con-
stant), because the entries in the vector table are 16 bit wide.

Note: In the previous example, the constant ‘IRQInt’ is initialized with the address
of the label ‘IRQFunc’.

Note: In the previous example, the constant ‘XIRQInt’ is initialized with the
address of the label ‘XIRQFunc’.

Note: All the labels specified as initialization value must be defined, published
(using XDEF) or imported (using XREF) in the assembly source file

The section should now be placed at the expected address. This is performed in the
linker parameter file.

 Example:

 LINK test.abs
 NAMES test.o END

 SECTIONS
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0A00 TO 0x0BFF;
 /* Define the memory range for the vector table */
 Vector = READ_ONLY 0xFFF2 TO 0xFFFF;
 END
 PLACEMENT
 DEFAULT_RAM INTO MY_RAM;
 DEFAULT_ROM INTO MY_ROM;
 /* Place the section ‘VectorTable’ at the appropriated address. */
 VectorTable INTO Vector;
 END

 INIT ResetFunc
 ENTRIES
 *
 END

Note: The statement ‘Vector = READ_ONLY 0xFFF2 TO 0xFFFF’ defines the
memory range for the vector table.

Note: The statement ‘VectorTable INTO Vector’ specifies that the section VectorT-
able should be loaded in the read only memory area Vector. This means, the
constant ‘IRQInt’ will be allocated at address 0xFFF2, the constant ‘XIR-
QInt’ will be allocated at address 0xFFF4, and so on. The constant
‘ResetInt’ will be allocated at address 0xFFFE.

Note: The statement ‘ENTRIES * END’ switches smart linking off. If this state-
© Copyright 1987-2003 Metrowerks

312 Assembler
ment is missing in the PRM file, the vector table will not be linked with the
application, because it is never referenced. The smart linker only links the
referenced objects in the absolute file.

Note: When developing a banked application, make sure that the code from the
interrupt functions is located in the non banked memory area.

Initializing the Vector Table in the Source File using an Abso-
lute Section

Initializing the vector table in the assembly source file requires that all the entries in
the table are initialized. Interrupts, which are not used, must be associated with a
standard handler.

 The labels or functions, which should be inserted in the vector table must be imple-
mented in the assembly source file or an external reference must be available for
them. The vector table can be defined in an assembly source file in an additional
section containing constant variables.

 Example:

 XDEF ResetFunc
 DataSec: SECTION
 Data: DS.W 5 ; Each interrupt increments an element of the table.
 CodeSec: SECTION
 ; Implementation of the interrupt functions.
 IRQFunc:
 LDAB #0
 BRA int
 XIRQFunc:
 LDAB #2
 BRA int
 SWIFunc:
 LDAB #4
 BRA int
 OpCodeFunc:
 LDAB #6
 BRA int
ResetFunc:
 LDAB #8
 BRA entry
 DummyFunc:
 RTI
 int:
 LDX #Data
 ABX
© Copyright 1987-2003 Metrowerks

Assembler 313
 INC 0, X
 RTI
 entry:
 LDS #$AFE
 loop: BRA loop

 ORG $FFF2
 ; Definition of the vector table in an absolute section starting at
address
 ; $FFF2.
 IRQInt: DC.W IRQFunc
 XIRQInt: DC.W XIRQFunc
 SWIInt: DC.W SWIFunc
 OpCodeInt: DC.W OpCodeFunc
 COPResetInt: DC.W DummyFunc; No function attached to COP Reset.
 ClMonResInt: DC.W DummyFunc; No function attached to Clock
 ; MonitorReset.
 ResetInt : DC.W ResetFunc

Note: Each constant in the section starting at $FFF2 is defined as a word (2 Byte
constant), because the entry in the vector table are 16 bit wide.

Note: In the previous example, the constant ‘IRQInt’ is initialized with the address
of the label ‘IRQFunc’.

Note: All the labels specified as initialization value must be defined, published
(using XDEF) or imported (using XREF) in the assembly source file.

Note: The statement ‘ORG $FFF2‘ specifies that the following section must start
at address $FFF2.

The linker PRM file looks as follows:

 Example:

 LINK test.abs
 NAMES
 test.o
 END

 SECTIONS
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0A00 TO 0x0BFF;
 END
 PLACEMENT
 DEFAULT_RAM INTO MY_RAM;
 DEFAULT_ROM INTO MY_ROM;
 END

 INIT ResetFunc
© Copyright 1987-2003 Metrowerks

314 Assembler
 ENTRIES
 *
 END

Note: The statement ‘ENTRY * END’ switches smart linking off. If this statement
is missing in the PRM file, the vector table will not be linked with the appli-
cation, because it is never referenced. The smart linker only links the refer-
enced objects in the absolute file.

Note: When developing a banked application, make sure that the code from the
interrupt functions is located in the non banked memory area

Splitting an Application into different Modules
Complex application or application involving several programmers can be split into
several simple modules. In order to avoid any problem when merging the different
modules following rules must be followed:

 • For each assembly source file, one include file must be created containing the
definition of the symbols exported from this module. For the symbols referring to
code label, a small description of the interface is required.

 Example of Assembly File (Test1.asm):

 XDEF AddSource
 XDEF Source

 initStack:EQU $AFF

 DataSec: SECTION
 Source: DS.B 1
 CodeSec: SECTION
 AddSource:
 ADDA Source
 STAA Source
 RTS

Corresponding Include File(Test1.inc):

 XREF AddSource
; The function AddSource adds the value stored in the variable
; Source to the content of register A. The result of the computation
; is stored in the variable Source.
;
; Input Parameter: register A contains the value, which should be
; added to the variable Source.
© Copyright 1987-2003 Metrowerks

Assembler 315
; Output Parameter: Source contains the result of the addition.

 XREF Source
; The variable Source is a byte variable.

 Example of Assembly File(Test2.asm):

 XDEF entry
 INCLUDE "Test1.inc"

 initStack: EQU $AFE

 CodeSec: SECTION
 entry: LDS #initStack
 LDAA #$7
 JSR AddSource
 BRA entry

The application .prm file should list both object files building the application.
When a section is present in the different object files, the object file sections are
concatenated in a single absolute file section. The different object file sections are
concatenated in the order the object files are specified in the .prm file.

 Example of PRM File(Test2.prm):

LINK test2.abs /* Name of the executable file generated. */

NAMES
 test1.o
 test2.o /*Name of the object files building the application.*/
END

SECTIONS
 MY_ROM = READ_ONLY 0x2B00 TO 0x2BFF; /* READ_ONLY memory area */
 MY_RAM = READ_WRITE 0x2800 TO 0x28FF; /* READ_WRITE memory area */
END

PLACEMENT
 DataSec, DEFAULT_RAM INTO MY_RAM;
 /* variables are allocated in MY_RAM */
 CodeSec, ConstSec, DEFAULT_ROM INTO MY_ROM;
 /* code and constants are allocated in MY_ROM */
END
INIT entry /* Definition of the application entry point. */

VECTOR ADDRESS 0xFFFE entry /* Definition of the reset vector. */

Note: The section ‘CodeSec’ is defined in both object files. In ‘test1.o’, the section
© Copyright 1987-2003 Metrowerks

316 Assembler
‘CodeSec’ contains the symbol ‘AddSource’. In ‘test2.o’, the section
‘CodeSec’ contains the symbol ‘entry’. According to the order in which the
object files are listed in the NAMES block, the function ‘AddSource’ will be
allocated first and symbol ‘entry’ will be allocated next to it.

Using Direct Addressing mode to access
Symbols

There are different ways to inform the assembler it should use direct addressing
mode on a symbol.

Using Direct Addressing mode to Access External Symbols

External symbols, which should be accessed using the direct addressing mode, must
be declared using the directive XREF.B. Symbols which are imported using XREF
are accessed using the extended addressing mode.

Example:

 XREF.B ExternalDirLabel
 XREF ExternalExtLabel
…
 LDD ExternalDirLabel ; Direct addressing mode is used.
…
 LDD ExternalExtLabel ; Extended addressing mode is used.

Using Direct Addressing mode to Access Exported Symbols

Symbols, which are exported using the directive XDEF.B, will be accessed using
the direct addressing mode. Symbols which are exported using XDEF are accessed
using the extended addressing mode.

Example:

 XDEF.B DirLabel
 XDEF ExtLabel
…
 LDD DirLabel ; Direct addressing mode is used.
…
 LDD ExtLabel ; Extended addressing mode is used.
© Copyright 1987-2003 Metrowerks

Assembler 317
Defining Symbols in the Direct Page

Symbols, which are defined in the predefined section BSCT are always accessed
using direct addressing mode.

Example:

…
 BSCT
DirLabel: DS.B 3
dataSec: SECTION
ExtLabel: DS.B 5
…
codeSec: SECTION
…
 LDD DirLabel ; Direct addressing mode is used.
…
 LDD ExtLabel ; Extended addressing mode is used.

Using Force Operator

A force operator can be specified in an assembly instruction to force direct or
extended addressing mode.

The supported force operators are:

 • < or .B to force direct addressing mode

 • > or .W to force extended addressing mode.

Example:

…
dataSec: SECTION
label: DS.B 5
…
codeSec: SECTION
…
 LDD <label ; Direct addressing mode is used.
 LDD label.B; Direct addressing mode is used.
…
 LDD >label ; Extended addressing mode is used.
 LDD label.W ; Extended addressing mode is used.

Using SHORT Sections

Symbols, which are defined in a section defined with the qualifier SHORT are
© Copyright 1987-2003 Metrowerks

318 Assembler
always accessed using the direct addressing mode.

Example:

…
shortSec:SECTION SHORT
DirLabel: DS.B 3
dataSec: SECTION
ExtLabel: DS.B 5
…
codeSec: SECTION
…
 LDD DirLabel ; Direct addressing mode is used.
…
 LDD ExtLabel ; Extended addressing mode is used.
© Copyright 1987-2003 Metrowerks

Assembler Messages 319
Assembler Messages

There are five kinds of messages generated by the assembler:

DISABLED:
Disabled messages are not printed unless they are explicitly enabled.

INFORMATION:
A message will be printed and assembling will continue. Information messages are used to inform
the user about various topics.

WARNING:
A message will be printed and assembling will continue. Warning messages are used to indicate pos-
sible programming errors to the user.

ERROR:
A message will be printed and assembling will be stopped. Error messages are used to indicate ille-
gal usage of the language.

FATAL:
A message will be printed and assembling will be aborted. A fatal message indicates a severe error
which anyway will stop the assembling.

If the assembler prints out a message, the message contains a message code (‘A’ for Assembler)
and a decimal number. This number may be used to search very fast for the indicated message.

All messages generated by the assembler are documented in increasing number order for easy and
fast retrieval.
Each message also has a description and, if available, a short example with a possible solution or
tips to fix a problem.

For each message the type of the message is also noted, e.g. [ERROR] indicates that the message
is an error message.

A1: Unknown message occurred
[FATAL]

Description
The application tried to emit a message which was not defined. This is a internal error
which should not occur. Please report any occurrences to you distributor.

Tips
Try to find out the and avoid the reason for the unknown message.

A2: Message overflow, skipping <kind> messages
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The application did show the number of messages of the specific kind as controlled with
the options -WmsgNi, -WmsgNw and -WmsgNe. Further options of this kind are not dis-
played.

Tips
Use the options -WmsgNi, -WmsgNw and -WmsgNe to change the number of messag-
© Copyright 1987-2003 Metrowerks

320 Assembler Messages
es.

A50: Input file ‘<file>’ not found
[FATAL]

Description
The Application was not able to find a file needed for processing.

Tips
Check if the file really exits. Check if you are using a file name containing spaces (in this
case you have to quote it).

A51: Cannot open statistic log file <file>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
It was not possible to open a statistic output file, therefore no statistics are generated.
Note: Not all tools do support statistic log files. Even if a tool does not support it, the
message does still exist, but is never issued in this case, of course.

A52: Error in command line <cmd>
[FATAL]

Description
In case there is an error while processing the command line, this message is issued.

A64: Line Continuation occurred in <FileName>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
In any environment file, the character '\' at the end of a line is taken as line continuation.
This line and the next one are handles as one line only. Because the path separation
character of MS-DOS is also '\', paths are often incorrectly written ending with '\'. Instead
use a '.' after the last '\' to not finish a line with '\' unless you really want a line continua-
tion.

Example
Current Default.env:
...
LIBPATH=c:\metrowerks\lib\
OBJPATH=c:\metrowerks\work
...
Is taken identical as
...
LIBPATH=c:\metrowerks\libOBJPATH=c:\metrowerks\work
...

Tips
To fix it, append a '.' behind the '\'
...
LIBPATH=c:\metrowerks\lib\.
OBJPATH=c:\metrowerks\work
...

Note:
Because this information occurs during the initialization phase of the application, the
message prefix might not occur in the error message. So it might occur as "64: Line
Continuation occurred in <FileName>".

A65: Environment macro expansion error '<description>' for <vari-
ablename>
© Copyright 1987-2003 Metrowerks

Assembler Messages 321
[DISABLE, INFORMATION, WARNING, ERROR]

Description
During a environment variable macro substitution an problem did occur. Possible caus-
es are that the named macro did not exist or some length limitation was reached. Also
recursive macros may cause this message.

Example
Current Default.env:
...
LIBPATH=${LIBPATH}
...

Tips
Check the definition of the environment variable.

A66: Search path <Name> does not exist
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The tool did look for a file which was not found. During the failed search for the file, a
non existing path was encountered.

Tips
Check the spelling of your paths.
Update the paths when moving a project.
Use relative paths in your environment variables.
Check if network drives are available

A1000: Conditional directive not closed
[ERROR]

Description
One of the conditional blocks is not closed. A conditional block can be opened using
one of the following directives:
IF, IFEQ, IFNE, IFLT, IFLE, IFGT, IFGE, IFC, IFNC, IFDEF, IFNDEF.

Example
 IFEQ (defineConst)
const1: DC.B 1
const2: DC.B 2

Tips
Close the conditional block with an ENDIF or ENDC directive.

Example

 IFEQ (defineConst)
const1: DC.B 1
const2: DC.B 2
 ENDIF

Be careful:

A conditional block, which starts inside of a macro, must be closed within the same mac-
ro.

Example

The following portion of code generates an error, because the conditional block “IFEQ”
is opened within the macro “MyMacro” and is closed outside from the macro.
MyMacro: MACRO
 IFEQ (SaveRegs)
 DC.B 1
© Copyright 1987-2003 Metrowerks

322 Assembler Messages
 DC.B 1
 ENDM
 DC.B 1
 ENDIF

A1001: Conditional else not allowed here
[ERROR]

Description
A second ELSE directive is detected in a conditional block.

Example
 IFEQ (defineConst)
 ...
 ELSE
 ...
 ELSE
 ...
 ENDIF

Tips
Remove the superfluous ELSE directive.

Example

 IFEQ (defineConst)
 ...
 ELSE
 ...
 ENDIF

A1002: CASE, DEFAULT or ENDSW detected outside from a SWITCH
block
[ERROR]

Description
In Avocet compatibility mode, a CASE, DEFAULT or ENDSW directive was found with-
out a previous SWITCH directive.
Note: This message does only occur for assemblers supporting the avocet compatibility
mode.

Example
 xxx: equ 0

 ;SWITCH xxx
 CASE 1
 DC.B 100
 CASE 2
 DC.B 200
 CASE 4
 DC.B 400

 DEFAULT
 FAIL 1
 ENDSW

Tips
Remove the semicolon in the example.
Make sure that your assembler does support the avocet compatibility mode and that
this mode is switched on.
© Copyright 1987-2003 Metrowerks

Assembler Messages 323
A1003: CASE or DEFAULT is missing
[ERROR]

Description
In Avocet compatibility mode, after a SWITCH directive, an expression other than a
CASE or DEFAULT entry was found.
Note: This message does only occur for assemblers supporting the avocet compatibility
mode.

Example
 xxx: equ 0

 SWITCH xxx
 ; CASE 1
 DC.B 0
 CASE 2
 DC.W 0
 CASE 4
 DC.L 0

 DEFAULT
 FAIL 1
 ENDSW

Tips
Remove the semicolon in the example.
Make sure that your assembler does support the avocet compatibility mode and that
this mode is switched on.

A1004: Macro nesting too deep. Possible recursion? Stop processing.
(Set level with -MacroNest)
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The macro expansion level was below the limit configured with the option -MacroNest.

Example
In the following example, “\2” was used instead of the indented “/2”. “\2” is taken by the
assembler as second argument, which is not present and therefore it is replaced with
the empty argument. Therefore this example leads to an endless macro recursion.
X_NOPS: MACRO
 \@NofNops: EQU \1
 IF \@NofNops >= 1
 IF \@NofNops == 1
 NOP
 ELSE
 X_NOPS \@NofNops\2
 X_NOPS \@NofNops-(\@NofNops\2)
 ENDIF
 ENDIF
 ENDM

 X_NOPS 17

Tips
Use the option -MacroNest to configure the macro expansion level.
In the above example, use /2 to get the correct macro:
X_NOPS: MACRO
© Copyright 1987-2003 Metrowerks

324 Assembler Messages
 \@NofNops: EQU \1
 IF \@NofNops >= 1
 IF \@NofNops == 1
 NOP
 ELSE
 X_NOPS \@NofNops/2
 X_NOPS \@NofNops-(\@NofNops/2)
 ENDIF
 ENDIF
 ENDM

 X_NOPS 17

See also
Option -MacroNest

A1051: Zero Division in expression
[DISABLE, INFORMATION, WARNING, ERROR]

Description
A zero division is detected in an expression.

Example
label: EQU 0
label2: EQU $5000
 DC (label2/label)

Tips
Modify the expression or specify it in a conditional assembly block.

Example

label: EQU 0
label2: EQU $5000
 IFNE (label)
 DC (label2/label)
 ELSE
 DC label2
 ENDIF

A1052: Right parenthesis expected
[ERROR]

Description
A right parenthesis is missing in an assembly expression.

Example
variable: DS.W 1
label1: EQU (2*4+6
label3: EQU LOW(variable
label4: EQU HIGH(variable

Tips
Insert the right parenthesis at the correct position.

Example

variable: DS.W 1
label1: EQU (2*4+6)
label3: EQU LOW(variable)
label4: EQU HIGH(variable)
© Copyright 1987-2003 Metrowerks

Assembler Messages 325
A1053: Left parenthesis expected
[ERROR]

Description
A left parenthesis is missing in an assembly expression.

Example
variable: ds.w 1

label1: EQU LOW variable)
label2: EQU HIGH variable)

Tips
Insert the left parenthesis at the correct position.

Example

label1: EQU LOW(variable)
label2: EQU HIGH(variable)

A1054: References on non-absolute objects are not allowed when op-
tions -FA1 or -FA2 are enabled
[ERROR]

Description
A reference to a relocatable object has been detected during generation of an absolute
file by the assembler.

Example
 XREF extData
DataSec: SECTION
data1: DS.W 1
 ORG $800
entry:
 DC.W extData
 DC.W data1+2

Tips
When you are generating an absolute file, your application should be encoded in a sin-
gle source file, and should only contain any relocatable symbol.
So in order to avoid this message, define all your section as absolute section and re-
move all XREF directives from your source file.

Example

 ORG $B00
data1: DS.W 1
 ORG $800
entry:
 DC.W data1+2

A1055: Error in expression
[ERROR]

Description
An error has been discovered in an expression while parsing it.
Example
CodeSec2: SECTION
Entry2:
 LDAA #$08
label: JMP (Entry2 + 1
© Copyright 1987-2003 Metrowerks

326 Assembler Messages
Tips
Correct the expression.

A1056: Error at end of expression
[DISABLE, INFORMATION, WARNING, ERROR]

Description
An error has been detected by the assembler at the end of the read expression.

Example
 char: SET 1 this is a comment

Tips
Remove the not correct symbol at the end of line or insert a comment start “;”.

Example

 char: SET 1 ;this is a comment

A1057: Cutting constant because of overflow
[DISABLE, INFORMATION, WARNING, ERROR]

Description
A constant was cutted because of an overflow. Only the lower bits were used to gener-
ate the output.

Example
 DC $123456789

Tips
Only use 32 bit constants. Use several DC’s to produce larger values.

A1058: Illegal floating point operation
[DISABLE, INFORMATION, WARNING, ERROR]

Description
An illegal floating point operation other than unary minus or unary plus has been detect-
ed.

A1059: != is taken as EQUAL
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The != operator is taken as equal. This behavior is different from the C language or the
usual assembler behavior. The behavior is caused by the Option -Compat. Disable the
message, if you are aware of the different semantic

See also
Option -Compat

A1060: Implicit comment start
[DISABLE, INFORMATION, WARNING, ERROR]

Description
With the alternate comment syntax of the option Option -Compat=C, this message is
issued if the ignored part does not start with a star (“*”) or with a semicolon (“;”).

See also
Option -Compat

A1061: Floating Point format is not supported for this case
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The floating point value is not supported at this place.
© Copyright 1987-2003 Metrowerks

Assembler Messages 327
A1062: Floating Point number expected
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The assembler did expect a floating point value, but he found an expression of a differ-
ent type.
Note: Not all assemblers do support floating point constants. Assemblers not supporting
floating point do not issue this message.

Example
; The example only works with assemblers supporting floating point with a dc.f directive
label
 dc.f label

A1101: Illegal label: label is reserved
[ERROR]

Description
A reserved identifier is used as label. Reserved identifiers are the mnemonics associ-
ated with target processor registers and some additional Reserved Symbols.

Example
X: SET 3

Tips
Modify the name of the label to a identifier which is not reserved.

Example

_X: SET 3

See also
Reserved Symbols

A1103: Illegal redefinition of label
[ERROR]

Description
The label specified in front of a comment or an assembly instruction or directive, is de-
tected twice in a source file.

Example
DataSec1: SECTION
label1: DS.W 2
label2: DS.L 2
…
CodeSec1: SECTION
Entry: LDS #$4000
 LDX #label1
 CPX #$500
 BNE label2
…
label2: RTS

Tips
Modify the label names, in order to have unique label identification in each assembly
file.

Example:

DataSec1: SECTION
DataLab1: DS.W 2
DataLab2: DS.L 2
© Copyright 1987-2003 Metrowerks

328 Assembler Messages
…
CodeSec1: SECTION
Entry: LDS #$4000
 LDX #DataLab1
 CPX #$500
 BNE CodeLab2
…
CodeLab2: RTS

A1104: Undeclared user defined symbol: <symbolName>
[ERROR]

Description
The label <symbolName> is referenced in the assembly file, but it is never defined.

Example
Entry:
 LDX #56
 STX #Variable
 RTS

Tips
The label <symbolName> must be either defined in the current assembly file or speci-
fied as an external label.

Example:

 XREF Variable
 …
Entry:
 LDX #56
 STX #Variable
 RTS

A1201: Label <labelName> referenced in directive ABSENTRY. Only la-
bels defined in a code segment are allowed in the ABSENTRY
directive
[ERROR]

Description
The label specified in the directive ABSENTRY is an EQU label or is located in a data
section. The label specified in ABSENTRY must be a valid label defined in a code sec-
tion.

Example
 ABSENTRY const
const: EQU $1000
 ORG const
 DC.B 1
 DC.B 2

Tips
Specify a label defined in a code section in ABSENTRY or remove the directive ABSEN-
TRY.

Example

 ABSENTRY entry
const: EQU $1000
 ORG const
© Copyright 1987-2003 Metrowerks

Assembler Messages 329
entry: DC.B 1
 DC.B 2

A1251: Cannot open object file: Object file name too long
[ERROR]

Description
The object file is derived from the source file name by changing the extension to “.o”. If
the source file name is extremely long, then this may fail.

Tips
Use shorter filenames.

A1252: The exported label <name> is using an ELF extension
[DISABLE, INFORMATION, WARNING, ERROR]

 Description
This message is only issued when using the ELF object file format. I can be ignored
when using the SmartLinker, however, foreign linker may not know this extension and
therefore the linking might fail.
The exported label <name> is using an ELF extension for exported labels, which are
defined as imported label plus offset. This situation cannot be expressed in a standard
ELF symbol table, so the assembler is generating a symbol with type STT_LOPROC.
This message is disabled by default, so it does not occur unless it is explicitly enabled.
When setting this message to an error, code containing such cases cannot be assem-
bled.

Example
XREF ImportedLabel
ExportedLabel: EQU ImportedLabel + 1
XDEF ExportedLabel

Tips
Set this message to an error when you plan to use a foreign linker. Adapt the source
code so that this case does not occur.

A1253: Limitation: code size > <SizeLimit> bytes
[ERROR]

 Description
The assembler is running in demo mode and the code size limitation was reached.
Therefore the assembly process is stopped.

Tips
Make sure the license is correctly installed.
Check the about box about the current license state.

A1301: Structured type redefinition: <TypeName>
[ERROR]

Description
The same name has been associated with two different structured types.
<TypeName> is the name of the structured type, which is defined twice.
Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example
myType: STRUCT
field1: DS.W 1
field2: DS.W 1
© Copyright 1987-2003 Metrowerks

330 Assembler Messages
 ENDSTRUCT

 XREF myData:myType

myType: STRUCT
field3: DS.B 1
field4: DS.B 3
 ENDSTRUCT

Tips
Change the name of one of the structured type.

Example

myType1: STRUCT
field1: DS.W 1
field2: DS.W 1
 ENDSTRUCT

 XREF myData:myType1

myType2: STRUCT
field3: DS.B 1
field4: DS.B 3
 ENDSTRUCT

A1302: Type <TypeName> is previously defined as label
[ERROR]

Description
The identifier used to identify a structured type was previously used as a label.
<TypeName> is the name of the structured type, which is already used as label name.
Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example
myType: DS.W 3
...
myType: STRUCT
field1: DS.W 1
field2: DS.W 1
 ENDSTRUCT

Tips
Change the name of one of the structured type or of the label .

Example

myVar: DS.W 3
...
myType: STRUCT
field1: DS.W 1
field2: DS.W 1
 ENDSTRUCT

A1303: No type defined
[ERROR]

Description
A directive only allowed inside of s structured type definition was found without a leading
STRUCT or UNION.
© Copyright 1987-2003 Metrowerks

Assembler Messages 331
Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example
field1: DS.W 1
field2: DS.W 1
 ENDSTRUCT

Tips
Check the STRUCT directive at the start.

Example

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
 ENDSTRUCT

A1304: Field <FieldName> is not declared in specified type
[ERROR]

Description
The field specified is not part of the structured type associated with the variable ad-
dressed.
<FieldName> is the name of the field addressed in the variable.
Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example
myType: STRUCT
field1: DS.W 1
field2: DS.W 1
 ENDSTRUCT

 XREF myData:myType
 XDEF entry
CodeSec: SECTION
entry:
 NOP
 NOP
 LDX myData:field33

Tips
Change the name of the field to an existing field or define the field in the structured type.

Example:

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
 ENDSTRUCT

 XREF myData:myType
 XDEF entry
CodeSec: SECTION
entry:
 NOP
 NOP
 LDX myData:field2
© Copyright 1987-2003 Metrowerks

332 Assembler Messages
A1305: Type name expected
[ERROR]

Description
The symbol specified after a TYPE directive is not a previous defined structured type.
Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example
myType: STRUCT
field1: DS.W 1
field2: DS.W 1
 ENDSTRUCT

DataSec: SECTION
myData: TYPE yType
 XDEF entry
CodeSec: SECTION
entry:
 NOP
 NOP
 LDX myData:field2

Tips
Change the name of the type for a valid type name.

Example:

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
 ENDSTRUCT

DataSec: SECTION
myData: TYPE myType
 XDEF entry
CodeSec: SECTION
entry:
 NOP
 NOP
 LDX myData:field2

A1401: Value out of range -128..127
[ERROR]

Description
The offset between the current PC and the label specified as PC relative address is not
in the range of a signed byte (smaller than -128 or bigger than 127). An 8 bit signed PC
relative offset is expected in following instructions:

•Branch instructions
BCC, BCS, BEQ, BGE, BGT, BHI, BHS, BLE, BLO, BLS, BLT, BMI, BNE, BPL,
BRA, BRN, BSR, BVC, BVS

•Third operand in following instructions:
BRCLR, BRSET
© Copyright 1987-2003 Metrowerks

Assembler Messages 333
Example for branch instruction
DataSec: SECTION
var1: DS.W 1
var2: DS.W 2
CodeSec: SECTION
 …
 LDD var1
 BNE label
dummyBl: DCB.B 200, $A7
label STD var2

Tips
If you have used one of the branch instructions, use the corresponding long-branch in-
struction.

Example:

DataSec: SECTION
var1: DS.W 1
var2: DS.W 2
CodeSec: SECTION
 …
 LDD var1
 LBNE label
dummyBl: DCB.B 200, $A7
label STD var2

Example for BRCLR instruction
DataSec: SECTION
var1: DS.W 100
CodeSec: SECTION
 …
 LDX #var1
 BRCLR 3, X, #$05, label
dummyBl: DCB.B 200, $A7
label STD var2

Tips
If you have used a BRSET or BRCLR, you should replace the BRCLR instruction by fol-
lowing sequence of code:
 LDAB <first operand in the BRCLR>
 ANDB <second operand in BRCLR>
 LBEQ <third operand in BRCLR>

Example:

DataSec: SECTION
var1: DS.W 1
var2: DS.W 2
CodeSec: SECTION
 …
 LDX #var1
 LDAB 3, X
 ANDB #$05
 LBEQ label
dummyBl: DCB.B 200, $A7
label STD var2

A1402: Value out of range -32768..32767
© Copyright 1987-2003 Metrowerks

334 Assembler Messages
[ERROR]

Description
The offset between the current PC and the label specified as PC relative address is not
in the range of a signed word (smaller than -32768 or bigger than 32767).
Note: Not all assemblers do have instructions with 16 bit PC relative addressing mode.
Such assemblers will not issue this message at all.
A 16 bit signed PC relative offset is expected in following instructions:

•Long-branch instructions
LBCC, LBCS, LBEQ, LBGE, LBGT, LBHI, LBHS, LBLE, LBLO, LBLS, LBLT,
LBMI, LBNE, LBPL, LBRA, LBRN, LBSR, LBVC, LBVS

Example
DataSec: SECTION
var1: DS.W 1
var2: DS.W 2
CodeSec: SECTION
 …
 LDD var1
 LBNE label
dummyBl: DCB.B 20000, $A7
 DCB.B 20000, $A7
label STD var2

Tips
Replace the long-branch instruction by following sequence of code:
 <Inverse branch instruction> label1
 JMP label
label1:

Example:

DataSec: SECTION
var1: DS.W 1
var2: DS.W 2
CodeSec: SECTION
 …
 LDD var1
 BEQ label1
 JMP label
label1:
dummyBl: DCB.B 40000, $A7
label STD var2

A1405: PAGE with initialized RAM not supported
[ERROR]

Description
The Macro Assembler does not support the use of the HIGH operator with initialized
RAM in the HIWARE format.
In the ELF format, it is allowed and this message is not used.
Note: not all assemblers do support the PAGE operator.

Example
cstSec: SECTION
pgEntry DC.B PAGE(entry)
adrEntry: DC.W entry
codeSec: SECTION
entry:
© Copyright 1987-2003 Metrowerks

Assembler Messages 335
 NOP
 NOP

Tips
You can load the whole address from the entry label using a DC.L directive. The only
draw back is that you have allocated 4 byte to store the address instead of 3 bytes.

Example

cstSec: SECTION
adrEntry: DC.L entry
codeSec: SECTION
entry:
 NOP
 NOP

A1406: HIGH with initialized RAM not supported
[ERROR]

Description
The Macro Assembler does not support the use of the HIGH operator with initialized
RAM in the HIWARE format.

In the ELF format, it is allowed and this message is not used.
Note: not all assemblers do support the HIGH operator.

Example
MyData: SECTION
table: DS.W 1
 DC.B high(table)

A1407: LOW with initialized RAM not supported
[ERROR]

Description
The Macro Assembler does not support the use of the LOW operator with initialized
RAM in the HIWARE format.

In the ELF format, it is allowed and this message is not used.
Note: not all assemblers do support the LOW operator.

Example
MyData: SECTION
table: DS.W 1
 DC.B low(table)

A1408: Out of memory, Code size too large
[ERROR]

Description
The assembler runs out of memory because of a very large section.
Note: This assembler version does no longer have the 32k size limitation of previous
versions.

A1410: EQU or SET labels are not allowed in a PC Relative addressing
mode.
[ERROR]

Description
An absolute EQU or SET label has been detected in an indexed PC relative addressing
mode.
This is not legal in a relocatable expression.
Note: Not all assemblers do have special PC Relative addressing modes. Such assem-
© Copyright 1987-2003 Metrowerks

336 Assembler Messages
blers will not issue this message at all.

Example
label: EQU $FF30
dataSec: SECTION
data: DS.W 1
codeSec1: SECTION
entry:
 LDD label, PCR
 STD data

Tips
Make the section an absolute section.
Example of Merging sections:
label: EQU $FF30
dataSec: SECTION
data: DS.W 1
 ORG $C000
entry:
 LDD label, PCR
 STD data

A1411: PC Relative addressing mode is not supported to constants
[ERROR]

Description
An absolute expression has been detected in an indexed PC relative addressing mode.
This is not legal in a relocatable expression.
Not all assemblers do have special PC Relative addressing modes. Such assemblers
will not issue this message at all.

Example
dataSec: SECTION
data: DS.W 1
codeSec1: SECTION
entry:
 LDD $FF35, PCR
 STD data

Tips
Make the section an absolute section.
Example of Merging sections:
dataSec: SECTION
data: DS.W 1
 ORG $C000
entry:
 LDD $FF35, PCR
 STD data

A1412: Relocatable object <Symbol> not allowed if generating absolute
file
[Error]

Description
No relocatable objects are allowed if the user requests the generation of an absolute
file. This message occurs primarily for objects in the default (relocatable) section.

Example
 ABSENTRY main
© Copyright 1987-2003 Metrowerks

Assembler Messages 337
main: DC.B 1
 DC.B 2

Tips
Place all objects into absolute sections.

Example
 ABSENTRY main
 ORG $1000
main: DC.B 1
 DC.B 2

A1413: Value out of relative range
[Disabled, Information, Warning, Error]

Description
Some value did not fit into the operand field of an instruction. This message can be dis-
abled if the value should be just truncated.

Tips
Check if you can place the code and the referenced object closer together. Try to gen-
erate a smaller displacement. If this is not possible, consider using another instruction
or addressing mode.

A1414: Cannot set fixup to constant
[Error]

Description
The assemble cannot set a fixup because the referenced object is just a constant rather
then an object. One case when the assembler must generate a fixup are PCR relative
accesses in relocatable code. Then the assembler does need an object which refers to
the accessed address.

Tips
Check why the assembler has to set a fixup instead of just using a constant.

A1415: Cutting fixup overflow
[Disabled, Information, Warning, Error]

Description
A constant value does not fit into a field and is therefore cutted.

Example
 DC.B Label+1
Label: EQU $ff
 DC.B Label+1

Tips
Use a larger field, if necessary.
 DC.W Label+1
Label: EQU $ff
 DC.W Label+1

A1416: Absolute section starting at <Address> size <Size> overlaps
with absolute section starting at <Address>
[Disabled, Information, Warning, Error]

Description
Two absolute sections are overlapping each other.

Example
 ORG $1000
 DC.B 0,1,2,3
© Copyright 1987-2003 Metrowerks

338 Assembler Messages
 ; address $1004

DA: SECTION
 DC.B 1

 ORG $1001
 DC.B 0,1,2,3
 ; address $1005

Tips
Use non overlapping areas, whenever possible.
Use relocatable sections if you want to split up a memory area into several modules.
Calculate the start address of the second with the end address of the first, if they are in
the same assembly unit.
Example
 ORG $1000
 DC.B 0,1,2,3
 ; address $1004
SectEnd: EQU *

DA: SECTION
 DC.B 1

 ORG SectEnd
 DC.B 0,1,2,3
 ; address $1008

A1417: Value out of possible range
[Disabled, Information, Warning, Error]

Description
A constant value does not fit into a field. This message is used to stop the assembly for
some fixup overflow cases.
Tips:
Usually this message is used for branch distances, if so, try to use a branch with a larger
range.

A1502: Reserved identifiers are not allowed as instruction or directive
[ERROR]

Description
The identifier detected in an assembly line instruction part is a Reserved Symbol.

See also
Reserved Symbols

A1503: Error in option -D: <Description>
[Disabled, Information, Warning, Error]

Description
An option -D was used with illegal content. The format for -D is “-D” name [“=”value].
The name must be a legal for a label. The value must be a number. There must be a
number after an equal (“=”).

Example
Not a legal label name:
-D1
After a =, the there must be a value:
-DLabelName=
© Copyright 1987-2003 Metrowerks

Assembler Messages 339
Unexpected text at the end:
-D”LabelName1=1 1”

See also
Option -D

A1601: Label must be terminated with a ":"
[ERROR]

Description
This message is issued only when labels must be terminated with a colon. For some
targets, this is not required. Then this message is not issued.
This message is only generated when the MCUasm compatibility is switched on. In this
case, all labels must be terminated with a semi-colon (:) character.

A1602: Invalid character at end of label (<LabelName>): semicolon or
space expected
[ERROR]

Description
The specified label is terminated by an invalid character. The following characters are
allowed in a label:

• All alphabetical characters (‘a’.. ‘z’, ‘A’, ‘Z’).
• All numerical characters (‘0’ .. ‘9’).
• ‘.’ and ‘_’.

<LabelName> is the name of the wrong label detected (including the invalid character).

Example
Data1# DS.B 1
Data2#6 DS.B 1

Tips
Remove the invalid character or replace it by a ‘_’ .

Example

Data1 DS.B 1
Data2_6 DS.B 1

A1603: Directive, instruction or macro name expected: <SymbolName>
detected
[ERROR]

Description
The symbol detected in the operation field is not a valid directive, instruction or macro
name.
<SymbolName> is the name of the invalid string detected in the operation field.

Example
label: XXX 3
label2: label

Tips
Replace the specified symbolName by a valid instruction, directive or macro name.

A1604: Invalid character detected at the beginning of the line: <Charac-
ter>
[ERROR]

Description
The character detected on column 1 is not valid. For the macro assembler everything
starting on column 1 is supposed to be a label. The following characters are allowed at
© Copyright 1987-2003 Metrowerks

340 Assembler Messages
the beginning of a label:
• All alphabetical characters (‘a’.. ‘z’, ‘A’, ‘Z’).
• ‘.’ and ‘_’.

<Character> is the character detected on column 1.

Example
@label: DS.B 1
4label2: DS.B 2

Tips
Replace the specified character by a ‘.’ or a ‘_’.

Example

_label: DS.B 1
.label2: DS.B 2

A1605: Invalid label name: <LabelName>
[ERROR]

Description
The character detected at the beginning of a label is not valid. The following characters
are allowed at the beginning of a label:

• All alphabetical characters (‘a’.. ‘z’, ‘A’, ‘Z’).
• ‘.’ and ‘_’.

<LabelName> is the label name detected.

Example
#label: DS.B 1

Tips
Replace the specified character by a ‘.’ or a ‘_’.

Example

_label: DS.B 1

A2301: Label is missing
[ERROR]

Description
A label name is missing on the front of an assembly directive requiring a label. These
directives are:
SECTION, EQU, SET

Example
 SECTION 4
 …
 EQU $67
 …
 SET $77

Tips
Insert a label in front of the directive.

Example

codeSec: SECTION 4
 …
myConst: EQU $67
 …
mySetV: SET $77

A2302: Macro name is missing
[ERROR]
© Copyright 1987-2003 Metrowerks

Assembler Messages 341
Description
A label name is missing on the front of a MACRO directive.

Example
MyData: SECTION
Data1: DS.B 1
 MACRO
 DC.B \1
 ENDM

MyCode: SECTION
Entry:

Tips
Insert a label in front of the MACRO directive.

Example

MyData: SECTION
Data1: DS.B 1
allocChar: MACRO
 DC.B \1
 ENDM

MyCode: SECTION
Entry:

A2303: ENDM is illegal
[ERROR]

Description
A ENDM directive is detected outside of a macro.

Example
MyData: SECTION
Data1: DS.B 1
allocChar: MACRO
 DC.B \1
 ENDM

MyCode: SECTION
Entry:
 ENDM

Tips
Remove the superfluous ENDM directive.

Example

MyData: SECTION
Data1: DS.B 1
allocChar: MACRO
 DC.B \1
 ENDM

MyCode: SECTION
Entry:

A2304: Macro definition within definition
[ERROR]
© Copyright 1987-2003 Metrowerks

342 Assembler Messages
Description
A macro definition is detected inside of another macro definition. The macro assembler
does not support this.

Example
allocChar: MACRO
allocWord: MACRO
 DC.W \1
 ENDM
 DC.B \1
 ENDM

Tips
Define the second macro outside from the first one.

Example

allocChar: MACRO
 DC.B \1
 ENDM
allocWord: MACRO
 DC.W \1
 ENDM

A2305: Illegal redefinition of instruction or directive name
[ERROR]

Description
An assembly directive or a mnemonic has been used as macro name. This is not al-
lowed to avoid any ambiguity when the symbol name is encountered afterward. The
macro assembler cannot detect if the symbol refers to the macro or the instruction.

Example
DC: MACRO
 DC.B \1
 ENDM

Tips
Change the name of the macro to an unused identifier.

Example

allocChar: MACRO
 DC.B \1
 ENDM

A2306: Macro not closed at end of source
[ERROR]

Description
An ENDM directive is missing at the end of a macro. The end of the input file is detected
before the end of the macro.

Example
allocChar: MACRO
 DC.B \1
myData: SECTION SHORT
char1: DS.B 1
char2: DS.B 1
myConst: SECTION SHORT
init1: DC.B $33
init2: DC.B $43
© Copyright 1987-2003 Metrowerks

Assembler Messages 343
....

Tips
Insert the missing ENDM directive at the end of the macro.
Example
allocChar: MACRO
 DC.B \1
 ENDM
myData: SECTION SHORT
char1: DS.B 1
char2: DS.B 1
myConst: SECTION SHORT
init1: DC.B $33
init2: DC.B $43
....

A2307: Macro redefinition
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The input file contains the definition of two macros, which have the same name.

Example
alloc: MACRO
 DC.B \1
 ENDM
alloc: MACRO
 DC.W \1
 ENDM

Tips
Change the name of one of the macros to generate unique identifiers.

Example

allocChar: MACRO
 DC.B \1
 ENDM
allocWord: MACRO
 DC.W \1
 ENDM

A2308: File name expected
[ERROR]

Description
A file name is expected in an INCLUDE directive.

Example
 INCLUDE 1234

Tips
Specify a file name after the include directive.

Example

 INCLUDE "1234" ; file is named "1234"

A2309: File not found
[ERROR]

Description
The assembler cannot find the file, which name is specified in the include directive.
© Copyright 1987-2003 Metrowerks

344 Assembler Messages
Tips
If the file exist, check if the directory where it is located is specified in the GENPATH
environment variable.
First check if your project directory is correct. A file “default.env” should be located
there, where the environment variables are stored.
The macro assembler looks for the included files in the working directory and then in
the directory enumerated in the GENPATH environment variable.
If the file do not exist, create it or remove the include directive.

A2310: Size specification expected
[ERROR]

Description
An invalid size specification character is detected in a DCB, DC, DS, FCC, FCB, FDB,
FQB, RMB, XDEF or XREF, directive.
For XDEF and XREF directives, valid size specification characters are:

• .B: for symbols located in a section where direct addressing mode can be used.
• .W: for symbols located in a section where extended addressing mode must be

used.
For DCB, DC, DS, FCC, FCB, FDB, FQB and RMB directives, valid size specification
characters are:

• .B: for Byte variables.
• .W: for Word variables.
• .L: for Long variables.

Example
DataSec: SECTION
label1: DS.Q 2

ConstSec: SECTION
label2: DC.I 3, 4, 66

Tips
Change the size specification character to a valid one.

Example

DataSec: SECTION
label1: DS.W 2

ConstSec: SECTION
label2: DC.W 3, 4, 66

A2311: Symbol name expected
[ERROR]

Description
A symbol name is missing after a XDEF, XREF, IFDEF or IFNDEF directive.

Example
 XDEF $5645
 XREF ; This is a comment
CodeSec: SECTION

 IFDEF $5634
 ENDIF

Tips
Insert a symbol name at the requested position.

Example
© Copyright 1987-2003 Metrowerks

Assembler Messages 345
 XDEF exportedSymbol
 XREF importedSymbol; This is a comment
CodeSec: SECTION

exportedSymbol:
 IFDEF changeBank
 ENDIF

A2312: String expected
[ERROR]

Description
A character string is expected at the end of a FCC, IFC or IFNC directive.

Example
one: MACRO
 IFC \1,""
 DS.B 1
 ELSE
 DC.B \1
 ENDIF
 ENDM
 one $42

Tips
Insert a character string at the requested position.

Example

one: MACRO
 IFC "\1",""
 DS.B 1
 ELSE
 DC.B \1
 ENDIF
 ENDM
 one $42

A2313: Nesting of include files exceeds 50
[ERROR]

Description
The maximum number of nested include files has been exceeded. The Macro Assem-
bler supports up to 50 nested include files.

Tips
Reduce the number of nested include file to 50.

A2314: Expression must be absolute
[ERROR]

Description
An absolute expression is expected at the specified position.
1. Assembler directives expecting an absolute value are:

• OFFSET, ORG, ALIGN, SET, BASE, DS, LLEN, PLEN, SPC, TABS, IF, IFEQ, IF-
NE, IFLE, IFLT, IFGE, IFGT.

2. The first operand in a DCB directive must be absolute:

Example
DataSec: SECTION
label1: DS.W 1
© Copyright 1987-2003 Metrowerks

346 Assembler Messages
label2: DS.W 2
label3: EQU 8

codeSec: SECTION

 BASE label1

 ALIGN label2

Tips
Specify an absolute expression at the specified position.

Example

DataSec: SECTION
label1: DS.W 1
label2: DS.W 2
label3: EQU 8

codeSec: SECTION

 BASE label3

 ALIGN 4

A2316: Section name required
[ERROR]

Description
A SWITCH directive is not followed by a symbol name. Absolute expressions or string
are not allowed in a SWITCH directive.
The symbol specified in a SWITCH directive must refer to a previously defined section.

Example
dataSec: SECTION
label1: DS.B 1

codeSec: SECTION

 SWITCH $A344

Tips
Specify the name of a previously define section in the SWITCH instruction.

Example

dataSec: SECTION
label1: DS.B 1

codeSec: SECTION

 SWITCH dataSec

A2317: Illegal redefinition of section name
[ERROR]

Description
The name associated with a section is previously used as a label in a code or data sec-
tion or is specified in a XDEF directive.
The macro assembler does not allow to export a section name, or to use the same
name for a section and a label.
© Copyright 1987-2003 Metrowerks

Assembler Messages 347
Example
dataSec: SECTION
sec_Label: DS.W 3
 ; ...
sec_Label: SECTION
 ; ...

Tips
Change to name of the section to a unique identifier.

Example

dataSec: SECTION
dat_Label: DS.W 3
 ; ...
sec_Label: SECTION
 ; ...

A2318: Section not declared
[ERROR]

Description
The label specified in a SWITCH directive is not associated with a section.

Example
dataSec: SECTION
label1: DS.B 1
 ; ...
codeSec: SECTION
 ; ...
 SWITCH daatSec
 ; ...

Tips
Specify the name of a previously define section in the SWITCH instruction.

Example

dataSec: SECTION
label1: DS.B 1
 ; ...
codeSec: SECTION
 ; ...
 SWITCH dataSec
 ; ...

A2319: No section link to this label
[ERROR]

Description
A label without corresponding section was detected. This error usually occurs because
of other errors before.

Tips
Correct all errors before this one first.

A2320: Value too small
[ERROR]

Description
The absolute expression specified in a directive is too small.
This message can be generated in following cases:
© Copyright 1987-2003 Metrowerks

348 Assembler Messages
• The expression specified in an ALIGN, DCB or DS directive is smaller than 1.
• The expression specified in a PLEN directive is smaller than 10. A header is gener-

ated on the top of each page from the listing file. This header contains at least 6
lines. So a page length smaller than 10 lines does not make many sense.

• The expression specified in a LLEN, SPC or TABS directive is smaller than 0 (neg-
ative).

Example
 PLEN 5
 LLEN -4
dataSec: SECTION
 ALIGN 0
 ; ...
label1: DS.W 0
 ; ...

Tips
Modify the absolute expression to a value in the range specified above.

Example

 PLEN 50
 LLEN 40
dataSec: SECTION
 ALIGN 8
 ; ...
label1: DS.W 1
 ; ...

A2321: Value too big
[ERROR]

Description
The absolute expression specified in a directive is too big.
This message can be generated in following cases:

• The expression specified in an ALIGN directive is bigger than 32767.
• The expression specified in a PLEN directive is bigger than 10000.
• The expression specified in a LLEN directive is bigger than 132.
• The expression specified in a SPC directive is bigger than 65.
• The expression specified in a TABS directive is bigger than 128.

Example
 PLEN 50000
 LLEN 200
dataSec: SECTION
 ALIGN 40000
 ; ...

Tips
Modify the absolute expression to a value in the range specified above.

Example

 PLEN 50
 LLEN 40
dataSec: SECTION
 ALIGN 8
 ; ...

A2323: Label is ignored
[DISABLE, INFORMATION, WARNING, ERROR]
© Copyright 1987-2003 Metrowerks

Assembler Messages 349
Description
A label is specified in front of a directive, which does not accept any label. The macro
assembler ignores such label.
These labels cannot not be referenced anywhere else in the application. Labels will be
ignored in front of following directives:

• ELSE, ENDIF, END, ENDM, INCLUDE, CLIST, ALIST, FAIL, LIST, MEXIT,
NOLIST, NOL, OFFSET, ORG, NOPAGE, PAGE, LLEN, PLEN, SPC, TABS,
TITLE, TTL.

Example
CodeSec: SECTION
 ; ...
label: PLEN 50
 ; ...
label2: LIST
 ; ...

Tips
Remove the label which is not required. If you need a label at that position in a section,
define the label on a separate line.

Example

CodeSec: SECTION
 ; ...
label:
 PLEN 50
 ; ...
label2:
 LIST
 ; ...

A2324: Illegal Base (2,8,10,16)
[ERROR]

Description
An invalid base number follows a BASE directive. The valid base numbers are 2, 8, 10
or 16.
The expression specified in a BASE directive must be an absolute expression and must
match one of the values enumerated above.

Example
 BASE 67
dataSec: SECTION
 ; ...
label: EQU 35
 ; ...
 BASE label

Tips
Specify one of the valid value in the BASE directive.

Example

 BASE 16
 ; ...
dataSec: SECTION
label: EQU 8
 ; ...
 BASE label
© Copyright 1987-2003 Metrowerks

350 Assembler Messages
A2325: Comma or Line end expected
[ERROR]

Description
An incorrect syntax has been detected in a DC, FCB, FDB, FQB, XDEF, PUBLIC, GLO-
BAL, XREF or EXTERNAL directive.
This error message is generated when the values enumerated in one of the directive
enumerated above are not terminated by an end of line character, or when they are not
separated by a ‘,’ character.

Example
 XDEF dataLab1 dataLab2
 XREF bb1, bb2, bb3, bb4 This is a comment
 ; ...
dataSec: SECTION
dataLab1: DC.B 2 | 4 | 6 | 8
dataLab2: FCB 45, 66, 88 label3:DC.B 4

Tips
Use the ‘,’ character as separator between the different items in the list or insert an end
of line at the end of the enumeration.

Example

 XDEF dataLab1, dataLab2
 XREF bb1, bb2, bb3, bb4 ;This is a comment
 ; ...
dataSec: SECTION
dataLab1: DC.B 2, 4, 6, 8
dataLab2: FCB 45, 66, 88
label3: DC.B 4

A2326: Label <Name> is redefined
[ERROR]

Description
A label redefinition has been detected. This message is issued when:

• The label specified in front of a DS, DCB, FCC directive is already defined.
• One of the label names enumerated in a XREF directive is already defined.
• The label specified in front of an EQU directive is already defined.
• The label specified in front of a SET directive is already defined and not associated

with another SET directive.
• A label with the same name as an external referenced symbol is defined in the

source file

Example
Data1Sec: SECTION
label1: DS.W 4
 ; ...
Data2Sec: SECTION
label1: DS.W 1
 ; ...

Tips
Modify your source code to use unique identifiers.

Example

Data1Sec: SECTION
d1_label1: DS.W 4
 ; ...
© Copyright 1987-2003 Metrowerks

Assembler Messages 351
Data2Sec: SECTION
d2_label1: DS.W 1
 ; ...

A2327: ON or OFF expected
[ERROR]

Description
The syntax for a MLIST or CLIST directive is not correct. These directives expects a
unique operand, which can take the value ON or OFF.

Example
CodeSec: SECTION
 ; ...
 CLIST
 ; ...

Tips
Specify either ON or OFF after the MLIST or CLIST directive.

Example

CodeSec: SECTION
 ; ...
 CLIST ON
 ; ...

A2328: Value is truncated
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The size of one of the constants listed in a DC directive is bigger than the size specified
in the DC directive.

Example
DataSec: SECTION
cst1: DC.B $56, $784, $FF
cst2: DC.W $56, $784, $FF5634

Tips
Reduce the value from the constant to a value fitting in the size specified in the DC di-
rective.

Example

DataSec: SECTION
cst1: DC.B $56, $7, $84, $FF
cst2: DC.W $56, $784, $FF, $5634

A2329: FAIL found
[ERROR]

Description
The FAIL directive followed by a number smaller than 500 has been detected in the
source file.
This is the normal behavior for the FAIL directive. The FAIL directive is intended for use
with conditional assembly, to detect user defined error or warning condition

Example
LE.B: MACRO
 IFC "\1",""
 FAIL "no data" ; error
 MEXIT
© Copyright 1987-2003 Metrowerks

352 Assembler Messages
 ENDIF
 IFC "\2",""
 FAIL 600 ; warning
 DC.B \1
 MEXIT
 ENDIF
 IFNC "\3",""
 FAIL 400 ; error
 ENDIF
 DC.B \2,\1
 ENDM

 LE.B $12,$34,$56

A2330: String is not allowed
[ERROR]

Description
A string has been specified as initial value in a DCB directive. The initial value for a con-
stant block can be any byte, half-word or word absolute expression as well as a simple
relocatable expression.

Example
CstSec: SECTION
label: DCB.B 10, "aaaaaa"
 ; ...

Tips
Specify the ASCII code associated with the characters in the string as initial value.

Example

CstSec: SECTION
label: DCB.B 10, $61
 ; ...

A2332: FAIL found
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The FAIL directive followed by a number bigger than 500 has been detected in the
source file.
This is the normal behavior for the FAIL directive. The FAIL directive is intended for use
with conditional assembly, to detect user defined error or warning condition

Example
LE.B: MACRO
 IFC "\1",""
 FAIL "no data" ; error
 MEXIT
 ENDIF
 IFC "\2",""
 FAIL 600 ; warning
 DC.B \1
 MEXIT
 ENDIF
 IFNC "\3",""
 FAIL 400 ; error
 ENDIF
© Copyright 1987-2003 Metrowerks

Assembler Messages 353
 DC.B \2,\1
 ENDM

 LE.B $12

A2333: Forward reference not allowed
[ERROR]

Description
A forward reference has been detected in an EQU instruction. This is not allowed.

Example
CstSec: SECTION
 ; ...
equLab: EQU label2
 ; ...
label2: DC.W $6754
 ; ...

Tips
Move the EQU after the definition of the label it refers to.

Example

CstSec: SECTION
 ; ...
label2: DC.W $6754
 ; ...
equLab: EQU label2
 ; ...

A2335: Exported SET label is not supported
[ERROR]

Description
The SET directive does not allow a reference to an external label.

Example
 XDEF setLab
const: SECTION
lab: DC.B 6

setLab: SET $77AA

Tips
SET labels initialized with absolute expressions can be defined in a special file to be
included by assembly files, or the EQU directive can be used.

Example

 XDEF setLab
const: SECTION
lab: DC.B 6

setLab: EQU $77AA

See also
SET Directive

A2336: Value too big
[DISABLED, INFORMATION, WARNING, ERROR]

Description
© Copyright 1987-2003 Metrowerks

354 Assembler Messages
The absolute expression specified as initialization value for a block defined using DCB
is too big. This message is generated when the initial value specified in a DCB.B direc-
tive cannot be coded on a byte.
In this case the value used to initialize the constant block will be truncated to a byte val-
ue.

Example
constSec: SECTION
 ; ...
label1: DCB.B 2, 312
 ; ...
In the previous example, the constant block is initialized with the value $38 (= 312 &
$FF)

Tips
To avoid this warning, modify the initialization value to a byte value.

Example

constSec: SECTION
 ; ...
label1: DCB.B 2, 56
 ; ...

A2338: <FailReason>
[ERROR]

Description
The FAIL directive followed by a string has been detected in the source file.
This is the normal behavior for the FAIL directive. The FAIL directive is intended for use
with conditional assembly, to detect user defined error or warning condition

Example
LE.B: MACRO
 IFC "\1",""
 FAIL "no data" ; error
 MEXIT
 ENDIF
 IFC "\2",""
 FAIL 600 ; warning
 DC.B \1
 MEXIT
 ENDIF
 IFNC "\3",""
 FAIL 400 ; error
 ENDIF
 DC.B \2,\1
 ENDM

 LE.B ; no args

A2340: Macro parameter already defined
[ERROR]

Description
A name of a macro parameter was already defined.
Note: Not all assemblers do support named macro parameters. Assembler not support-
ing this will never issue this message.
© Copyright 1987-2003 Metrowerks

Assembler Messages 355
A2341: Relocatable Section Not Allowed: an Absolute file is currently
directly generated
[ERROR]

Description
A relocatable section has been detected while the assembler tries to generate an abso-
lute file. This is not allowed.

Example
DataSec: SECTION
Data1: DS.W 1
 ORG $800
entry:
 NOP
 NOP
addData1: DC.W Data1

Tips
When you are generating an absolute file, your application should be encoded in a sin-
gle source file, and should only contain absolute symbol.
So in order to avoid this message, define all your section as absolute section and re-
move all XREF directives from your source file.

Example

 ORG $1000
Data1: DS.W 1
 ORG $800
entry:
 NOP
 NOP
addData1: DC.W Data1

A2342: Label in an OFFSET section cannot be exported
[ERROR]

Description
An external defined label is provided as offset in an OFFSET directive or a label defined
in an offset is used in a DS directive.

Example
 OFFSET 1
ID: DS.B 1
 ALIGN 4
COUNT: DS.W 1
 ALIGN 4
VALUE: DS.W 1
SIZE: EQU *

 XDEF VALUE
DataSec: SECTION
Struct: DS.B SIZE

Tips
Use other labels to specify the size of the offset and the number of space to provide.

Example

 OFFSET 1
ID: DS.B 1
 ALIGN 4
© Copyright 1987-2003 Metrowerks

356 Assembler Messages
COUNT: DS.W 1
 ALIGN 4
VALUE: DS.W 1
SIZE: EQU *

DataSec: SECTION
Struct: DS.B SIZE

A2345: Embedded type definition not allowed
[ERROR]

Description
The keyword STRUCT or UNION has been detected within a structured type definition.
This is not allowed.
Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example
myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
fieldx: STRUCT
 xx: DS.B 1
 yy: DS.B 1
 ENDSTRUCT
field4: DS.B 3
field5: DS.W 1
 ENDSTRUCT

Tips

Define the structured type as two separate structured types.

Example

typeX: STRUCT
 xx: DS.B 1
 yy: DS.B 1
 ENDSTRUCT

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
fieldx: TYPE typeX
field4: DS.B 3
field5: DS.W 1
 ENDSTRUCT

A2346: Directive or instruction not allowed in a type definition
[ERROR]

Description
An instruction or an invalid directive has been detected in a structured type definition.
Only following directives are allowed in a structured type definition:

• DS, RMB, ALIGN, EVEN, LONGEVEN,
• Conditional Assembly directives (IF, ELSE, IFCC, ..)
• Directives related to the formatting of the listing file (PLEN, SPC, ...)
© Copyright 1987-2003 Metrowerks

Assembler Messages 357
• XDEF, XREF, BASE

Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example
myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
cst: DC.B $34
field4: DS.B 3
field5: DS.W 1
 ENDSTRUCT

Tips
Remove the invalid directive or instruction.

Example

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
field5: DS.W 1
 ENDSTRUCT

A2350: MEXIT is illegal (detected outside of a macro)
[ERROR]

Description
An MEXIT was found without a matching MACRO directive.

Example
 MEXIT

Tips
Check for the correct writing of the MACRO directive. Do not use MEXIT as label.

A2351: Expected Comma to separate macro arguments
[DISABLE, INFORMATION, WARNING, ERROR]

Description
Macro arguments must be separated by a comma.

Example
constants MACRO
 DC.B \1+1, \2+1
 ENDM

 constants 1 2

Tips
Do not use spaces in macro parameters, instead use a comma:
 constants 1,2

A2352: Invalid Character
[ERROR]

Description
An invalid character was found during parsing.
© Copyright 1987-2003 Metrowerks

358 Assembler Messages
Tips
Check the source file for binary parts

A2353: Illegal or unsupported directive SECT
[DISABLED, INFORMATION, WARNING, ERROR]

Description
The assembler did not understand the whole SECT directive. The SECT directive is
only recognized when the option Option -Compat is present.

Tips
Use the SECTION directive instead.

See also
Option -Compat

A2354: Ignoring directive '<directive>'
[DISABLED, INFORMATION, WARNING, ERROR]

Description
The assembler is ignoring the specified directive.
This message is used mainly for directives which are not supported when the option Op-
tion -Compat is present.

See also
Option -Compat

A2355: Illegal size specification
[DISABLED, INFORMATION, WARNING, ERROR]

Description
The size specification given is not legal for this directive.

Tips
Use no size specification at all or use a different one.

A2356: Illegal RAD50 character
[DISABLED, INFORMATION, WARNING, ERROR]

Description
Note: Not all assemblers do support the RAD50 directive. This message is only issued
by assemblers which do support the RAD50 directive.

See also
Directive RAD50

A2356: Illegal macro argument 'Argument'
[DISABLED, INFORMATION, WARNING, ERROR]

Description
Macro argument started with the [? syntax have to end with ?]. However this second
pattern was not found.

See also
Macro argument grouping
Macros chapter
Option -CMacAngBrack

A2380: Cutting very long line
[DISABLED, INFORMATION, WARNING, ERROR]

Description
A line was longer than the limit 1024 characters. All remaining text is ignored.

Tips
© Copyright 1987-2003 Metrowerks

Assembler Messages 359
• Split up the line into several lines.
• Remove trailing spaces and tabs.
• Use shorter identifiers.

A2381: Previous message was in this context <Context>
[DISABLED, INFORMATION, WARNING, ERROR]

Description
The previous message was in a special context. Usually this message is used to show
the current macro expansion tree.

Example
TABLE: MACRO
 ; \1: size of table to be generated
 ; \2: current value for table
\@size: EQU \1
 if (\@size >= 2)
 TABLE \@size/2,\2
 TABLE \@size-\@size/2,\2+\@size/2
 else
 if (\@size == 1)
 DC \2
 endif
 endif
 ENDM

 TABLE 4
Generates the following messages:
D:\test\b.asm(9): ERROR A1055: Error in expression
INFORMATION Macro Expansion DC

b.asm(5): INFORMATION A2381: Previous message was in this context
'Macro Invocation'
b.asm(5): INFORMATION A2381: Previous message was in this context
'Macro Invocation'
b.asm(14): INFORMATION A2381: Previous message was in this
context 'Macro Invocation'

So the error happens at line 9 (“DC \2”) which was called by line 5 twice and finally by
line 14.
To fix this example, add a second parameter to the TABLE macro call:

 TABLE 4,0

Tips
Check the message before the first A2381 to see the cause of the problem.

A2382: Illegal character ('\0') in source file
[ERROR]

Description
An zero byte (a byte with ASCII code 0) was found in the source.

Tips
Check if the source file is binary.

A2383: Input line too long
© Copyright 1987-2003 Metrowerks

360 Assembler Messages
[ERROR]

Description
An input line is longer then the translation limit.
Input lines must not be longer than 1024 characters.

Tips
Split the input line.
In recursive macros, use local SET labels to avoid lines growing with the input buffer:
Instead of:
TableTo: MACRO
 if (\1 > 0)
 DC.W \1
 TableTo \1 - 1
 endif
 ENDM
Use:
TableTo: MACRO
 if (\1 > 0)
 DC.W \1
 \@LocLabel: SET \1-1
 TableTo \@LocLabel
 endif
 ENDM

A2400: End of Line expected
[DISABLED, INFORMATION, WARNING, ERROR]

Description
The assembler did not expect anything anymore on a line. This message can be gen-
erated when:

• A comment, which does not start with the start of comment character (‘;’), is specified
after the instruction.

• A further operand is specified in the instruction.
• ...

Example

DataSec: SECTION
var: DS.B 1 Char variable

Tips
Remove the invalid character or sequence of characters from the line.

• Insert the start of comment character at the beginning of the comment.
• Remove the superfluous operand.
• ...

Example

DataSec: SECTION
var: DS.B 1 ; Char variable

A2401: Complex relocatable expression not supported
[ERROR]

Description
A complex relocatable expression has been detected. A complex relocatable expres-
sion is detected when the expression contains:

• An operation between labels located in two different sections.
• A multiplication, division or modulo operation between two labels.
© Copyright 1987-2003 Metrowerks

Assembler Messages 361
• The addition of two labels located in the same section.

Example
DataSec1: SECTION SHORT
DataLbl1: DS.B 10
DataSec2: SECTION SHORT
DataLbl2: DS.W 15
offset: EQU DataLbl2 - DataLbl1

Tips
The macro assembler does not support complex relocatable expressions. The corre-
sponding expression must be evaluated at execution time.

Example

DataSec1: SECTION SHORT
DataLbl1: DS.B 10
DataSec2: SECTION SHORT
DataLbl2: DS.W 15
Offset: DS.W 1
…
CodeSec: SECTION
 …
evalOffset:
 LDD #DataLbl2
 SUBD #DataLbl1
 STD Offset

If both DataSec1 and DataSec2 are in the same section and defined in this module,
the assembler can compute the difference:

DataSec1: SECTION SHORT
DataLbl1: DS.B 10
DataLbl2: DS.W 15
offset: EQU DataLbl2 - DataLbl1

A2402: Comma expected
[ERROR]

Description
A comma character is missing between two operands of an instruction or directive.

Example
DataSec: SECTION
Data: DS.B 1
ConstSec: SECTION
 DC.B 2 3

Tips
The comma (‘,’) character is used as separator between instruction operands.

Example

DataSec: SECTION
Data: DS.B 1
ConstSec: SECTION
 DC.B 2, 3

A2500: Equal expected
[ERROR]
© Copyright 1987-2003 Metrowerks

362 Assembler Messages
Description
In a for directive, a = was expected.

Example
 FOR j := $1000 TO $1003
 DC.W j
 ENDFOR
Tips:
Just use an equal in the example (no colon).
 FOR j = $1000 TO $1003
 DC.W j
 ENDFOR
Check that the Option -Compat=b is enabled.

See also
Option -Compat
Directive FOR

A2501: TO expected
[ERROR]

Description
In a for directive, a TO was expected.

Example
 FOR j := $1000 < $1003
 DC.W j
 ENDFOR
Tips:
Just use a TO in the example.
 FOR j = $1000 TO $1003
 DC.W j
 ENDFOR
Check that the Option -Compat=b is enabled.

See also
Option -Compat
Directive FOR

A2502: ENDFOR missing
[ERROR]

Description
In a for directive, a TO was expected.

Example
 FOR j := $1000 < $1003
 DC.W j
Tips:
Check that every FOR has a corresponding ENDFOR.
 FOR j = $1000 TO $1003
 DC.W j
 ENDFOR
Check that the Option -Compat=b is enabled.

See also
Option -Compat
Directive FOR

A2503: ENDFOR without FOR
© Copyright 1987-2003 Metrowerks

Assembler Messages 363
[ERROR]

Description
A ENDFOR without corresponding FOR was found.

Example
; FOR j := $1000 < $1003
 DC.W j
 ENDFOR
Tips:
Check that every ENDFOR has a corresponding FOR. In the example, remove the
semicolon.
 FOR j = $1000 TO $1003
 DC.W j
 ENDFOR
Check that the Option -Compat=b is enabled.

See also
Option -Compat
Directive FOR

A3000: User requested stop
[DISABLE, INFORMATION, WARNING, ERROR]

Description
This message is used when the user presses the stop button in the graphical user in-
terface.
Also when the assembler is closed during an assembly, this message is issued.

Tips
By moving this message to a warning or less, the stop functionality can be disabled.

A4000: Recursive definition of label <Label name>
[ERROR]

Description
The definition of an EQU label depends directly or indirectly on itself.

Example
 XDEF tigger
pooh: EQU tigger - 2
tigger: EQU 2*pooh

Tips
This error usually indicates an error in some definitions. Determine the labels involved
in the recursive definition and eliminate the circular dependency.

A4001: Data directive contains no data
[DISABLE, INFORMATION, WARNING, ERROR]

Description
A data directive is empty, and no code is generated for this directive.

Example
 DC.B ; 1,2,3,4

Tips
This warning may indicate an error, or it may be intentional within a macro expansion,
for example.

A4002: Variable access size differs from previous declaration
[DISABLE, INFORMATION, WARNING, ERROR]

Description
© Copyright 1987-2003 Metrowerks

364 Assembler Messages
An implicit or explicit declaration of a label indicates an access size which differs from
a former declaration.

Tips
Indicating the access size of variables is particularly helpful in “header” files which con-
tain XREF directives, to be included by other files accessing these variables. If an as-
sembly file contains a “XREF.B obj”, and the header file declares “XREF.W obj”, this
warning message indicates potential problems.

A4003: Found XREF, but no XDEF for label <Label>, ignoring XREF
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The local definition of a label <Label> supersedes a global XREF declaration, if no ap-
propriate XDEF directive is given.

Example
 XREF main
Code: SECTION
main: NOP ; is local, unless XDEF given
 NOP

Tips
This warning may indicate a forgotten “XDEF” directive.

A4004: Qualifier ignored
[DISABLE, INFORMATION, WARNING, ERROR]

Description
An unknown qualifier to a SECTION or ORG directive is ignored.

Example
const: SECTION SHORT 1234 FOO
 DC.B "hello", 0

Tips
This warning may indicate a misspelled qualifier.

A4005: Access size mismatch for <Symbol>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
Incompatible access sizes are attached to an object, either implicitly or explicitly. The
access size of an object is determined from XREF declarations, XDEF definitions and
(if applicable) from the access size of the section, where the object is placed into.

Example
 XDEF.B two
const: SECTION
two: DC.B 2 ; implicit *.W definition

Tips
It is probably a good idea to eliminate mismatches, particularly if mismatches occur be-
tween declarations in a “header file” and definitions in the assembly file.

A4100: Address space clash for <Symbol>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
This message is only relevant for Harvard architectures (separate code and data ad-
dress spaces), and occurs for symbols whose address is used both as a code address
and a data address.

Tips
© Copyright 1987-2003 Metrowerks

Assembler Messages 365
This clash may be intentional, but indicates an error in most cases.

A12001: Illegal Addressing Mode
[ERROR]

Description
An illegal addressing mode has been detected in an instruction. This message is gen-
erated when an incorrect encoding is used for an addressing mode.

Example
 LDD [D X]
 LDD [D, X
 ANDCC $FA

Tips
Use a valid notation for the addressing mode encoding.

Example:

 LDD [D, X]
 ANDCC #$FA

A12003: Value is truncated to one byte
[DISABLE, INFORMATION, WARNING, ERROR]

Description
A word operand is specified in an assembly instruction expecting a byte operand. This
warning may be generated in following cases:

•1. A symbol located in a section, which is accessible using the extended address-
ing mode, is specified as operand in an instruction expecting a direct operand.

•2. An external symbol imported using XREF is specified as operand in an instruc-
tion expecting a direct operand.

•3. The mask specified in a BCLR, BSET, BRCLR or BRSET is bigger than 0xFF.

Example
 XREF extData
dataSec: SECTION
data: DS.B 1
data2: DS.B 1
destination: DS.W 1
codeSec: SECTION
 MOVB #data, destination
 MOVB #data, destination
 MOVB #extData, destination
 BCLR data, #$54F

Tips
According to the reason why the warning was generated, the warning can be avoided
in the following way:

•1. Specify the force operator .B at the end of the operand or < in front of the oper-
and.

•2. User XREF.B to import the symbol.

Example:

 XREF.B extData
dataSec: SECTION
data: DS.B 1
data2: DS.B 1
destination: DS.W 1
codeSec: SECTION
© Copyright 1987-2003 Metrowerks

366 Assembler Messages
 MOVB #data.B, destination
 MOVB #extData, destination
 BCLR data, #$4F

A12004: Value is truncated to two bytes
[DISABLE, INFORMATION, WARNING, ERROR]

Description
If a value is larger than two bytes, but the instruction only allows a 16bit value, this mes-
sage is issued.

A12005: Value must be between 1 and 8
[ERROR]

Description
The expression specified in a pre increment, post increment, pre decrement or post
decrement addressing mode is out of the range [1..8]

Example
STX 10, SP+

Tips
According to the HC12 addressing mode notation, the increment or decrement factor
must be bigger than 0 and smaller than 9.

A12006: Value is truncated to five bits
[DISABLE, INFORMATION, WARNING, ERROR]

Description
If a value is larger than five bits, but the instruction only allows a 5bit value, this mes-
sage is generated.

A12008: Relative branch with illegal target
[ERROR]

Description
The offset specified in a PC relative addressing mode is a complex relocatable expres-
sion, a symbol defined in another section or an external defined symbol.

Example
DataSec: SECTION
Data: DS.B 1
Code1Sec: SECTION
Entry1:
 NOP
 LDD #$6000
 STD Data
CodeSec: SECTION
 LDD Data
 CPD #$6000
 BNE Entry1

A12009: Illegal expression
[ERROR]

Description
An illegal expression is specified in a PC relative addressing mode. The illegal expres-
sion may be generated in following cases:

•1. A complex expression is specified, when a PC relative expression is expected.
•2. A left or right parenthesis is missing in the expression.

Example
© Copyright 1987-2003 Metrowerks

Assembler Messages 367
CodeSec1: SECTION
Entry1:
 NOP
CodeSec2: SECTION
Entry2:
 NOP
 BRA Entry2 - Entry1

 BRA (Entry2 + 1

Tips
Change the expression to a valid expression.

Example:

CodeSec1: SECTION
Entry1:
 NOP
CodeSec2: SECTION
Entry2:
 NOP
 BRA Entry2

 BRA (Entry2 + 1)

A12010: Register expected
[ERROR]

Description
A register mnemonic is missing in a post increment, post decrement, pre increment or
pre decrement addressing mode.

Example
LDD 1, -ssp

Tips
Specify a register mnemonic on the specified position.

Example

LDD 1, -sp

A12102: Page value expected
[ERROR]

Description
A page number is missing in a CALL instruction.

Example
DataSec: SECTION
data: DS.L 2
FarCodeSec: SECTION
FarFunction:
 LDD #45
 STD data
CodeSec: SECTION
…
 CALL FarFunction

Tips
Add the missing page operand to the CALL instruction

Example:
© Copyright 1987-2003 Metrowerks

368 Assembler Messages
DataSec: SECTION
data: DS.L 2
FarCodeSec: SECTION
FarFunction:
 LDD #45
 STD data
CodeSec: SECTION
…
 CALL FarFunction, PAGE(FarFunction)

A12103: Operand not allowed
 [ERROR]

Description
The operand specified in an assembly instruction is not valid for this instruction.

Example
DataSec: SECTION
data DS.B 20
…
CodeSec: SECTION
LEAX #data

Tips
Check your HC12 User’s Guide and modify the source code in order to have only valid
instructions and addressing mode combination.

Example:

DataSec: SECTION
data DS.B 20
…
CodeSec: SECTION
LDX #data

A12104: Immediate value expected
[ERROR]

Description
The immediate addressing mode is expected at that position. Usually this error mes-
sage is generated when the mask specified in a BRCLR or BRSET instruction is not pre-
ceded by the immediate character (‘#’).

Example
maskValue: EQU $40
 BSCT
var: DS.B 1
CodeSec: SECTION
entry:
 LDD #4567
 BRCLR var, maskValue, endCode
 …
endCode:
 END

Tips
Insert the character ‘#’ at the requested position to change to the immediate addressing
mode.

Example:
© Copyright 1987-2003 Metrowerks

Assembler Messages 369
maskValue: EQU $40
 BSCT
var: DS.B 1
CodeSec: SECTION
entry:
 LDD #4567
 BRCLR var, #maskValue, endCode
 …
endCode:
 END

A12105: Immediate Address Mode not allowed
[ERROR]

Description
The immediate addressing mode is not allowed at that position. Usually this message
is generated when the first operand specified in a BCLR, BSET, BRCLR or BRSET in-
struction is preceded by the immediate character (‘#’).

Example
maskValue: EQU $40
 BSCT
var: DS.B 1
CodeSec: SECTION
entry:
 LDD #4567
 BRCLR #var, #maskValue, endCode
 …
endCode:
 END

Tips
Remove the unexpected ‘#’ character.

Example:

maskValue: EQU $40
 BSCT
var: DS.B 1
CodeSec: SECTION
entry:
 LDD #4567
 BRCLR var, #maskValue, endCode
 …
endCode:
 END

A12107: Illegal size specification for HC12-instruction
[ERROR]

Description
A size operator follows an HC12 instruction. Size operators are coded as semicolon
character followed by single character.

Example
CodeSec: SECTION
 …
 ADDD.W #$0076

Tips
© Copyright 1987-2003 Metrowerks

370 Assembler Messages
Remove the size specification following the HC12 instruction.

Example:

CodeSec: SECTION
 …
 ADDD #$0076

A12111: Invalid Offset in TRAP instruction. valid offsets are $30 .. $39
and $40 .. $FF
[DISABLE, INFORMATION, WARNING, ERROR]

Description
An illegal offset has been specified in a TRAP instruction. The offset has to be either in
the range from 0x30 to 0x39 or in 0x40 to 0xff.

A12202: Not a hc12 instruction or directive
[ERROR]

Description
The identifier detected in an assembly line instruction part is neither an assembly direc-
tive, nor an HC12 instruction, nor a user defined macro.

Example
CodeSec: SECTION
 …
 LDHX #$5510

Tips
Change the identifier to a valid assembly directive, to a HC12 instruction or to the name
of a user defined macro.

Example:

CodeSec: SECTION
 …
 LDD #$5510

A12403: Value out of range -256..255
[ERROR]

Description
The offset between the current PC and the label specified as PC relative address is not
in the range of a signed 9–bits value (smaller than -256 or bigger than 255). A 9 bit
signed PC relative offset is expected in following instructions:

•Decrement and-branch instructions
DBEQ, DBNE

•Increment and-branch instructions
IBEQ, INE

• Test and-branch instructions
TBEQ, TBNE

Example
DataSec: SECTION
var1: DS.W 1
var2: DS.W 10
CodeSec: SECTION
 …
 LDX #var2
label: LDD var1
 CLR 1, X+
© Copyright 1987-2003 Metrowerks

Assembler Messages 371
dummyBl: DCB.B 260, $A7
 DBNE D, label

Tips
Replace the instruction by the following portion of code:

•For decrement and branch:

•For increment and branch:

•For test and branch:

Ifcc Condition

DBNE D, label SUBD #1
LBNE label

DBNE A, label DECA
LBNE label

DBNE B, label DECB
LBNE label

DBNE X, label DEX
LBNE label

DBNE Y, label DEY
LBNE label

DBNE S, label DES
LBNE label

Ifcc Condition

IBNE D, label ADDD #1
LBNE label

IBNE A, label INCA
LBNE label

IBNE B, label INCB
LBNE label

IBNE X, label INX
LBNE label

IBNE Y, label INY
LBNE label

IBNE S, label INS
LBNE label
© Copyright 1987-2003 Metrowerks

372 Assembler Messages
Example:

DataSec: SECTION
var1: DS.W 1
var2: DS.W 10
CodeSec: SECTION
 …
 LDX #var2
label: LDD var1
 CLR 1, X+
dummyBl: DCB.B 260, $A7
 SUBD #1
 LBNE label

A12404: Value out of range -16..15
[ERROR]

Description
The offset used does not fit into the instruction addressing mode range between -16 and
15.

A12409: In PC relative addressing mode, references to object located in
another section or file are only allowed for IDX2 addressing
mode.
[ERROR]

Description
An reference to an external symbol or a symbol defined in another section is detected
in an 9- bits or 5-bits indexed PC relative addressing mode. This is not allowed.

Example
dataSec: SECTION
data: DS.W 1
cstSec: SECTION
label: DC.W $33A5, $44BA

Ifcc Condition

TBNE D, label CPD #0
LBNE label

TBNE A, label TSTA
LBNE label

TBNE B, label TSTB
LBNE label

TBNE X, label CPX #0
LBNE label

TBNE Y, label CPY #0
LBNE label

TBNE S, label CPS #0
LBNE label
© Copyright 1987-2003 Metrowerks

Assembler Messages 373
codeSec1: SECTION
entry:
 MOVB label, PCR, data

Tips
Merge the sections containing the symbol and the instruction together or change the in-
struction to an instruction supporting the 16-bit indexed PC relative addressing mode.

Example of Merging sections:

dataSec: SECTION
data: DS.W 1
codeSec1: SECTION
label: DC.W $33A5, $44BA
entry:
 MOVB label, PCR, data

Example of Changing Instruction:

dataSec: SECTION
data: DS.W 1
cstSec: SECTION
label: DC.W $33A5, $44BA
codeSec1: SECTION
entry:
 LDD label, PCR
 STD data

A12411: Restriction: label specified in a DBNE, DBEQ, IBNE, IBEQ,
TBNE or TBEQ instruction should be defined in the same sec-
tion they are used.
[ERROR]

Description
An external symbol or a symbol defined in another section has been detected in a
DBNE, DBEQ, IBNE, IBEQ, TBNE or TBEQ instruction.
This is not allowed in a relocatable section.

Example
dataSec: SECTION
data: DS.W 1
codeSec0: SECTION
label:
 NOP
 NOP
codeSec1: SECTION
entry:
 DBNE A, label

Tips
Merge the sections containing the symbol and the instruction together or change the in-
struction to an instruction supporting the 16-bit indexed PC relative addressing mode.

Example of Merging sections:

dataSec: SECTION
data: DS.W 1
codeSec0: SECTION
label:
 NOP
© Copyright 1987-2003 Metrowerks

374 Assembler Messages
 NOP

entry:
 DBNE A, label

Example of Changing Instruction:

dataSec: SECTION
data: DS.W 1
codeSec0: SECTION
label:
 NOP
 NOP
codeSec1: SECTION
entry:
 DECA
 BNE label

A12412: PCR is ignored for this addressing mode
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The PCR keyword is treated like a PC keyword for the Accumulator D Indirect Indexed
Addressing mode. The PCR keyword does differ from the PC register keyword only in
the way how the offset is encoded. This addressing mode has no fix offset, and there-
fore PC and PCR behave identical.

Example
LDAA [D,PCR]

A12600: Address lower than segment current position
[ERROR]

Description
A location is smaller than the last location used in the segment.

A12704: DEFSEG is missing
[ERROR]

Description
In avocet compatibility mode, a name after a SEG directive was not defined with a DEF-
SEG directive.

Example
 DEFSEG MyCode CODE
 DEFSEG MyData DATA
 nop
 SEG MyCodeData
 nop
 nop

Tips:
Check the spelling.
 DEFSEG MyCode CODE
 DEFSEG MyData DATA
 nop
 SEG MyData
 nop
 nop
© Copyright 1987-2003 Metrowerks

Assembler Messages 375
 XREF label

 ASR label
 BCLR 2,label
 BRSET 0, label, *
 BSET 0,label
 CBEQ label,*
 CLR label
 COM label
 CPHX label; legal for HCS08
 DBNZ label, *
 DEC label
 INC label
 LDHX label; legal for HCS08
 LSL label
 LSR label
 MOV #1, label
 MOV label, label
 NEG label
 ROL label
 ROR label
 STHX label; legal for HCS08
 TST label

; Example2
 XREF.B label

 ASR label
 BCLR 2,label
© Copyright 1987-2003 Metrowerks

376 Assembler Messages
© Copyright 1987-2003 Metrowerks

Index 377
Index

Symbols
$() . 53
${} . 53
%(ENV) . 87
%” . 87
%’ . 87
%E . 87
%e . 87
%f . 87
%N . 87
%n . 87
%p . 87
* . 199
-C=SAvocet . 91
-Ci . 92
-CMacAngBrack . 93
-CMacBrackets . 94
-Compat . 95
-CPUHC12 . 98
-CPUStar12 . 98
-D . 99
-ENV . 101
-Env . 52
-F2 . 102
-F2o . 102
-FA2 . 102
-FA2o . 102
-Fh . 102
-H . 103
-I . 104
-L . 105
-Lasmc . 107
-Lc . 109
-Ld . 111
-Le . 113
-Li . 115
-Lic . 117
-LicA . 118
-MacroNest . 120
-Mb . 119
-MCUasm . 121
-Ml . 119, 290
-Ms . 289

-Mx .290
-N .122
-NoBeep .123
-NoDebugInfo .124
-NoEnv .125
-ObjN .126
-Prod .127
-Struct .128
-V .129
-View .130
-W1 .131
-W2 .132
-WErrFile .133
-Wmsg8x3 .134
-WmsgCE .135
-WmsgCF .136
-WmsgCI .137
-WmsgCU .138
-WmsgCW .139
-WmsgFb 48, 134, 141, 143, 144, 147, 148, 149
-WmsgFbiv .142
-WmsgFbm .140
-WmsgFbv .140
-WmsgFi48, 134, 141, 144, 147, 148, 149
-WmsgFim .142
-WmsgFob 143, 144, 147, 148
-WmsgFoi141, 143, 145, 146, 148, 149
-WmsgFonf 141, 143, 148, 149
-WmsgFonp 141, 143, 144, 145, 147, 147, 148,

149, .150
-WmsgNe151, 152, 154
-WmsgNi 151, 152, 154
-WmsgNu .153
-WmsgNw 151, 152, 154
-WmsgSd .155
-WmsgSe .156
-WmsgSi .157
-WmsgSw .158
-WOutFile .159
-WStdout .160
.abs .82
.asm .81
.dbg .83
.hidefaults51, 52, 69, 70, 78
.inc .81
.ini .32
.lst .82
.o .81
.s1 .82
© Copyright 1987-2003 Metrowerks

378 Index
.s2 .82

.s3 .82

.sx .82
{Compiler} .53
{Project} .53
{System} .53

A
About Box .46
ABSENTRY .204, 207
Absolute Expression199, 200
Absolute Section162, 167
ABSPATH 42, 66, 81, 82
Addressing Mod .178
Addressing Mode

Direct .180
Extended .181
Immediate .179
Indexed 16-bit Offset 183
Indexed 5-bit Offset 182
Indexed 9-bit Offset 183
Indexed Accumulator Offset 187
Indexed Indirect 16-bit Offset 184
Indexed Indirect D Accumulator Offset 187
Indexed PC, Indexed PC Relative 188
Indexed post-decrement186
Indexed post-increment 186
Indexed pre-decrement184
Indexed pre-increment 185
Inherent .179
Relative .181

Addressing Modes 178
ALIGN 204, 208, 225, 239
ASMOPTIONS 57, 67
Assembler

Configuration .32
Error Feedback .47
Input File .46, 81
Menu .33
Menu Bar .31
Messages .44
Option .43
Options Setting Dialog43
Output Files .81
Status Bar .31
Tool Bar .30

Avocet
Directive

DEFSEG 283, 284, 284, 284, 284
ELSEIF . 283
EXITM . 283
SEG . 284
SUBTITLE 284
TEQ . 284

Macro Parameters 286
Section Definition 284
Structured Assembly 286

B
BASE . 192, 204, 209

C
CLIST . 205
CODE . 86, 119
Code Section . 161
CodeWarrior . 39
color 135, 136, 137, 138, 139
COM . 39
Comment . 189
comment line . 169
Complex Relocatable Expression 199
Constant

Binary . 192, 277
Decimal . 192, 277
Floating point 192
Hexadecimal 192, 277
Integer . 191, 277
Octal . 192, 277
String . 192

Constant Section . 161
COPYRIGHT 68, 74, 79
CTRL-S . 42
Current Directory 52, 69, 69
CurrentCommandLine 59

D
Data Section . 162
DC . 203, 212
DCB . 203, 214
Debug File . 82, 236
Default Directory . 54
DEFAULT.ENV 51, 52, 69, 70, 78
DEFAULTDIR 52, 54, 69, 81
DefaultDir . 54
© Copyright 1987-2003 Metrowerks

Index 379
DEFSEG 283, 284, 284, 284, 284
Directive . 160, 177

ABSENTRY 204, 207
ALIGN 204, 208, 225, 239
BASE 192, 204, 209
CLIST . 205
DC . 203, 212
DCB . 203, 214
DS . 203, 216
ELSE . 206, 218
ELSEC . 278
END . 204, 220
ENDC . 278
ENDFOR 204, 221
ENDIF . 206, 222
ENDM 205, 223, 241
EQU 190, 203, 224
EVEN . 204, 225
EXTERNAL 278, 282
FAIL . 204, 226
FOR . 204, 229
GLOBAL 278, 282
IF . 206, 231, 233
IFC . 206, 233
IFDEF . 206, 233
IFEQ . 206, 233
IFGE . 206, 233
IFGT . 206, 233
IFLE . 206, 233
IFLT . 206, 233
IFNC . 206, 233
IFNDEF . 206, 233
IFNE . 206, 233
INCLUDE 204, 235
LIST . 205, 236
LLEN . 205, 238
LONGEVEN 204, 239
Macro . 205, 240
MEXIT . 205, 241
MLIST . 205, 243
NOL . 278, 282
NOLIST . 205, 246
NOPAGE 205, 248
OFFSET . 203, 249
ORG 162, 203, 251
PAGE . 205, 252
PLEN . 205, 253
PUBLIC . 278, 282
RAD50 . 203, 254

RMB278, 278, 278, 282
SECTION .164
Section .203, 256
SET .190, 258
SPC .205, 259
TABS .205, 260
TITLE .205, 261
TTL .278, 282
XDEF190, 204, 262
XREF 190, 191, 204, 263
XREFB204, 264, 279

DS .203, 216

E
Editor .58
Editor_Exe .56, 58
Editor_Name .56, 58
Editor_Opts .56, 59
EditorCommandLine 62
EditorDDEClientName 62
EditorDDEServiceName 63
EditorDDETopicName62
EditorType .62
EDOUT .83
ELSE .206, 218
ELSEC .278
ELSEIF .283
END .204, 220
ENDC .278
ENDFOR .204, 221
ENDIF .206, 222
ENDM .205, 223, 241
ENVIRONMENT .70
Environment

ABSPATH .66, 81
ASMOPTIONS 67
COPYRIGHT68, 74, 79
DEFAULTDIR52, 54, 69, 81
ENVIRONMENT 70
ENVIRONMENT 51, 51, 51
ERRORFILE 71, 83
File .51
GENPATH73, 81, 81, 235
HIENVIRONMENT 70
INCLUDETIME 68, 74, 79
OBJPATH .75, 81
TEXTPATH .77
TMP .78
© Copyright 1987-2003 Metrowerks

380 Index
USERNAME 68, 74, 79
Variable .51

Environment Variable 65
ABSPATH .82
SRECORD .76, 82

 .51
Environment Variables42
EQU .190, 203, 224
Error File .83
Error Listing .83
ERRORFILE .71, 83
EVEN .204, 225
EXITM .283
Explorer .52
Expression .199

Absolute .199, 200
Complex Relocatable199
Simple Relocatable199, 201

EXTERNAL .278, 282
External Symbol .190

F
FAIL .204, 226
File

Debug .82, 236
Environment .51
Error .83
Include .81
Listing81, 82, 205, 236
Motorola S .82
Object .81
PRM 163, 165, 166
Source .81

File Manager .52
Floating-Point Constant 192
FOR .204, 229

G
GENPATH42, 73, 81, 81, 235
GLOBAL .278, 282
Group .54
GUI Graphic User Interface27

H
HIENVIRONMENT 70
HIGH .191

HOST . 86

I
IDF . 51, 52, 52
IF . 206, 231, 233
IFC . 206, 233
IFDEF . 206, 233
IFEQ . 206, 233
IFGE . 206, 233
IFGT . 206, 233
IFLE . 206, 233
IFLT . 206, 233
IFNC . 206, 233
IFNDEF . 206, 233
IFNE . 206, 233
INCLUDE . 204, 235
Include Files . 81
INCLUDETIME 68, 74, 79
Instruction . 170
Integer Constant 191, 277

L
Label . 169
LANGUAGE . 86
LIBPATH . 42
Line Continuation . 64
LIST . 205, 236
Listing File 81, 82, 205, 236
LLEN . 205, 238
LONGEVEN 204, 239
LOW . 191

M
Macro . 178, 205, 240
Macros . 265
MCUTOOLS,INI . 53
MCUTOOLS.INI 35, 69
MESSAGE . 86
Message

DISABLED . 319
ERROR . 319
FATAL . 319
WARNING 319, 319

Message Settings . 44
MEXIT . 205, 241
MLIST . 205, 243
© Copyright 1987-2003 Metrowerks

Index 381
Motorola S File . 82

N
NOL . 278, 282
NOLIST . 205, 246
NOPAGE . 205, 248

O
Object File . 81
OBJPATH 42, 75, 75, 81
OFFSET . 203, 249
Operand . 178
Operator . 192, 278

Addition 192, 199, 202
Arithmetic Bit 202
Bitwise . 194
Bitwise (unary) 195
Bitwise AND . 199
Bitwise Exclusive OR 199
Bitwise OR . 199
Bitwize . 278
Division 193, 198, 202
Force . 198
HIGH . 191, 196
Logical . 195
LOW . 191, 197
Modulo 193, 198, 202
Multiplication 193, 198, 202
PAGE . 191, 197
Precedence . 198
Relational 195, 199
Shift 194, 199, 202, 278
Sign 193, 198, 201
Subtraction 192, 199, 201

Option
CODE . 86, 119
HOST . 86
LANGUAGE . 86
MESSAGE . 86
OUTPUT . 86
VARIOUS . 86

Options . 54, 61
ORG . 162, 203, 251
OUTPUT . 86

P
PAGE .191, 205, 252
Path .54
Path List .63
PLEN .205, 253
PRM File 163, 165, 166
project.ini .58
PUBLIC .278, 282

R
RAD50 .203, 254
RecentCommandLine59
Relocatable Section 164, 167
Reserved Symbol .191
RGB 135, 136, 137, 138, 139
RMB278, 278, 278, 282

S
SaveAppearance .54
SaveEditor .55
SaveOnExit .54
SaveOptions .55
SECTION .164
Section .161, 203, 256

Absolute .162, 167
Code .161
Constant .161
Data .162
Relocatable164, 167

SEG .284
SET .190, 258
SHORT .257
ShowTipOfDay .61
Simple Relocatable Expression 199, 201
Source File .81
source line .169
SPC .205, 259
Special Modifiers .87
SRECORD .76
Starting .27
startup .58
StatusbarEnabled .60
String Constant .192
SUBTITLE .284
Symbol .190

External .190
Reserved .191
© Copyright 1987-2003 Metrowerks

382 Index
Undefined .191
User Defined .190

T
TABS .205, 260
TEQ .284
TEXTPATH .42, 77
Tip of the Day .27
TipFilePos .61
TITLE .205, 261
TMP .78
ToolbarEnabled .60
TTL .278, 282

U
Undefined Symbol 191
UNIX .52
User Defined Symbol190
USERNAME 68, 74, 79

V
Variable

Environment .51
VARIOUS .86

W
WindowFont .61
WindowPos .60
Windows .52
WinEdit .52, 72, 72

X
XDEF .190, 204, 262
XREF 190, 191, 204, 263
XREFB .204, 264, 279
© Copyright 1987-2003 Metrowerks

	Table Of Contents
	Assembler
	Highlights
	Structure of this Document

	Using the Assembler
	Assembler Environment
	Project Directory
	Editor

	Writing your Assembly Source File
	Assembling your Source File
	Linking Your Application
	Directly Generating an ABS File
	Assembler source file
	Assembling and generating the application

	Assembler Graphical User Interface
	Starting the Assembler
	Assembler Main Window
	Window Title
	Content Area
	Tool Bar
	Status Bar
	Assembler Menu Bar
	File Menu
	Assembler Menu
	View Menu

	Editor Settings Dialog Box
	Global Editor (Shared by all Tools and Projects)
	Local Editor (Shared by all Tools)
	Editor started with Command Line
	Editor started with DDE
	CodeWarrior with COM
	Modifiers

	Save Configuration Dialog Box
	Environment Configuration Dialog

	Option Settings Dialog Box
	Message Settings Dialog Box
	Changing the Class associated with a Message

	About Box
	Specifying the Input File
	Use the Command Line in the Tool Bar to Assemble
	Assembling a New File
	Assembling a file which has already been assembled

	Use the Entry File | Assemble...
	Use Drag and Drop

	Message/Error Feedback
	Use Information from the Assembler Window
	Use a User Defined Editor
	Line Number Can be Specified on the Command Line
	Line Number Cannot be Specified on The Command Line

	Environment
	The Current Directory
	Environment Macros
	Global Initialization File (MCUTOOLS.INI) (PC only)
	[Installation] Section
	[Options] Section
	[XXX_Assembler] Section
	[Editor] Section
	Example

	Local Configuration File (usually project.ini)
	[Editor] Section
	[XXX_Assembler] Section
	Example

	Paths
	Line Continuation
	Environment Variable Details
	ABSPATH: Absolute file Path
	ASMOPTIONS: Default Assembler Options
	COPYRIGHT: Copyright Entry in Object File
	DEFAULTDIR: Default Current Directory
	ENVIRONMENT: Environment File Specification
	ERRORFILE: Error File Name Specification
	GENPATH: Search Path for Input File
	INCLUDETIME: Creation Time in Object File
	OBJPATH: Object File Path
	SRECORD: S Record Type
	TEXTPATH: Text File Path
	TMP: Temporary directory
	USERNAME: User Name in Object File

	Files
	Input Files
	Source Files
	Include File

	Output Files
	Object Files
	Absolute Files
	Motorola S Files
	Listing Files
	Debug Listing Files
	Error Listing File
	Interactive Mode (Assembler window open)
	Batch Mode (Assembler window not open)

	Assembler Options
	Assembler Option Details
	Using Special Modifiers

	List of all Options
	-C=SAvocet: Switch Semi-Compatibility with Avocet Assembler ON
	-Ci: Switch Case Sensitivity on Label Names OFF
	-CMacAngBrack: Angle brackets for Macro Arguments Grouping
	-CMacBrackets: Square brackets for Macro Arguments Grouping
	-Compat: Compatibility Modes
	-CPU: Derivative
	-D: Define Label
	-Env: Set Environment Variable
	-F: Output File Format
	-H: Short Help
	-I: Include File Path
	-L: Generate a Listing File
	-Lasmc: Configure Listing File
	-Lc: No Macro Call in Listing File
	-Ld: No Macro Definition in Listing File
	-Le: No Macro Expansion in Listing File
	-Li: No included File in Listing File
	-Lic: License Information
	-LicA: License Information about every Feature in Directory
	-M: Memory Model
	-MacroNest: Configure Maximum Macro Nesting
	-MCUasm: Switch Compatibility with MCUasm ON
	-N: Display Notify Box
	-NoBeep: No Beep in Case of an Error
	-NoDebugInfo: No Debug Information for ELF/ Dwarf Files
	-NoEnv: Do not use Environment
	-ObjN: Object File Name Specification
	-Prod: Specify Project File at Startup
	-Struct: Support for Structured Types
	-V: Prints the Assembler Version
	-View: Application Standard Occurrence
	-W1: No Information Messages
	-W2: No Information and Warning Messages
	-WErrFile: Create "err.log" Error File
	-Wmsg8x3: Cut File Names in Microsoft Format to 8.3
	-WmsgCE: RGB color for error messages
	-WmsgCF: RGB color for fatal messages
	-WmsgCI: RGB color for information messages
	-WmsgCU: RGB color for user messages
	-WmsgCW: RGB color for warning messages
	-WmsgFb: Set Message File Format for Batch Mode
	-WmsgFi: Set Message File Format for Interactive Mode
	-WmsgFob: Message Format for Batch Mode
	-WmsgFoi: Message Format for Interactive Mode
	-WmsgFonf: Message Format for no File Information
	-WmsgFonp: Message Format for no Position Information
	-WmsgNe: Number of Error Messages
	-WmsgNi: Number of Information Messages
	-WmsgNu: Disable User Messages
	-WmsgNw: Number of Warning Messages
	-WmsgSd: Setting a Message to Disable
	-WmsgSe: Setting a Message to Error
	-WmsgSi: Setting a Message to Information
	-WmsgSw: Setting a Message to Warning
	-WOutFile: Create Error Listing File
	-WStdout: Write to Standard Output
	Directive

	Sections
	Section Attribute
	Code Sections
	Constant Sections
	Data Sections

	Section Type
	Absolute Sections
	Example
	Example

	Relocatable Sections
	Example
	Example: Defining one RAM and one ROM Area.
	Example: Defining multiple RAM and ROM Areas.

	Relocatable vs. Absolute Section
	Modularity
	Multiple Developers
	Early Development
	Enhanced Portability
	Tracking Overlaps
	Reusability

	Assembler Syntax
	Comment Line
	Source Line
	Label Field
	Operation Field
	Instruction
	Directive
	Macro Name

	Operand Field: Addressing Modes
	Inherent
	Immediate
	Direct
	Extended
	Relative
	Indexed, 5-bit offset
	Indexed, 9-bit offset
	Indexed, 16-bit offset
	Indexed, Indirect 16-bit offset
	Indexed, pre-decrement
	Indexed, pre-increment
	Indexed, post-decrement
	Indexed, post-increment
	Indexed, Accumulator offset
	Indexed-Indirect, D Accumulator offset
	Indexed PC vs. Indexed PC Relative Addressing Mode

	Comment Field

	Symbols
	User Defined Symbols
	External Symbols
	Undefined Symbols
	Reserved Symbols

	Constants
	Integer Constants
	String Constants
	Floating-Point Constants

	Operators
	Addition and Subtraction Operators (binary)
	Syntax
	Description
	Example

	Multiplication, Division and Modulo Operators (binary)
	Syntax
	Description
	Example

	Sign Operators (unary)
	Syntax
	Description
	Example

	Shift Operators (binary)
	Syntax
	Description
	Example

	Bitwise Operators (binary)
	Syntax
	Description
	Example

	Bitwise Operators (unary)
	Syntax
	Description
	Example

	Logical Operators (unary)
	Syntax
	Description
	Example

	Relational Operators (binary)
	Syntax
	Description
	Example

	HIGH Operator
	Syntax
	Description
	Example:

	LOW Operator
	Syntax
	Description
	Example:

	PAGE Operator
	Syntax
	Description
	Example:

	Force Operator (unary)
	Syntax
	Description
	Example:

	Operator Precedence

	Expression
	Absolute Expression
	Simple Relocatable Expression
	Unary Operation Result
	Binary Operations Result

	Translation Limits

	Assembler Directives
	Directive Overview
	Section Definition Directives
	Constant Definition Directives
	Data Allocation Directives
	Symbol Linkage Directives
	Assembly Control Directives
	Listing File Control Directives

	ABSENTRY - Application Entry Point
	Syntax:
	Synonym:
	Description
	Example

	ALIGN - Align Location Counter
	Syntax:
	Synonym:
	Description
	Example

	BASE - Set Number Base
	Syntax:
	Synonym:
	Description
	Example

	CLIST - List Conditional Assembly
	Syntax:
	Synonym:
	Description
	Example

	DC - Define Constant
	Syntax:
	Synonym:
	Description
	Example for DC.B:
	Example for DC.W:
	Example for DC.L:
	See also

	DCB - Define Constant Block
	Syntax:
	Description
	Example
	See also

	DS - Define Space
	Syntax:
	Synonym:
	Description
	Example
	See also

	ELSE - Conditional Assembly
	Syntax:
	Synonym:
	Description
	Example

	END - End Assembly
	Syntax:
	Synonym:
	Description
	Example

	ENDFOR - End of FOR block
	Syntax:
	Synonym:
	Description
	Example
	See also

	ENDIF - End Conditional Assembly
	Syntax:
	Synonym:
	Description
	Example

	ENDM - End Macro Definition
	Syntax:
	Synonym:
	Description
	Example

	EQU - Equate Symbol Value
	Syntax:
	Synonym:
	Description
	Example

	EVEN - Force Word Alignment
	Syntax:
	Synonym:
	Description
	Example

	FAIL - Generate Error Message
	Syntax:
	Synonym:
	Description
	Example:

	FOR - Repeat assembly block
	Syntax:
	Synonym:
	Description
	Example:
	See also

	IF - Conditional Assembly
	Syntax:
	Synonym:
	Description
	Example

	IFcc - Conditional Assembly
	Syntax:
	Synonym:
	Description
	Example

	INCLUDE - Include Text from Another File
	Syntax:
	Synonym:
	Description
	Example

	LIST - Enable Listing
	Syntax
	Synonym:
	Description
	Example:
	See Also

	LLEN - Set Line Length
	Syntax:
	Synonym:
	Description
	Example:

	LONGEVEN - Forcing Long-Word Alignment
	Syntax:
	Synonym:
	Description
	Example

	MACRO - Begin Macro Definition
	Syntax:
	Synonym:
	Description
	Example

	MEXIT - Terminate Macro Expansion
	Syntax:
	Synonym:
	Description
	Example

	MLIST - List Macro Expansions
	Syntax:
	Description
	Synonym:
	Example

	NOLIST - Disable Listing
	Syntax:
	Synonym:
	Description
	Example
	See Also

	NOPAGE - Disable Paging
	Syntax:
	Synonym:
	Description

	OFFSET - Create Absolute Symbols
	Syntax:
	Synonym:
	Description
	Example:
	Example:

	ORG - Set Location Counter
	Syntax:
	Synonym:
	Description
	Example
	See also

	PAGE - Insert Page Break
	Syntax:
	Synonym:
	Description
	Example

	PLEN - Set Page Length
	Syntax:
	Synonym:
	Description

	RAD50 - Rad50 encoded string constants
	Syntax:
	Synonym:
	Description
	Example:

	SECTION - Declare Relocatable Section
	Syntax:
	Synonym:
	Description
	Example
	Example:
	See also

	SET - Set Symbol Value
	Syntax:
	Synonym:
	Description
	Example

	SPC - Insert Blank Lines
	Syntax:
	Synonym:
	Description

	TABS - Set Tab Length
	Syntax:
	Synonym:
	Description

	TITLE - Provide Listing Title
	Syntax:
	Synonym:
	Description

	XDEF - External Symbol Definition
	Syntax:
	Synonym:
	Description
	Example

	XREF - External Symbol Reference
	Syntax:
	Synonym:
	Description
	Example

	XREFB - External Reference for Symbols located on the Direct Page
	Syntax:
	Synonym:
	Description:
	Example:

	Macros
	Macro Overview
	Defining a Macro
	Calling Macros
	Macro Parameters
	Example
	Macro Argument Grouping
	Example

	Labels Inside Macros
	Example

	Macro Expansion
	Nested Macros

	Assembler Listing File
	Page Header
	Example

	Source Listing
	Abs.
	Example

	Rel.
	Example

	Loc
	Example

	Obj. Code
	Example

	Source Line
	Example

	MASM Compatibility
	Comment Line
	Constants
	Integer Constants

	Operators
	Directives

	MCUasm Compatibility
	Labels
	Example

	SET Directive
	Example

	Obsolete Directives

	Semi-Avocet Compatibility
	Directives
	Section Definition
	Example:
	Example:
	Example:

	Macro Parameters
	Support for Structured Assembly
	Switch Block
	Example:

	FOR Block
	Example:

	Mix C and Assembler Applications
	Memory Models
	Parameter Passing Scheme
	Return Value
	Accessing Assembly Variables in an ANSI C Source File
	Example of Data and Constant Definition:
	Example of Data and Constant Declaration:
	Example of Data and Constant Reference:

	Accessing ANSI C Variables in an Assembly Source File
	Example of Data and Constant Definition:
	Example of Data and Constant Declaration:
	Example of Data and Constant Reference:

	Invoking an Assembly Function in an ANSI C Source File
	Example of assembler file: mixasm.asm
	Example of C file:
	Example of linker parameter file: mixasm.prm

	Support for Structured Types
	Structured Type Definition
	Type allowed for Structured Type Fields
	Variable Definition
	Variable Declaration
	Accessing Structured Variable
	Accessing a Field Address
	Accessing a Field Offset

	Structured Type: Limitations

	Make Applications
	Assembler Applications
	Generating directly an Absolute File

	Mixed C and assembler Applications
	Memory Maps and Segmentation

	How To ...
	How To Work with Absolute Sections
	Defining Absolute Sections in the Assembly Source File
	Example

	Linking an Application containing Absolute Sections

	How To Work with Relocatable Sections
	Defining Relocatable Sections in the Source File
	Example

	Linking an Application containing Relocatable Sections

	How To Initialize the Vector Table
	Initializing the Vector Table in the Linker PRM File
	Example:
	Example:

	Initializing the Vector Table in the Source File using a Relo catable Section
	Example:
	Example:

	Initializing the Vector Table in the Source File using an Abso lute Section
	Example:
	The linker PRM file looks as follows:

	Splitting an Application into different Modules
	Example of Assembly File (Test1.asm):
	Corresponding Include File(Test1.inc):
	Example of Assembly File(Test2.asm):
	Example of PRM File(Test2.prm):

	Using Direct Addressing mode to access Symbols
	Using Direct Addressing mode to Access External Symbols
	Example:

	Using Direct Addressing mode to Access Exported Symbols
	Example:

	Defining Symbols in the Direct Page
	Example:

	Using Force Operator
	Example:

	Using SHORT Sections
	Example:

	Assembler Messages
	A1: Unknown message occurred
	A2: Message overflow, skipping <kind> messages
	A50: Input file ‘<file>’ not found
	A51: Cannot open statistic log file <file>
	A52: Error in command line <cmd>
	A64: Line Continuation occurred in <FileName>
	A65: Environment macro expansion error '<description>' for <vari ablename>
	A66: Search path <Name> does not exist
	A1000: Conditional directive not closed
	A1001: Conditional else not allowed here
	A1002: CASE, DEFAULT or ENDSW detected outside from a SWITCH block
	A1003: CASE or DEFAULT is missing
	A1004: Macro nesting too deep. Possible recursion? Stop processing. (Set level with -MacroNest)
	A1051: Zero Division in expression
	A1052: Right parenthesis expected
	A1053: Left parenthesis expected
	A1054: References on non-absolute objects are not allowed when op tions -FA1 or -FA2 are enabled
	A1055: Error in expression
	A1056: Error at end of expression
	A1057: Cutting constant because of overflow
	A1058: Illegal floating point operation
	A1059: != is taken as EQUAL
	A1060: Implicit comment start
	A1061: Floating Point format is not supported for this case
	A1062: Floating Point number expected
	A1101: Illegal label: label is reserved
	A1103: Illegal redefinition of label
	A1104: Undeclared user defined symbol: <symbolName>
	A1201: Label <labelName> referenced in directive ABSENTRY. Only la bels defined in a code segment are allowed in the ABSENTRY directive
	A1251: Cannot open object file: Object file name too long
	A1252: The exported label <name> is using an ELF extension
	A1253: Limitation: code size > <SizeLimit> bytes
	A1301: Structured type redefinition: <TypeName>
	A1302: Type <TypeName> is previously defined as label
	A1303: No type defined
	A1304: Field <FieldName> is not declared in specified type
	A1305: Type name expected
	A1401: Value out of range -128..127
	A1402: Value out of range -32768..32767
	A1405: PAGE with initialized RAM not supported
	A1406: HIGH with initialized RAM not supported
	A1407: LOW with initialized RAM not supported
	A1408: Out of memory, Code size too large
	A1410: EQU or SET labels are not allowed in a PC Relative addressing mode.
	A1411: PC Relative addressing mode is not supported to constants
	A1412: Relocatable object <Symbol> not allowed if generating absolute file
	A1413: Value out of relative range
	A1414: Cannot set fixup to constant
	A1415: Cutting fixup overflow
	A1416: Absolute section starting at <Address> size <Size> overlaps with absolute section starting at <Address>
	A1417: Value out of possible range
	A1502: Reserved identifiers are not allowed as instruction or directive
	A1503: Error in option -D: <Description>
	A1601: Label must be terminated with a ":"
	A1602: Invalid character at end of label (<LabelName>): semicolon or space expected
	A1603: Directive, instruction or macro name expected: <SymbolName> detected
	A1604: Invalid character detected at the beginning of the line: <Charac ter>
	A1605: Invalid label name: <LabelName>
	A2301: Label is missing
	A2302: Macro name is missing
	A2303: ENDM is illegal
	A2304: Macro definition within definition
	A2305: Illegal redefinition of instruction or directive name
	A2306: Macro not closed at end of source
	A2307: Macro redefinition
	A2308: File name expected
	A2309: File not found
	A2310: Size specification expected
	A2311: Symbol name expected
	A2312: String expected
	A2313: Nesting of include files exceeds 50
	A2314: Expression must be absolute
	A2316: Section name required
	A2317: Illegal redefinition of section name
	A2318: Section not declared
	A2319: No section link to this label
	A2320: Value too small
	A2321: Value too big
	A2323: Label is ignored
	A2324: Illegal Base (2,8,10,16)
	A2325: Comma or Line end expected
	A2326: Label <Name> is redefined
	A2327: ON or OFF expected
	A2328: Value is truncated
	A2329: FAIL found
	A2330: String is not allowed
	A2332: FAIL found
	A2333: Forward reference not allowed
	A2335: Exported SET label is not supported
	A2336: Value too big
	A2338: <FailReason>
	A2340: Macro parameter already defined
	A2341: Relocatable Section Not Allowed: an Absolute file is currently directly generated
	A2342: Label in an OFFSET section cannot be exported
	A2345: Embedded type definition not allowed
	A2346: Directive or instruction not allowed in a type definition
	A2350: MEXIT is illegal (detected outside of a macro)
	A2351: Expected Comma to separate macro arguments
	A2352: Invalid Character
	A2353: Illegal or unsupported directive SECT
	A2354: Ignoring directive '<directive>'
	A2355: Illegal size specification
	A2356: Illegal RAD50 character
	A2356: Illegal macro argument 'Argument'
	A2380: Cutting very long line
	A2381: Previous message was in this context <Context>
	A2382: Illegal character ('\0') in source file
	A2383: Input line too long
	A2400: End of Line expected
	A2401: Complex relocatable expression not supported
	A2402: Comma expected
	A2500: Equal expected
	A2501: TO expected
	A2502: ENDFOR missing
	A2503: ENDFOR without FOR
	A3000: User requested stop
	A4000: Recursive definition of label <Label name>
	A4001: Data directive contains no data
	A4002: Variable access size differs from previous declaration
	A4003: Found XREF, but no XDEF for label <Label>, ignoring XREF
	A4004: Qualifier ignored
	A4005: Access size mismatch for <Symbol>
	A4100: Address space clash for <Symbol>
	A12001: Illegal Addressing Mode
	A12003: Value is truncated to one byte
	A12004: Value is truncated to two bytes
	A12005: Value must be between 1 and 8
	A12006: Value is truncated to five bits
	A12008: Relative branch with illegal target
	A12009: Illegal expression
	A12010: Register expected
	A12102: Page value expected
	A12103: Operand not allowed
	A12104: Immediate value expected
	A12105: Immediate Address Mode not allowed
	A12107: Illegal size specification for HC12-instruction
	A12111: Invalid Offset in TRAP instruction. valid offsets are $30 .. $39 and $40 .. $FF
	A12202: Not a hc12 instruction or directive
	A12403: Value out of range -256..255
	A12404: Value out of range -16..15
	A12409: In PC relative addressing mode, references to object located in another section or file are only allowed for IDX2 addressing mode.
	A12411: Restriction: label specified in a DBNE, DBEQ, IBNE, IBEQ, TBNE or TBEQ instruction should be defined in the same sec tion they are used.
	A12412: PCR is ignored for this addressing mode
	A12600: Address lower than segment current position
	A12704: DEFSEG is missing

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

