
September 18, 2000
The Five-Day Verification Plan

Peet James, Principle Engineer

Qualis Design Corporation
www.qualis.com
peet@qualis.com
lan.
eri-
n

ABSTRACT.

To succeed, today's ASICs must have a comprehensive verification p
A detailed document that spells out how to attack the overall task of v
fication is necessary. This paper details how to jump-start the creatio
and writing of a verification plan that is owned by the entire
ASIC team.
1 of 18

Purpose & History

on-
e-

in

ll
so

d
s a

 has
ent
ed
n

rd,
te

that

will
1.0 Purpose & History

1.1 Purpose

The purpose of this paper is to outline the creation process and the c
tent of a concise, usable verification plan. A two-track approach is pr
sented:

• The main text describes the generation of the verification plan with
five days

• The figures show an example of parts of the verification plan itself

Tips for minimizing impact on the engineering team, obtaining their fu
“buy in” and implementing part of the plan during the five days are al
included.

1.2 History of CVP Evolution

The five-day approach and the resulting verification plan have evolve
over about 15 projects. As an engineering consultant who comes in a
“hired gun” to jump-start a verification project, I am exposed to many
diverse groups of engineers and to many diverse projects.

The approach spelled out here has been proven in the trenches, and
evolved with each use. Almost without exception, the engineering tal
was a little skeptical at first, but by the time they completed and follow
the plan, they would not do another ASIC or FPGA without a verificatio
plan. This plan can be adapted for any level of logic: ASIC, FPGA, ca
etc., and generally any size (I have used it on several multi-million ga
designs). The doc should only be about 10-30 pages in length. Any
longer and it becomes too much work to maintain.

For the purpose of the paper and the included example plan, I assume
the verification team is fairly new to the whole verification world. In
some cases, mature verification engineers will be available who can
jump-start this whole process. In that case, some of the preliminaries
be unnecessary.
2 of 18 The Five-Day Verification Plan SNUG Boston 2000

Greasing the Skids

y

s?

rifi-
y. A
full
art.
t a
tings
ing

e
 to

yp-

n
ur-
b.

he
2.0 Greasing the Skids

To prepare for creating the verification plan, follow this approach:

• Read white papers: Hand out a few white papers on verification a
couple of weeks before arrival. (For example, use this paper and mA
Recipe for Multi-Million Gate ASIC Verification paper presented at
SNUG Boston 1999.) Are there any existing verification document
Hand them out to help the engineering team’s brains start thinking
about verification.

• Cheat: Don't emphasize that we are coming together to make a ve
cation plan document. This news may scare some engineers awa
much better approach is to emphasize that you are gathering the
team together to obtain everyone's input on the verification of the p
This is what we are really doing anyway. The verification plan is jus
clear and concise way to document everyone's ideas. These mee
are the first step toward having universal buy-in from the engineer
team.

• Prepare for meetings: Reserve a conference room for each day of th
week starting at the same time and lasting for about 2 hours (10am
12pm is good). Monday - Friday works great. The first meeting is t
ically a little longer (3+ hours).

• Identify leadership: Identify one verification facilitator who will run
the meetings. He or she is responsible for keeping the meetings o
track and for writing up the plan each day so it is ready for review d
ing the next meeting. As a consultant, this typically has been my jo
However, I still identify a person so that I can prepare them to own t
plan after I move on.
SNUG Boston 2000 The Five-Day Verification Plan 3 of 18

Day One: The Overall Approach

he
the
to

e as
eri-
s
n.

us-
ary
tup

ed
-

3.0 Day One: The Overall Approach

Implementation of the CVP

Day One is all about coming up with an overall approach to verifying t
part. It can start with a full “dream team” anything-goes approach at
start, then funneling down to a more practical approach. The goal is
obtain an overview of how the verification infrastructure will be setup
and how it will work.

Sometimes several approaches (Vera, E or C with file-driven testcas
well as straight-HDL testbenches) become prevalent. This is OK. A v
fication infrastructure that can seamlessly handle multiple approache
needs to be developed. Now is the time to have all this out in the ope

Typically, a block-level diagram is drawn up during the course of disc
sion that represents the general verification approach and its necess
elements. The initial ideas of file structure, scripting, environmental se
and file format are also generated.

Figure 1 on page 4 illustrates a sample block diagram of an ASIC nam
CoolChip. Figure 2 on page 5 shows a sample of a harness block dia
gram.

Figure 1.
Sample block diagram of the
CoolChip ASIC

Control

Memory

Sub
BlocksCoolChip

CPU Core

ARB

DMA

MAC

Optical

Serial

PLIBus
4 of 18 The Five-Day Verification Plan SNUG Boston 2000

Day One: The Overall Approach

s.
s?

ut-
ro-
e

n
, C
.

ith

ys-

th
om
?

3.1 To Do List

Follow this list of tasks on Day One:

• Discuss the general throughput of the part and the major interface
How will it be used in the real world? What are the key things it doe
What are the main modes?

• Discuss all the interfaces. What bus functional models (BFMs) are
needed for each interface? Buy or build the BFMs? File input and o
put with these BFMs or auto data generation? C or HDL or tool (Ch
nology)? Let each person talk about their part of the logic, and giv
input.

• Is there any verification infrastructure available already? Verificatio
is a place where real reuse can happen. Are there existing scripts
code, BFMs, utilities, etc.? Steal and reuse anything that is useful
Leverage any existing verification infrastructure.

• Discuss behavioral modeling of the part. How to compare golden w
actual? C or HDL or tool (SPW?)?

• Determine high-level verification language use (Vera, Specman, S
tem C, RAVE)?

• What sort of harness will be used? Client-Server approach?

• Determine whether any random-based verification architecture/
approach is necessary? Are you going to use explicit testcases wi
simple random background noise? Or are you going to write a rand
testcase and then constrain/direct it to hit the testcases your want

Figure 2.
Sample harness block
diagram of the CoolChip
ASIC

BFMsCoolChipH

CoolChipControl

Mem

Peripheral

Peripheral
SNUG Boston 2000 The Five-Day Verification Plan 5 of 18

Day One: The Overall Approach

ifi-
ss

is a
gres-
• Review general verification practices. A quick pep talk on good ver
cation practices is helpful here. Focus on basic client-server harne
and testbench structure information. (“Writing Testbenches Functional
Verification of HDL Models”by Janick Bergeron and “VHDL FAQ”
by Ben Cohen are good texts. Both are published by Kluwer Aca-
demic Publisher.)

• Discuss scripting. What simulation run scripts are needed?

• Review directory structure. Where will stuff go to facilitate flexibility
and ease of use? Revision control? Bug reporting?

Using a regression script, which runs one or more simulation scripts,
great timesaver. Figure 3 on page 7 explains the usage of a sample re
sion script.
6 of 18 The Five-Day Verification Plan SNUG Boston 2000

Day One: The Overall Approach
Figure 3. Sample
regression file usage Simulation Environment

Each simulation is categorized by functions and gives a letter identifier and a number (such
as bs_rx_tb1). The numbered simulation directory contains the verify.scr driver file and all the
other files necessary to drive the simulation.

First, verify.scr can perform any pre-simulation file generation. Next, it can invoke VHDL and
run the simulation. The script can also perform post-processing. This pre- and post-process-
ing might be simple file generation, or it might be complex calls to C or Perl routines to gener-
ate or manipulate the necessary files. In this way, a simple VHDL driver (bs_rx_tb1.vhd) can
stimulate and check the design, or a series of more complex tests driven by C or Perl can
drive the simulation using a universal launch.vhd file. Simulations should be run from the ver-
ification directory.

Syntax: regress [-id <sim-run-dir>]
[-f <tbs-file>] [-d <global-dir>]

Examples:

Single sim, default log run dir regress bs_reg_tb1

Multiple sims, default log run dir regress bs_reg_tb1 int_tx_tb1

Single sim, use simrun1 for run dir regress -id simrun1 bs_rx_tb2

Run all sims listed in passing file regress -f passing

Run all sims listed in all file, dump logs
in gold dir

regress -d gold -f all

Run all sims in mysims file, use sim5
for run dir, dump logs in sim061000

regress -id sim5 -f mysims
-g sim061000

Options:

regress Can be run with a command-line list of test-
benches. For example, regress bs_rx_tb1 or
regress bs_rx_tb1 int_tx_tb1.

-id <sim-run-dir> Declares the simulation run directory that is cre-
ated under the numbered testbench directory and
holds the simulation results.

If you don’t specify a directory, the script creates a
directory called “log” under your simulation direc-
tory (top_tb/bs_rx_tb1/log) and runs the
script from there.

-f <tbs_file> Points to a file listing the testbenches to run.

Alternatively, you can specify the testbenches to
run individually by separately them with a space
(regress bs_rx_tb1 int_tx_tb1).

-d <global-dir> Specifies the global directory created under the
simulation directory for the log files created after
each testbench is run.
SNUG Boston 2000 The Five-Day Verification Plan 7 of 18

Day One: The Overall Approach

ol-

,

ng.

n't

e is
The
ek.
ttle-

tion
Figure 4 on page 8 illustrates a sample directory structure for the Co
Chip verification infrastructure.

3.2 Gotchas

• Discussion splits into tangents about RTL guts.

• One guy goes dictator and declares, “This is how it shall be written
thus shall it be done.”

• Lack of quorum needed for useful brainstorming and decision maki
People are no shows, come in late, leave early, come and go.

• Renegade maverick engineer who won't play nice with others. Wo
use scripts, file formats, or directory structures.

• Getting stuck on one aspect (dir structure, script, BFM, etc.) of the
verification infrastructure at the expense of the others. The goal her
to get a start on each of all the necessary verification ingredients.
team can go round two and three on particular areas later in the we
Just get the main idea down in a succinct format. Any area that bo
necks should be back burnered until Day 5. Agree on a basic direc
and then settle the details on Day 5.

Figure 4.
Sample file structure for the
CoolChip verification
infrastructure

NAMING CONVENTIONS

*.vhd for VHDL files

_tb#. for testbench-
 related files

 & directories

*.scr for simulation-
launch scripts

*.c for C code
 files

$WORKPATH

 /rtl

 /verif

 /doc

 /bfm

 /harness

 Coolchiph.vhd

 syslog_pb.vhd

 init_pb.vhd

 /bs_rx.tb1

 verify.scr

 bs_rx_tb1.vhd

 /int_tx_tb1

 verify.scr

 launch.vhd

 int_tx_tb1.c

Top of revision control hierarchy

RTL code directory

Verification infrastructure main directory

cvp and other documentation

Bus functional models

Harness and shared code

Harness

Universal output logging code

Universal initialization code

Individual testbench directory

Testbench script

VDHL-specific testbench code

Test files

Testbench script

Universal C-based, file I/O testbench code

C code
8 of 18 The Five-Day Verification Plan SNUG Boston 2000

Day One: The Overall Approach

ar

en

truc-

y a
ca-
3.3 Assignment

Verification team leader writes up the first sections of the Verification
plan and has copies ready for the next meeting.

At the end of the Day One session some specific tasks should be cle
enough to assign the following:

• Harness person.

• BFM person(s), at least start with one of the simpler BFMs.

• Directory structure person.

• Scripting person. This person can start writing certain parts and th
can report back each day as the week progresses.

These people can start developing their part of the verification infras
ture during the rest of the week. Their goal can be putting together a
usable example (harness, fake chip, BFM and a sample testbench) b
certain date. It is a good idea to prioritize the various parts of the verifi
tion infrastructure, so that things come together in a timely manner.
SNUG Boston 2000 The Five-Day Verification Plan 9 of 18

Day Two: Basic Sanity

p
fline

he
to

per
ng.
the
 cat-
4.0 Day Two: Basic Sanity

Feature Description of the CVP

Start Day Two with a review of the verification plan document. Mark u
any changes. Do not get side tracked. If issues come up, take them of
or discuss at the end of meeting.

Day Two begins a three-day effort of extracting from the team a list of t
features that need to be verified. I recommend dividing this task up in
several categories with a certain focus for each category. For this pa
we will use three categories: basic sanity, intentional and stress testi
The content and approach of these three categories is explained on
following pages, but any breakdown of useful categories (2 to 5 total
egories) will do. Here is a suggested list of other breakdowns:

• Mustard, relish, ketchup

• Grunt, real, what-if, random

• Larry, Moe, Curly

• Simple, directed, illegal
10 of 18 The Five-Day Verification Plan SNUG Boston 2000

Day Two: Basic Sanity

od-
the

the
the

s to
res

 to
re

may

h
res
h is

o
in.

t
var-

aller
n.

a

4.1 Yellow-Sticky Method

I use this oriental method (has some fancy name that I forgot) that I m
ified and renamed as the Yellow-Sticky method. The goal is to extract
maximum information in the shortest amount of time. Each engineer
needs one sticky pad, preferably sized 3x3 and in a unique color. If all
engineers have the same color, have each person write their initials in
corner of each sticky.

 Here is the procedure:

1. Spend about 15-45 minutes having everyone just write their feature
test. At the start emphasize the category that you are writing featu
for.

2. For the Basic Sanity category emphasize these ideas:

• These are short tests that run in a couple of minutes.

• These tests will run when total breakdown occurs and you need
return to a known state. These tests may require running befo
anyone checks in changes to the database.

• Focus on simple and basic, verifying grass-root things: register
loading, resets, adders add, etc.. To keep people on track, you
have to reiterate these concepts.

3. Write one idea per yellow sticky.

4. Write the idea, not the whole test. For example, write, “Ensure bot
hard and soft reset bring the chip back to a known state.” The featu
will be combined later into actual testbenches. When the testbenc
eventually assigned to an engineer, he or she can make an outline
detailing how the test will be done. There is danger of putting in to
much detail here and making the CVP difficult to write and mainta
Limit the paper to 10-30 pages. Do not bog down in the details.
Enough information to direct the test is all that is needed.

5. Have the general specification for the part and any other documen
nearby. Engineers can grab them and use them to prompt ideas for
ious features to test. Sometimes, you can break up the task into sm
areas of interest as directed by some of the existing documentatio

6. Bulleted lists are great here: For example:

• Ensure proper branch instruction set

• + branch-nops

• + back-to-back branch

7. Once everyone is done, have each person stick their notes up on
wall, white board or paper easel sheets.
SNUG Boston 2000 The Five-Day Verification Plan 11 of 18

Day Two: Basic Sanity

e.

-
ate-

: ini-

f
the
 in
the
ut-

e
ing

ss,
is
8. Start putting like-stuff together. Sub-categories will naturally emerg
Mark duplicates. Combine similar tests into lists.

9. Identify any list that does not fit the category and move it. For exam
ple, if the test is too complex, move it to the intentional or stress c
gories.

10.Label the sub-categories that emerge. Sample sub-categories are
tial, regs, CPU interface, data interface, modes, etc..

11. It is a good idea to identify the person who is the principle owner o
the logic verified under each sub-category. Put their initials next to
sub-category. They will be responsible to review the features listed
their sub-category area and keep them up to date. They will also be
contact person for questions and the one who will signs-off on the o
line that the testcase writer will write up later.

The figure below shows some sample feature basic sanity tests for th
CoolChip ASIC. Some of the details (like spec refs & testcase group
and naming) would not be added till later. The far right column is a
marker for where the test will be run (TH is for the standard test harne
might have BLK for being done at the block level, etc.). The focus here
to list and group the features.

Figure 5.
Sample Basic Sanity tests for
the CoolChip ASIC CoolChip Register and Reset

1. Ensure that registers with access modes of RO,
RW, WP and Mixed are compliant with CoolChip GS
(Section 4.1 - Table 1). Bits that are of the toggle type
(ROL) should be tested as if they are RO type regis-
ters.

BS_REG_TB1 TH

2. Ensure that upon Hard Reset all resisters return to
their reset values as specified in the CoolChip GS
(Section 4.1 - Table 1).

BS_REG_TB1 TH

3. Ensure that upon Soft Reset that those registers
outlined in CoolChip GS (Section 4.2) reset to their
reset values as specified in the CoolChip GS (Section
4.1 - Table 1), and that the remaining registers retain
their current values.

BS_REG_TB1 TH

4. Ensure all unused register addresses return 0’s. BS_REG_TB1 TH

5. Ensure multiple Chip Select lines give proper inter-
rupt (CoolChip GS: Section 5.2) and that the register
sub-assembly is not corrupted.

BS_REG_TB2 TH
12 of 18 The Five-Day Verification Plan SNUG Boston 2000

Day Two: Basic Sanity

ust

Tip:
flip-

hem
hni-

s

4.2 Gotchas

• People write everything on one sticky.

• People give too much detail.

• People's handwriting is unreadable.

• People get stuck and need prodding to think outside the box (not j
their logic, but other's logic and the chip as a whole).

• One guy writes all the lists, the rest of the team has blank stares.
Have the team jump-start themselves by pulling out the spec and
ping through it. This task helps engage their brains.

4.3 Assignment

Verification lead takes yellow stickies and sub-categories and enters t
into the CVP doc for the next day’s review. Can delegate this to a tec
cal writer type person, if one is available.

Start thinking of sub-categories, features, etc. for the other categorie
(intentional and stress).

Continue working on your verification infrastructure assignments from
the previous day.
SNUG Boston 2000 The Five-Day Verification Plan 13 of 18

Day Three: Getting Intentional

 At
as:

e-

ps

bul-
t
t of

te-

ry
ing
e

5.0 Day Three: Getting Intentional

Feature Description of the CVP

Start Day Three with a review of Day Two verification plan additions.

5.1 Yellow-Sticky Method

Repeat yesterday's yellow-sticky exercise, but this time focus on the
intentional features. This is typically the largest of the three sections.
the start of this intentional feature-listing session, emphasize these ide

• Intentional tests run longer, even very long.

• Test the normal features, regular operations, normal “day-in-the-lif
of-the-part” stuff.

• Think of normal paths that data takes.

• Do not use a convoluted or devious tests. That is stress testing.

• These tests can be more exhaustive, basic-sanity tests.

• The test might be iterative. Run with this, then run with that, etc..

5.2 Gotchas

Same as Day Two, but typically this goes smoother because the bum
were smoothed out in the basic sanity section.

The list becomes huge. Re-emphasize what intentional means. Use
lets or lists or anything else that will compartmentalize the feature lis
into a usable form. Leave details until later. This tends to be the larges
the three sections.

5.3 Assignment

Verification lead or a technical writer takes yellow stickies and sub-ca
gories and enters them into the CVP doc for the next day’s review.

Have each person who is the owner of each basic sanity sub-catego
review the feature lists and clean them up. They can also start group
the features into actual testbenches and input the information into th
testbench list.

Continue working on your verification infrastructure assignments from
the previous day.
14 of 18 The Five-Day Verification Plan SNUG Boston 2000

Day Four: Stressed Out

.

d-

ts, or

are

s

y are
eed

go-

iew
ea-
t.
6.0 Day Four: Stressed Out

Feature Description of the CVP

Start Day Four with a review of Day Three verification plan additions

6.1 Yellow-Sticky Method

Repeat yesterday's yellow-sticky exercise, but this time focus on the
stress features. Emphasize these ideas:

• Stress tests run longer, even very long.

• Create “lets-break-it” tests. Create “what-if-this-happens-in-the-mi
dle-of-that” tests.

• Test advanced or questionable features.

• Use convoluted or devious tests.

• Use randomization.

• These tests can be more exhaustive, basic-sanity or intentional tes
redo's with a twist.

• These tests might be self-directing to run differently each time they
run.

6.2 Gotchas

Same as Day Two and Three, but again this typically goes smoother
because the bumps were smoothed out in the earlier sections. At thi
point, the team can generally do this task themselves.

Some engineers have trouble getting rude on their designs here. The
so used to not even being able to verify normal functions, that they n
prodding to think deviously about actually breaking their designs.

6.3 Assignment

Verification lead or technical writer takes yellow stickies and sub-cate
ries and enters them into the CVP doc for the next day’s review.

Have each person who is owner of each intentional sub-category rev
the feature list and clean them up. They can also start grouping the f
tures into actual testbenches and input the info into the testbench lis

Continue working on your verification infrastructure assignments from
the previous day.
SNUG Boston 2000 The Five-Day Verification Plan 15 of 18

Day Five: Divide and Conquer

n
hed
w

r at

sign

-

har-
7.0 Day Five: Divide and Conquer

Testbenches of the CVP

Day Five is a catch all. Here is a list of things that can be done:

• Rehash any verification infrastructure area(s) that were deferred o
Day 1. Typically, if a consensus (such as dir structure) was not reac
on Monday, it is back-burnered until today (Day 5). Often, due to ho
far the CVP has come, the issue(s) will have solved themselves o
least become more clear. Hammer them out now.

• List/prioritize the verification infrastructure work that remains to be
done. Schedule and assign this work.

• Assign/reassign ownership of the key elements of the verification
infrastructure (harness, BFMs, scripts, etc.).

• Finalize at least the basic sanity section of the testbench list and as
the first few tests.

• Assign an owner of the verification plan document.

• Set a goal. For example:

• Having first BFM with a little test working in the verification infra
structure (with the scripts) by a certain date

• Having all first passes of the BFMs done and hooked up in the
ness by a certain date

• Having the BM of the part done by a certain date
16 of 18 The Five-Day Verification Plan SNUG Boston 2000

Day Five: Divide and Conquer

a-

ts

one
late

ort

ture
to
Sample testbenches for the CoolChip ASIC are presented below.

7.1 Gotchas

• No Ownership: Not enough people to take ownership of the verific
tion infrastructure parts. RTLr's plates are too full doing the RTL
input. Shameless Plug: Hire Qualis Engineering or other consultan
to do some of the work.

• Manager type tries to assign all testbenches, priorities and effort at
time. Best to just do the first few, see how it goes and then extrapo
the rest of the information later.

7.2 Assignment

Verification lead finalizes Revision 1 of the CVP, checks it in to some s
of revision control, and distributes it to all involved parties. Owner of
CVP keeps document up to date.

Have the person who is the owner of each stress group review the fea
lists and clean them up. They can also start grouping the features in
actual testbenches and input the information into the testbench list.

Set up weekly verification meetings to mark status and progress.

Figure 6.
Sample testbenches for the
CoolChip ASIC Testbenches

Bench Name Effort Owner Priority
Cross
Ref Harness Status

BS_RST_TB1 3 Ed Phase 1 A.5.2 H1/V Done

BS_REG_TB1 4 Sam Phase 2 A.1.1-4 H1/V Next
2/27/98

BS_BUS_TB1 9 Ralph Phase 1 A.2.5,
B.1.6

H1/C Debug

BS_INT_TB1 5 Qualis-
Peet

Phase 3 A.4.3 H2/CV Future
3/3/98

INT_TX_TB2 8 Sam Done at
block

B.6.6 BLK/V Done

Legend:

H1 = CoolChip1 <-- harness #1

H2 = CoolChip2 <-- harness #2

C = C-driven testbench

V = VHDL-driven testbench

CV = Combo of C- and VHDL-driven test-
bench
SNUG Boston 2000 The Five-Day Verification Plan 17 of 18

Conclusion

ent

ers
t
ion

ate
8.0 Conclusion

Writing a verification plan can be quite a breakthrough accomplishm
for a design team. With initial expectations of “this will be a waste of
time” to a complete turn around is a cool thing to experience. Engine
become excited about doing verification. They are “converted” so tha
they do not attempt another project without a comprehensive verificat
plan and the resulting verification environment. Sometimes veteran
RTLrs who are kind of bored with RTL code, get real excited about
expanding into the world of verification code. At any rate, it is a very
sound investment for any design team to take the time up front to cre
and own a verification plan.

The keys to a good verification plan?

• A format that is concise and useful. Keep it on a diet.

• A quick gathering and deployment of the document itself.

• An approach where each of the design team members gives their
input.

• Ownership by all parties involved.
18 of 18 The Five-Day Verification Plan SNUG Boston 2000

	1.0 Purpose & History
	1.1 Purpose
	1.2 History of CVP Evolution

	2.0 Greasing the Skids
	3.0 Day One: The Overall Approach
	3.1 To Do List
	3.2 Gotchas
	3.3 Assignment

	4.0 Day Two: Basic Sanity
	4.1 Yellow-Sticky Method
	4.2 Gotchas
	4.3 Assignment

	5.0 Day Three: Getting Intentional
	5.1 Yellow-Sticky Method
	5.2 Gotchas
	5.3 Assignment

	6.0 Day Four: Stressed Out
	6.1 Yellow-Sticky Method
	6.2 Gotchas
	6.3 Assignment

	7.0 Day Five: Divide and Conquer
	7.1 Gotchas
	7.2 Assignment

	8.0 Conclusion

