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5.1.1 The Electric (Hertzian) Dipole

The Hertzian dipole consists of an infinitesimal current element of length dl
carrying a phasor current f that is assumed to be the same (in magnitude and |
phase) at all points along the element length, as illustrated in Fig. 5.1. A spherical |
coordinate system is commonly used to describe antennas. The location of a §
point in this coordinate system is described by the radial distance to the point,
r, and the angular positions of a radial line to the point from the z axis, 6, and |
between its projection on the xy plane and the x axis, ¢, as shown in Fig. 5.1
Orthogonal unit vectors d,, dg, d,, point in the directions of increasing values |
of these coordinates. The components of the magnetic field intensity fector |
become [ 1] '

=0 (s12)
A,=0 (5.1b)

fdl . N 1 1 —jBor ‘
H,= Eﬁ% sin G(JBTr + ﬁ?,r’)e JBo (5.1¢) ;

Similarly, the components of the electric field intensity vector are [1]

Idl 1 1 . ~

E =2—n,B3cos 9( —j ) —JjBor 5.2a) 1
r 47[ r’OﬂO C (2)7'2 Jﬂgr3 e ( )

Idl 5 1 1 1 . i

e — sin O j — + —j e o 5.2b)

0 = Am noBo <J Bor | Bir? ]ﬂ3r3) ( )
E,=0 (5.2)

FIGURE 5.1 The electric (Hertzian) dipole.
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where 1o = \/1/ & is the intrinsic impedance of free space. Note that the fields
in (5.1) and (5.2) can be viewed as functions of electrical distance from the
antenna, since for = 2nr/A, and A, = v,/f is the wavelength at the frequency
of the antenna current.

The complete fields in (5.1) and (5.2) are quite complicated [2]. Our main
interest is in the far fields where the field point is sufficiently distant from the
antenna. How far is “far enough?” Note that the 1/r3 and 1/r2 terms dominate
at very close distances to the antenna. As we move further from the antenna,
the 1/r terms begin to dominate. The point where the 1/r® and 1/r? terms
become insignificant compared with the 1/r terms is referred to the boundary
between the near field and the far field. This occurs where r = 1,/2n =~ 11,. The
reader is cautioned that the boundary between the near and far fields for other
antennas is not simply A,/2r, as is frequently assumed. A more realistic choice
for the boundary between the near and far fields will be discussed later, but
can be summarized as being the larger of 34, or 2D2/4,, where D is the largest
dimension of the antenna. Typically the first criterion is used for “wire-type”
antennas and the second for “surface-type” antennas such as parabolics or
horns. This boundary between the near and far fields is not meant to be a
precise criterion, but is only intended to indicate a general region where the
fields transition from complicated to quite simple structure. In the use of antennas
for communication this question of whether the receiving antenna is in the near
or far field of the transmitting antenna never arises because these antennas are
used for communication over large distances. However, in the area of EMC
and interference caused by emissions the receiver (which may be an intentional
antenna used for compliance measurement) is frequently in the near field of the
transmitting antenna (which may be the product). This is particularly true for
the lower frequencies of the FCC, Class B radiated emission measurement, and
is investigated in detail in [2]. Nevertheless, for the moment we will assume
that the field point is in the far field of the Hertzian dipole. Retaining only the
1/r terms in the field expressions in (5.1) and (5.2) gives the far-field vectors:

!

o Fdr, e
far field = JMo ﬁo E sin 0 ay (53&)

try

r

= o Idl . e b
Hfarﬁe1d=fﬁo—asm0 d, (5.3b)

r

The time-domain fields are obtained by multiplying the phasor fields by e/
and taking the real part of the results:

Efar field = ge-{Efar ﬁeldejwt} (543)
E -
= cos[w(t — _r_) + 90°:| a,
r Vo
monf o)
- SID (03 t e ao
r Vg
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ﬁfar field = Re { Hfar field ejwt} (54b)

E -
= Jcos[w(t - _r_) + 90°:| dgy
Nor Vo
= ——sin| o{ t—— ) |a,
Mol Vo

where

E, =Ml dl g (5.4¢)
4n

The far fields of the Hertzian dipole satisfy many of the properties of uniform
plane waves. In fact, “locally” the fields resemble uniform plane waves, although
they are more correctly classified as spherical waves. These properties are as

follows:

The fields are proportional to 1/r, I, dl, and sin 6.
|Efar ﬁeldl/'Hfar ﬁcldl =MNo-
Efa, feld and Hfa, seid are locally orthogonal.

Efar field X A far field = Kd,. |
A phase term e /%’ translates to a time delay in the time domain of

sin[w(t — r/vg)].

AEE S A

This is the origin of the technique of translating fields using the inverse-distance
relationship. For example, the electric and magnetic fields at distances D, and
D, are related by IED2| = (Dl/Dz)IED |; that is, the fields decay inversely with
increasing distance away from the radiator. It is important to remember that
the inverse-distance rule holds only if both D, and D, are in the far field of the
radiating element. This important restriction is frequently not adhered to. If
either of the two distances are in the near field, the inverse-distance rule cannot
be used.

We next obtain the total average power radiated by integrating the average
power Poynting vector over a suitable closed surface surrounding the antenna.
First we compute the Poynting vector using the total phasor fields in (5.1) and
(5.2) as

-

Re{E x A*) (53)
Re{E,A%G, — B,A%G,)

2 2
157:(1 ) mzsm 9% (in W/m?)
0

Nh— Nb—
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This shows that average power is flowing away from the current element: our
first hint of “radiation.” It is instructive to note that this average power density
vector could have been obtained solely from the far-field expressions given in
(5.3). Integrating this result over a sphere of radius r enclosing the current
element gives the total average power radiated by the current element [1]:

P, =§ S,,-ds (5.6)
S
= 801r2<;11—(l;>2|—g—i (in W)
Denoting I/ \/:’Z_ =I__., we can compute a radiation resistance:
Ria = ﬁlfj? (5.7)

2
= 80n2<?> (in Q)
0

The radiation resistance represents a fictitious resistance that dissipates the
same amount of power as that radiated by the Hertzian dipole when both carry
the same value of rms current.

The Hertzian dipole is a very ineffective radiator. For example, for a length
dl =1 cm and a frequency of 300 MHz (4, = 1 m), the radiation resistance is
79 mQ. In order to radiate 1 W of power, we require a current of 3.6 A! If the
frequency is changed to 3 MHz (4, = 100 m), the radiation resistance is 7.9 2
and the current required to radiate 1 W is 356 A! Nevertheless the Hertzian
dipole serves a useful purpose in that the far fields of a Hertzian dipole are
virtually identical to the far fields of most other practical antennas.

512 The Magnetic Dipole (Loop)

A dual to the elemental electric dipole is the elemental magnetic dipole or current
loop shown in Fig. 5.2. A very small loop of radius b lying in the xy plane
carries a phasor current [. This loop constitutes a magnetic dipole moment

m = Inb? (in A m?) (5.8)

where b2 is the area enclosed by the loop. The radiated fields are [1]

£ =0 (5.9a)

E,=0 (5.9b)
_wpohpBs . 1 1 iBor

E¢= -—]TSIH e(j-ﬂ—or"‘l' ﬁ‘z)r2>e jB (590)
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FIGURE 5.2 The magnetic dipole.

and
2 1 1 .
A, = jp2e™bs o o( — —i= 3)e—fﬂof (5.10a)
dnn, Bor Bor
2 1 1 1 .
A, = j 2™ g O(j e 3>e"ﬁ°’ (5.10b)
dnn, Bor Bor Bar
H,=0 (5.10¢)

Comparing (5.9) and (5.10) with the fields of the Hertzian dipole given in (5.1)
and (5.2), we see that duality exists between the fields of these structures.
Observations about the electric (magnetic) field of the electric dipole apply to
the magnetic (electric) field of the magnetic dipole.

The far field of the magnetic dipole is characterized by the 1/r-dependent
terms:

= M ~jBor _
Efar field = ©hompo sin 0 ¢ a, (5.11a)
T r
= M ~iBor _
Alar et = — —22 Poin 0 d, (5.11b)
4nn, r

As was the case for the Hertzian (electric) dipole, the far field of the magnetic
dipole is such that the fields (1) decay as 1/r, (2) lie in a (local) plane
perpendicular to the radial direction, and (3) are related by 7,.
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As was done for the Hertzian dipole, we may determine a radiation resistance
of the magnetic dipole, which becomes [1]

R.g= l—PL (5.12)

rms' 2

2
= 31,170(i>
A4

where A = nb? is the area of the loop. Like the Hertzian dipole, the magnetic
dipole is not an efficient radiator. Consider a loop of radius 1 cm. At 300 MHz
the radiation resistance is 3.08 mQ. In order to radiate 1 W, the loop requires
a current of 18 A. At 3 MHz the radiation resistance is 3.08 x 10~ Q, and
the current required to radiate 1 W is 1.8 x 10° A!

If a loop is electrically small, its shape is not important with respect to the
far fields that it generates [1]. In order to illustrate the application of this result
to radiated emissions, consider a 1 cm x 1 cm current loop on a PCB (an
equivalent loop radius of 5.64 mm). Suppose the loop carries a 100 mA current
at a frequency of 50 MHz. At a measurement distance of 3 m (FCC Class B)
the electric field is a maximum in the plane of the loop and is | E| = 109.6 uV/m =
40.8 dBuV/m. Recall that the FCC Class B limit from 30 MHz to 88 MHz is
40 dBuV/m. Therefore a 1 cm x 1 cm loop carrying a 50 MHz, 100 mA current
will cause a radiated emission that will fail to comply with the FCC Class B
regulatory limit! This should serve to illustrate to the reader that passing the
regulatory requirements on radiated emissions is not a simple matter, since the
above dimensions and current levels are quite representative of those found on
PCBs of electronic products.

52 THE HALF-WAVE DIPOLE AND QUARTER-WAVE MONOPOLE

The Hertzian dipole considered in Section 5.1.1 is an obviously impractical
antenna for several reasons. Primarily, the length of the dipole was assumed to
be infinitesimal in order to simplify the computation of the fields. Also, the
current along the Hertzian dipole was assumed to be constant along the dipole.
This latter assumption required the current to be nonzero at the endpoints of
the dipole—an unrealistic and, moreover, physically impossible situation since
the surrounding medium, free space, is nonconductive. Also, the Hertzian dipole
isa very inefficient radiator since the radiation resistance is quite small, requiring
large currents in order to radiate significant power. The magnetic dipole suffers
from similar problems. In this section we will consider two practical and more
frequently used antennas: the long-dipole and monopole antennas.

The long-dipole antenna (or, simply, the dipole antenna) consists of a thin
wire that is fed or excited via a voltage source inserted at the midpoint, as
shown in Fig. 5.3(a). Each leg is of length /.
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FIGURE 5.3 Illustration of (a) the dipole antenna and (b) the monopole antenna.

The monopole antenna shown in Fig. 5.3(b) consists of a single leg
perpendicular to a ground plane. The monopole is fed at its base with respect
to the ground plane. For purposes of analysis, the ground plane is considered
to be infinite and perfectly conducting. In practice, this ideal ground plane is
approximated. On aircraft, for example, the metallic fuselage simulates this
ground plane. For ground-based stations the earth simulates, to some degree,
this ground plane. Since the earth is much less of an approximation to a perfectly
conducting plane that is metal, ground-based stations are usually augmented
by a grid of wires lying on the ground to simulate the ground plane. The
monopole antenna can be analyzed by replacing the ground plane with the
image of the current element that is above the ground plane, as indicated in |
Fig. 5.3(b). Images are discussed in Section 5.6.1. Once the ground plane is
replaced with the image, the problem reduces to the dipole problem so that a
separate analysis of the monopole is not needed.

We observed previously that if we know the current distribution over the
surface of an antenna, we may compute the resulting radiated fields. In practice,
one often makes a reasonable guess as to the current distribution over the
antenna surface. It can be shown that the current distribution of the long-dipole
antenna follows (approximately) the same distribution as on a transmission
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line; that is, I(z) is proportional to sin B,z [1]. Placing the center of the dipole
at the origin of a spherical coordinate system as shown in Fig. 5.4(a), with the
dipole directed along the z axis, we may therefore write an expression for the
current distribution along the wire is

i(z) (5.13)

s {fm sin[Bo(31 — 2z)] for0 <z <11
I,sin[Bo(31 +2)] for—4l<z<0

(b)

AGURE 54 Computation of the radiated fields of the dipole antenna: (a) super-
position of the Hertzian dipole fields; (b) the far-field approximation.
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Note that this current distribution satisfies the necessary criteria: (1) the
variation with z is proportional to sin f,z and (2) the current goes to zero at
the endpoints, z = —4l and z = 1.

Now that we have assumed the current distribution along the dipole, we
may compute the fields of the long dipole as being the superpositions of the
fields due to many small Hertzian dipoles of length dz having a current that is
constant and equal to the value of 1(z) at that point along the dipole, as shown
in Fig. 5.4(a). We also assume that the desired field point is in the far field of
these current elements, so that we only need the far-field expressions for the |
Hertzian dipole given in (5.3). For example, the field at point P in Fig. 5.4(a) "
due to the segment dz is '

I(z)sin® ...
dE, = inoBo 1(z)sm & o O it 4 (5.14) |
4nr .

Our ultimate objective is to obtain the fields at point P in terms of the radial
distance r from the midpoint of the dipole and angle 6. Since we are considering
only the far field, the radial distance r from the center of the dipole at point P
and the distance #' from the current element to point P will be approximately |
equal (r = ') and the angles 6 and 6" will be approximately equal (6 = '), as
shown in Fig. 5.4(b).

We may substitute 7’ = r into the denominator of (5.14), but we should not
make this substitution into the e~ term for the following reason. This term
may be written as e v = [2ar' /Ay, and its value depends not on physical
distance r’ but on electrical distance r /4,. Therefore, even though r' and r may
be approximately equal, the term may depend significantly on the difference in |
electrical distances. For example, suppose r = 1000 m and ' = 1000.5 m and
the frequency is f = 300 MHz. We have (4, = 1 m) Bor = 2m(1000) = 360,000°
and f,r = 2n(1000.5) = 360,180°. Note that the fields at 1000 m and those
only 0.5 m farther away are 180° out of phase! We will see a more striking
example of this in the next section, where the far fields from two antennas that
are widely spaced physically but separated on the order of a wavelength may |
actually be completely out of phase and add destructively to yield a result of zero. |

Thus it is not a reasonable approximation to substitute r for r' in the phase |
term in (5.14). However, we may still write the result in terms of r. Consider |
Fig. 5.4(b), which shows the two radial distances r and r’ as being approximately
parallel. Thus we are assuming that the field point is sufficiently far, physically,
from the antenna. From Fig. 5.4(b) we may obtain

r'~r—zcosf (5.15) 1§

Substituting (5;15) into the phase term in (5.14) and r into the denominator gives

i(Z) sin ee—jﬁo(r-—zcos()) dz (516) '

dEa = jnoBo
4nr
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The total electric field is the sum of these contributions:

z=lz2 I(z)sin 6
E0= Jﬂoﬁo—()—‘—e

JBor giBozcost gz (5.17)
z=-1/2 4nr

Substituting the expressions for I(z) given in (5.13), we obtain [1]

7 ,—iBor
£, =1 £ (g) (5.18)
2nr

601, e bo
=J—r—F(9)

where the #-variation term in this result is denoted by

cos[ Bo(41) cos 8] — cos Bo(11)
sin 0

F(0) = (5.19)

__cos[(nl/A,) cos 0] — cos(ml/ )
a sin 6

since B, = 2m/A,. The magnetic field in the far-field region of the Hertzian
dipole is orthogonal to the electric field and related by n,. If we carry through
the above development for the magnetic field, we obtain

A, = E, (5-20)
No

where E, is given by (5.18).
The most frequently encountered case is the half-wave dipole, in which the
total dipole length is | = 44,. Substituting into (5.19), we obtain

1
F(6) = &(2,’%’:@ (half-wave dipole, I = $4,) (5.21)
sin

The electric field will be a maximum for = 90° (broadside to the antenna).
For this case, F(90°) = 1, and the maximum electric field for the half-wave
dipole becomes

|E) . = 60%'—' (8 = 90°) (5.22)

The field is directed in the @ direction and is independent of ¢, which makes
sense from symmetry considerations.
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Now let us compute the average power radiated by the dipole. Once agail
integration of the Poynting vector over a sphere of radius r gives the tot:
radiated power [1]:

.
Poa =131yl (in W) (half-wave dipole) (5.2:

Thus, if we know the rms value of the input current at the terminals of a half-way
dipole, we may find the total average power radiated by multiplying the squatr
of the rms current by 73 Q. This suggests that we define a radiation resistanc
of the half-wave dipole as

R..s = 73 Q (half-wave dipole) (5.2¢

There is one important difference between the dipole and the monopol
Although the field patterns are the same, the monopole radiates only half tt
power of the dipole: the power radiated out of the half-sphere above the groun
plane. Thus the radiation resistance for the monopole is half that of th
corresponding dipole. In particular, for a quarter-wave monopole of lengt
h = %4, (which corresponds to a half-wave dipole), we have

R,,4 = 36.5Q (quarter-wave monopole) (5.2

Up to this point, we have not considered the total input impedance Z, see
at the terminals of the dipole or monopole antenna. The input impedance wil
in general, have a real and an imaginary part as

Zin = Rin +inn (52(

The input resistance will consist of the sum of the radiation resistance and tt
resistance of the imperfect wires used to construct the dipole, so that

Zin = Rloss + Rrad +inn (521

Figure 5.5 shows the radiation resistance and reactance referred to the base «
a monopole antenna for various lengths of the antenna [3]. Figure 5.5 can t
used to give the input impedance for a dipole by doubling the values given 1
the figure. The input reactance for a half-wave dipole (quarter-wave monopole
is X,, = 42.5Q (X,, = 21.25 Q). Note that for monopoles that are shorter tha
one-quarter wavelength (or dipoles shorter than one-half wavelength) tb
radiation resistance becomes much smaller and the reactive part become
negative, symbolizing a capacitive reactance. Thus monopoles that are shorte
than one-quarter wavelength appear at their input as a small resistance in seri¢
with a capacitance, which is, intuitively, a sensible result. Also observe !
Fig. 5.5 that the reactive part of the input impedance is zero for a monopole the
is slightly shorter than a quarter wavelength. Having a zero reactive part
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FIGURE 5.5 The radiation resistance and reactance of a dipole antenna as a function
of length and wire radius [3].

obviously desirable from the standpoint of maximizing the power that is
delivered from a source that has a real source resistance (such as 50 Q) to the
antenna and subsequently radiated. This is why monopoles are cut to lengths
of slightly shorter than a quarter wavelength. If the physical length of a
quarter-wave monopole is excessive for the intended installation, it can be
shortened, but that introduces a large capacitive reactance to the input
impedance, which necessitates a larger value of source excitation voltage to
produce the same level of radiated power (dissipated in R_4). In order to
overcome this problem, short antennas have “loading coils” or inductors
inserted in series with their input to cancel this capacitive reactance and increase
the radiated power. This is sometimes referred to as “tuning the antenna.”
The important point to realize here is that, knowing the input impedance
of the antenna, we can compute the total average power radiated by the antenna
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by computing the average power dissipated in R,,;. For example, consider the
half-wave dipole driven by a 100 V rms, 150 MHz, 50 Q source as shown in
Fig. 5.6(a). Replacing the antenna with its equivalent circuit at its input terminals
gives the circuit shown in Fig. 5.6(b). The input current to the antenna is

. A
a Rloss + Rrad +]X

Assume the wires are # 20 AWG solid copper. The wires have radii much larger
than a skin depth at the operating frequency of 150 MHz (6 = 5.4 x 107° m),

F————————— —
| Rg=500 I
| — A\~ T ——
' l
| |
I Vs=100 @"vqg | 'm T L
! |
' |
| f = 150 MHz ————e
| |
L _ _ _ Souece _ _ _ 1.
zant
(a)
Rs = 500 Tant
Rioss = 0.63Q
. R.,=730
Vs =100 /0° q_D rad
X =j42.5Q
(b)
Rg =500 i

Riges =010
Vs = 100 L° @P Rpag =150
— /600 Q

o1

()
FIGURE 5.6 An example illustrating the computation of the radiated power of a dipole
antenna: (b) equivalent circuit of a half-wave dipole; (c) equivalent circuit of a § 4, dipole.
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so the high-frequency approximation for wire resistance developed in Chapter 4
can be used to compute R, as

1
2nr,,00

= 125Q/m

r

wire —

Using this result, the net ohmic resistance of the wires used to construct the
dipole can be obtained as [1]

— 1
Rloss - rwire21

= 0.63 Q

Since the dipole is a half-wave dipole, its impedance is (73 + j42.5) Q (see
Fig. 5.5), so that
Zant = Rloss + Rrad + inn

= (0.63 + 73 +j42.5)Q

Thus the current at the antenna input terminals is

- 100 /0°
50 + 73.63 + j42.5
=0.765 /—18.97° A

The total average power dissipated in antenna losses is

Ploss = %llantlleoss

= 184 mW
The total average power radiated is

T 2
Prad = %Ilantl Rrad

=2136 W

In order to illustrate the effect of short antennas on radiated power, consider
the previous problem where the dipole antenna is shortened to $4, in total
length. From Fig. 5.5, R,,q = 1.5Q and X;, =~ —600 Q. The equivalent circuit

is shown in Fig. 5.6(c). The current at the input to the antenna is

P - 100 /0°
" 50 + 0.16 + 1.5 — j600

= 0.166 /85.1° A
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Thus the radiated power is

17 2
Pav,rad = illantl Rrad

= 20.7 mW

Thus the reduced radiation resistance along with the large increase in react;
part in the input impedance caused by shortening the length of the dipole h
significantly reduced the radiated power of the antenna. If an inductor havi
an inductance of 0.637 uH giving a reactance of +j600 is inserted in series wi
this antenna, the radiated power is increased to 2.81 W! This illustrates t
extreme effect of the reactive part of the input impedance.

5.3 ANTENNA ARRAYS

The radiation characteristics of the Hertzian dipole, the magnetic dipole, t
long dipole, and the monopole are evidently omnidirectional in any pla
perpendicular to the antenna axis, since all fields are independent of ¢. Tt
characteristic follows from the symmetry of these structures about the z ax
From the standpoint of communication, we may wish to focus the radiat
signal since any of the radiated power that is not transmitted in the directic
of the receiver is wasted. On the other hand, from the standpoint of EMC, v
may be interested in directing the radiated signal away from another receiv
in order to prevent interference with that receiver. If the transmitting antem
has an omnidirectional pattern, we do not have these options. In this secti
we will investigate how to use two or more omnidirectional antennas to produ
maxima and/or nulls in the resulting pattern. This results from phasing t
currents to the antennas and separating them sufficiently such that the combin
fields will add constructively or destructively to produce these resulting maxin
or nulls. This result, although applied to the emission patterns of communicatio
antennas, has direct application in the radiated emissions of products, since
illustrates how multiple emissions may combine. In addition, we will use tl
simple results obtained here to obtain simple models for predicting the radiat
emissions from wires and PCB lands in Chapter 8.

Consider two omnidirectional antennas such as half-wave dipoles in fr
space or quarter-wave monopoles above ground, as shown in Fig. 5.7(a). T!
current elements lie on the y axis and are directed in the z direction. They a
separated by a distance d and are equally spaced about the origin. Assumi:
the field point P is in the far field of the antennas, §, =~ 6, =~ 0, the far fiel
at point P due to each antenna are of the form

. MI . :

Eel = La e —Jﬂorl (5.28
ry

. MI /0 .

Eq = ——Le‘”’o’2 (5.28

rp
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FIGURE 57 Computation of the radiated fields of an array of two dipoles: (a)
definitions; (b) the far-field approximation.

where I, = I /aand I, = I /0, and we assume the currents of the two antennas
are equal in magnitude but the current in antenna # 1 leads that of antenna
#2 by a. The factor M depends on the type of antennas used. For Hertzian
dipoles M = jn, fo(dl/4n) sin 8 (see (5.3a)). For long dipoles M = j60F(8) (see
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(5.18)). The total field at point P is the sum of the fields of the two antennas

Eo = EGI + Eoz (529
~ e —jBory . e —JjBora
= MI el 4 >
ry r,
[ e—iBorigial2  g—iBorsg—iaf2
= MIe/*? +
ry r

In order to simplify this equation, we observe that, since P is sufficiently fa
from the origin, r, =~ r, = r, where r is the distance from the midpoint of th
array to point P. This approximation can be used in the denominator terms ¢
(5.29) but cannot be used in the phase terms for reasons discussed in the previou:
section. If we draw the radius vectors r; and r, parallel to the radius vector !
as shown in Fig. 5.7(b) then we can obtain a reasonable approximation for th
phase terms. To do this, we observe that the path lengths can be written ir
terms of the angle y between the radius vector and the y axis as

ry=r+4idcosy (5.30a
r,=r—4dcosy (5.30b

The angle y can be obtained as the dot product of the unit vector in the radia
direction and the unit vector in the y direction as [1]

cosy =d,d, (5.31
= sin 0 sin ¢
Substituting gives |
r,=r+3dsinfsin ¢ (5.32a
r, = r—1dsin 0sin ¢ (5.32b

where d is the separation between the two antennas. Substituting (5.32) intc
(5.29) gives

B, = MI o112 —ibor (I (Bo(d/2)sin 6sin ¢ —a/2) | (5.33

r
+e —j(Bo(d/2)sin B sin ¢ — a/2))

T fe—ifr d
o] oMo n )

r 0
—————— —_———
pattern of Forray(0, @)

individual

elements
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We have substituted f, = 2n/4, and cos ¥ = 4(e?¥ + e ™#¥). Observe that the

resultant field is the product of the pattern of the individual (identical) antenna

elements and the array factor F,,, (6, ¢), which depends only on the antenna

-spacing in electrical dimensions, d/4,, and phasing of the currents, «. This is
referred to as the principle of pattern multiplication.

The antenna spacing and/or the relative phase of the currents can be chosen

to give maxima/minima in the radiation pattern of the array. For example,

FIGURE 58 Patterns of a two-element array: (a)d = 14, a = 0°;(b)d = 34,, a = 180°;
(c)d=14%4,, a=90°
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suppose the spacing between the antennas is one-half wavelength and « = 0°
The array factor in the plane perpendicular to the array, § = 90°, is

Fareay(0 = 90°, ¢) = cos(37 sin @)

This pattern is plotted in Fig. 5.8(a). We have produced a pattern that has
nullsat ¢ = 90°and ¢ = 270°. As another example, suppose the antenna spacing
is again one-half wavelength but « = 180°. The array factor is

Farray(o = 9009 ¢) = COS(%R sin ¢ - %‘TC)

The pattern is plotted in Fig. 5.8(b). This has produced nulls at ¢ = 0° and
¢ = 180°. As a final example, suppose the antennas are spaced one-quarte:
wavelength and a = 90°. The array factor is

Farray(e = 900, ¢) = COS(%TC sin ¢ — %n)

The pattern is plotted in Fig. 5.8(c), and we have produced a null at ¢ = 270°
and a maximum at ¢ = 90°.

54 CHARACTERIZATION OF ANTENNAS

The antennas we have considered previously are quite simple to analyze. The
analysis of other antennas to determine their total radiated power and, more
importantly, the shapes of their radiated emission patterns is not so simple
These more complicated antennas are more commonly characterized by
measured parameters such as directivity and gain, effective aperture, and/or
antenna factor. The purpose of this section is to investigate these criteria.

5.4.1 Directivity and Gain

The directive gain of an antenna, D(6, ¢), is a measure of the concentration o
the radiated power in a particular 6, ¢ direction at a fixed distance r away from
the antenna. For the elemental dipoles, the long dipole, and the monopole, we
noted that the radiated power is a maximum for 6 = 90° and is zero for § = 0°
and 8 = 180°. To obtain a more quantitative measure of this concentration of
radiated power, we will define the radiation intensity U(#8, ¢).

We found that the far-field, radiated average-power densities for the Hertziar
dipole, the magnetic dipole, the long dipole, and the monopole are of the form

. |E 2 ~
Sav — I far ﬁeldl a, (534]
21,

2
E2 _
af

202
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"Y“'»‘j“ﬂw“\\ﬂ? By

ﬁzhere E, depends on 8, the antenna type and the antenna current. To obtain
power pattern relationship that is independent of distance from the antenna,

é e multiply (5.34) by r? and define the resulting quantity to be the radiation
intensity, that is,

E U(6, ¢) = rs,,

e

(5.35)

z The radiation intensity will be a function of 8 and ¢ but will be independent
zof distance from the antenna. The total average power radiated will be

P.y= fﬁs;-dg (5.36)

j‘“ J’ZR U(6, ¢)sin 8d¢ do
6=0J¢=0

RS S S AL

=§ U(h, ¢).dQ
: S

The quantity dQ = sin 8 d¢ d@ is an element of solid angle Q, and the unit of
‘solid angle is the steradian (sr). The units of U are therefore watts per steradian
(W/sr). Note that for U = 1, (5.36) integrates to 4n. The total radiated power
is therefore the integral of the radiation intensity over a solid angle of 4n sr. Note
‘also that the average radiation intensity is the total radiated power divided by

A7 st

Praa (5.37)

The radiation intensity for more complicated antennas is similarly defined.
_The directive gain of an antenna in a particular direction, D(6, ¢), is the ratio of

“the radiation intensity in that direction to the average radiation intensity:

U, ,
0, 9) (5.38)
U.,

_ 4nU(8, §)
B Prad

D(6, ¢) =

The directivity of the antenna is the directive gain in the direction that yields a

maximum:

U
max (5.39)
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As an example, let us compute the directive gain and directivity of a Hertzia
dipole. The radiation intensity is found from (5.5) and (5.35),

U, ¢) =r*s,,
2
= 15n(%> [I)?sin2 9

0

and the radiated power is given by (5.6),

2
P, = 4011:2(%) ik

0

Thus the directive gain is

D(6, ¢) = w

rad

= 1.5sin% 6
The directivity is therefore the directive gain at 8 = in:
Doax = 1.5

For the half-wave dipole we obtain

D(6, ¢) = —'Z"—FZ(H)

rad

= 1.64 F2(6)

where F(6) is given by (5.21) and R, = 73 Q and
D,.. = 1.64

which occurs for § = in. _

The directive gain D(0, ¢) of an antenna is simply a function of the shap
of the antenna pattern. The power gain G(6, ¢), on the other hand, takes intc
account the losses of the antenna. Suppose that a total power P, is applie
to the antenna and only P,,, is radiated. The difference is consumed in ohmi
losses of the antenna as well as in other inherent losses such as those in a
imperfect ground for monopole antennas. If we define an efficiency factor e a

P
P

rad (540

app
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then the power gain is related to the directive gain as
G(0, ¢) = eD(0, ¢) (5.41)
where we have defined the power gain as

47U (0, ¢)

G0, ¢) = (5.42)

app

-For most antennas, the efficiency is nearly 100%, and thus the power gain and
directive gain are nearly equal.

We also need to discuss the concept of an isotropic point source. An isotropic
point source is a fictitious lossless antenna that radiates power equally in all
directions. Since this antenna is lossless, its directive and power gains are equal.
For an isotropic point source radiating or transmitting a total power Pp, the
‘power density at some distance d away is the total radiated power divided by
the area of a sphere of radius d:

av = ar
47d?

(5.43)

We can calculate the electric and magnetic fields for the isotropic point source
from the realization that the waves resemble (locally) uniform plane waves so
that

g lélz - 2
S,, =—— (in W/m*) (5.44)
2n,
Combining (5.43) and (5.44) gives
2 JOOPr_. .
|E| = y Td, (in V/m) (5.45)

where we have substituted 5, = 1207 Q.

The isotropic point source, although quite idealistic, is useful as a standard
or reference antenna to which we refer many of our calculations. For example,
since the isotropic point source is lossless, the directive and power gains are
equal, and both will be designated by G,. The gain becomes

4nU(0, ¢)

P, (5.46)

Go(6, ¢) =

=1
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Therefore the directive gain and power gain of other antennas may be though
of as being determined with respect to an isotropic point source. In certai
other cases, the gain of an antenna may be referred to the gain of a half-wav
dipole. When discussing gain, one must be careful to determine the referenc
antenna.

Quite often the gain (directive or power) of an antenna is given in decibel:
where

GdB = 10 loglo G (5-47

For example, the Hertzian dipole has a directivity of 1.76 dB and the isotropi
point source has a directivity of 0 dB. The half-wave dipole has a maximun
gain of 2.15 dB. Equivalently, we say that the gain of an antenna is the gail
over (or with respect to) an isotropic antenna:

G
GdB = 10 10g10<G_) (5.48

0

We are frequently interested in the coupling between two antennas, one o
which is used as a transmitter and the other as a receiver. An important principl
in this problem is that of reciprocity [ 1, 3-6]. Reciprocity provides that th
source and receiver can be interchanged without affecting the results so lon
as the impedances of the source and receiver are the same. Several additiona
properties can be proven. The impedance seen looking into an antenna terminal
when it is used for transmission is the same as the Thévenin source impedanc:
seen looking back into its terminals when it is used for reception. In addition
the transmission pattern of the antenna is the same as its reception pattern.

5.4.2 [Kffective Aperture

An additional useful concept is that of an antenna’s effective aperture. Th
effective aperture of an antenna is related to the ability of the antenna to extrac
energy from a passing wave. The effective aperture of an antenna, A,, is the rati
of the power received (in its load impedance), Py, to the power density of th
incident wave, S,,, when the polarization of the incident wave and the polarizatio
of the receiving antenna are matched:

P

x

A, = (in m?) (5.49

e

7%}

<

a

The maximum effective aperture A, is the ratio in (5.49) when the load impedanc
is the conjugate of the antenna impedance, which means that maximum powe
transfer to the load takes place. For a linearly polarized incident wave and :
receiving antenna such as a dipole or monopole that produces linearly polarizex
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iyaves when it is used for transmission, the requirement for matched polarization
xssentially means that the antenna is oriented with respect to the incident wave
B produce the maximum response; that is, the electric field vector of the incident
ave is parallel to the electric field vector that would be produced by this
Eantenna when it is used for transmission.
£ For example, let us compute the maximum effective aperture of a Hertzian
lipole antenna. If the dipole is terminated in an impedanze Z,, we assume that
E7, = R,,q — jX where the input impedance to the dipole is Zin = Ryaa + jX and
he dipole is assumed to be lossless. Suppose that the incident wave is arriving
t an angle 6, with the electric field vector in the # direction as shown in
ig. 5.9. The open-circuit voltage produced at the terminals of the antenna is

IVOCI = |E0| dl sin 0 (5.50)
he power density in the incident wave is

5. _ LB
"2 1

(5.51)

ince the load is matched for maximum power transfer, the power received is

& V. |2
- Py _ Vocl (5.52)
= 8Rrad
¢ _|By|? di? sin? 0
E 8Rrad
g:Substltutlng the value for R,,, given in (5.7) gives
|E0|2'1(2J . 2 '
= sin” 0 5.53
*7 6402 (533)

&

FITARR  g emmm A

~
~
~
~ ~

g; é@ \\ ﬁ

%ﬂ S~ ZAL = Rrag — /X
£ ~

;; Zijn=HRrag + /X

ZFAIGURE 5.9 Illustration of the computation of the maximum effective aperture A,
“of a linear antenna.
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Thus the maximum effective aperture is

Aen(6, ) = ;4 (5.

2
= 1.5sin? 01—0
4

_%
=D(6,9)

where we have substituted the directive gain of the Hertzian dipole
D(0, ¢) = 1.5sin2 0 (5.

and 0 is the direction of the incoming wave. Observe that the maximum effecti
aperature of an antenna is not necessarily related to its “physical aperture.”

It can be shown that the result in (5.54) is a general result valid for mo
general antennas; that is, the maximum effective aperture of an antenna us:
for reception is related to the directive gain in the direction of the incoming wa
of that antenna when it is used for transmission as [1, 3-6]:

G(6, $) = %’;‘Am(e, $) (5.4

0

The direction for A,,, (the direction of the incoming incident wave with respe
to the receiving antenna) is the direction of the gain G (the gain of the anten:
in this direction when it is used for transmission). We have interchanged directi
gain D and power gain G on the assumption that the antennas are lossless.

54.3 Antenna Factor

The above properties of antennas are more commonly used in the area of t
use of antennas for communication such as signal transmission and rad
applications. In the area of their use in EMC a more common way

characterizing the reception properties of an antenna is with the notion of -
antenna factor. Consider a dipole antenna that is used to measure the elect:
field of an incident, linearly polarized uniform plane wave as shown in F:
5.10(a). A receiver such as a spectrum analyzer is attached to the terminals
this measurement antenna. The voltage measured by this instrument is denot
as V... It is desired to relate this received voltage to the incident electric fie!
This is done with the antenna’s antenna factor, which is defined as the ratio
the incident electric field at the surface of the measurement antenna to the receiv
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FIGURE 5.10 The antenna factor AF: (a) general circuit; (b) equivalent circuit.

voltage at the antenna terminals:

V/minincident wave

AF (in 1/m) (5.57)

V received

t

| incl

= -~
l Vrec I

“This is frequently expressed in dB as
: AF 5 = dBuV/m (incident field) — dBuV (received voltage) (5.58a)
or

dBuV/m (incident field) = dBuV (received voltage) + AF,z (5.58b)

Note that the units of the antenna factor are 1/m. The units are frequently
‘ignored, and the antenna factor is stated in dB. The antenna factor is usually
furnished by the manufacturer of the antenna as measured data at various
frequencies in the range of intended use of the measurement antenna. A typical
such plot provided by the manufacturer of a biconical measurement antenna
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FIGURE 5.11 The antenna factor versus frequency for a typical biconical EMC
measurement antenna (courtesy the Eaton Corporation).

3

is shown in Fig. 5.11. A known field is provided by some standard antenna at
a calibrated test site such as the National Institute of Standards and Technology#
(NIST)in Boulder, Colorado in the US (formerly known as the National Bureaug
of Standards or NBS). The ratio of the known value of the incident field to t e%
measured voltage at the terminals of the antenna in dB according to (5.57) or
(5.58) is plotted for the antenna versus frequency. The reciprocal of the antenna'
factor is referred to as the antenna effective height h, [3-6]. 1

There are several important implicit assumptions in these measured antcnna»,
factor data. If any of these implicit assumptions are not adhered to in the course:
of using this antenna for measurement then the measured data are invalid. Theg
first important assumption is that the incident field is polarized for maxim
response of the antenna. For a dipole or other wire-type antenna this means:
that the response will be the component of the incident field that is parallel to th
antenna axis. Ordinarily this is what is desired, since the antenna will be typically
used to measure vertical and horizontal fields in testing for compliance to t
radiated emission regulatory limits. The second important implicit assumption
has to do with the input impedance of the receiver that is used not only to makes
the measurement but also to calibrate the antenna. The most common impedane
is the typical input impedance to virtually all spectrum analyzers, and that-
50 Q. Nevertheless, the antenna manufacturer should explicitly state whe
termination impedance was used in the calibration. Note that this does nt

assume that the receiver is matched to the antenna, and usually it will not bé

i

i bt i

il
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ywever, from the standpoint of using the antenna factor calibration chart for
4t antenna it is only important to use a termination impedance that is the
'me as was used to calibrate the antenna.

n the other hand, suppose we wish to calculate the antenna factor of an
1 antenna such as a dipole from the field equations, maximum effective
rture, etc. for that antenna. Since the spectrum analyzer input impedance is
E = (50 4+ j0) Q and is therefore not matched, we must use the equivalent
tuit of Fig. 5.10(b) to obtain this. First compute V, . ...cneq 3SSuming a matched
d, Z... = R,,4 — jX, using the results in the previous sections. Then use this
sult to obtain the open-circuit voltage Voc = 2V, macnea- Then use the
yivalent circuit in Fig. 5.10(b) to compute the actual received voltage V..,
from that the antenna factor.

“As an example of the use of measured data to determine the antenna factor,
nsider the calibration of a measurement antenna shown in Fig. 5.12. A known,
vident, linearly polarized, uniform plane wave is incident on the antenna, and
electric field at the position of the antenna in the absence of the antenna is
. dBuV/m. A 30 foot length of RG-58U coaxial cable is used to connect the
nna to a 50 Q spectrum analyzer. The spectrum analyzer measures 40 dBuV.
nce the antenna factor relates the incident electric field to the voltage at the
se of the antenna, we must relate the spectrum analyzer reading to the voltage
.the base of the antenna. The coaxial cable has 4.5 dB/100 feet loss at the
quency of the incident wave, 100 MHz. Thus the cable loss of 1.35 dB must
. added to the spectrum analyzer reading to give the voltage at the antenna
inals of 41.35 dBuV. Therefore the antenna factor is

AF; = 60 dBuV/m — 41.35 dBuV
= 18.65dB

= It is a simple matter to convert the spectrum analyzer readings to the value
incident field; add the antenna factor in dB to the spectrum analyzer reading

- 301t >
60 dBuv/m
100 MHz \ \ @
| ) RG58U ) )
A —
Vant — / Coaxial cable Viec * Spectrum
rr l f analyzer
500
50
~— . Q Read
Y
Loss = 1.35 dB 40 dBpv
Vot = 41.35dBpv (4.5 dB/100 ft @ 100 MHz)

:E'!GURE 5.12 An example illustrating the use of the antenna factor to compute the
-Aeceived voltage.
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in dBuV and add the connection loss in dB to give the incident electric ﬁeld in
dBuV /m:

E (dBuV/m) = AF (dB) + Vg, (dBuV) + Cable Loss (dB)  (5.59)

Observe that the connection cable loss must be added and not subtracted, since
the antenna factor is with respect to the base of the antenna and does not
include any connection cable loss (unless explicitly stated by the antenna
manufacturer).

54.4 Effects of Balancing and Baluns

The ideal antennas that we are considering are inherently balanced structures.
There are numerous definitions of this concept of balanced structure. Generally,
but not always, these seemingly different definitions lead to the same result.
For example, consider the long dipole antenna shown in Fig. 5.3(a). In the
analysis of this antenna we assumed that the current I(z,) at a point z, on the
upper arm is the same in magnitude as the current at the corresponding position
on the lower arm, —z, (a point that is the same distance from the feed point
as the point on the upper arm). From this standpoint of symmetry of the antenna
currents, the antenna is inherently a balanced structure. This also inherently
assumes that the current entering one terminal of the antenna is equal but
opposite to the current entering the other terminal. Nearby metallic obstacles
such as ground planes can upset this balance, causing the pattern to deviate
substantially from the ideal pattern that was obtained from the assumption of
balanced currents on the arms of the antenna [7].

Other factors can upset the balance of the currents on the antenna structure,
The most common type of feedline that is used to supply signals to antennas:
is the coaxial cable. Under ideal conditions, the current returns to its source:’
on the interior of the overall shield. If this type of cable is attached to an
inherently balanced structure such as a dipole antenna, some of the current:
may flow on the outside of the shield. This current will radiate, whereas the:!
current going down the interior wire and returning on the inside of the shield+
w111 not. The amount of current that flows on the outside of the shield depenng

“the impedance to ground” between the shield exterior and the ground, Z(;,
along with the excitation of the shield exterior (unintentional excitation).

The common way of preventing unbalance due to a coaxial feed cable is theﬁ.
use of a balun, which is an acronym for BALanced to UNbalanced, referring
to the transition from an unbalanced coaxial cable to a balanced antenna. Thes
balun is inserted at the input to the antenna, as shown in Fig. 5.13(a). In the%
case of the coaxial feed cable, the intent of the balun is to increase the impedances
between the outside of the shield and ground. A common form is the “bazook
balun” shown in Fig. 5.13(b). A quarter-wavelength section of shield is inserte
over the shield of the original cable, and these are shorted together -
quarter-wavelength from the feed point. A quarter-wavelength, short-circuite
transmission line is formed between the outer coax and the inner coax. Wi
found in the previous chapter that a short-circuited, quarter-wavelengt

b





