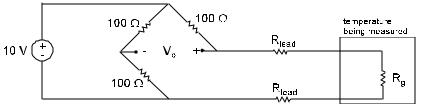
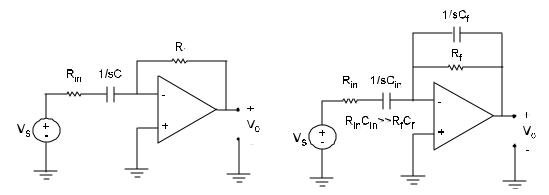

Rose-Hulman Institute of Technology			
ECE 207 Fall 2004	Quiz 5	Name	
		CM	Score


Mark each true/false question either T OR F (1pt each)

- ____ (*numeric*) A linear force transducer has an output of 20 mV when measuring 100 N and has an out of 100 mV when measuring 300 N. What is the zero offset error in mV?
- (*numeric*) A linear displacement transducer reads 0 mm when measuring 0 mm and reads 110 mm when measuring 100 mm. What is the actual displacement when the transducer reads 385 mm?


used for next two questions

- Suppose J_{reference}<0°C. The voltage v in the diagram above will indicate a higher temperature at the sensing junction than is actually there. *Why or why not*?
 - If the temperature of J_{sense} becomes lower than that of the $J_{reference}$, v will be negative.

 R_g is a Pt RTD with a nominal 100 Ω resistance used for the next **two** questions

- A two-wire measurement is used in determining an RTD temperature. For T>0°C, V_b >0. Why or why not?
- The presence of lead resistance will tend to cause V_b to indicate too high a temperature.

used for next **fou**r questions

- ____ Increasing C in the *high-pass* filter will lower its break frequency.
- ____ Increasing R_{in} in the *bandpass* filter has no effect on its lower break frequency .
- ____ Increasing C in the *high-pass* filter has no effect on its high-frequency gain.
- ____ Increasing C_{in} in the *bandpass* filter has no effect on its passband gain.