Quiz 1
Name $\qquad$
CM $\qquad$ Score $\qquad$

Check all statements either True or False (T/F) (1pt each)
In nodal analysis, the number of nodes minus the number of voltage sources is equal to the number of required KCL equations.

circuit for first
TIIRCC questions

If nodal analysis were performed on the circuit above, three KCL equations would be required.
When the resistance of $R$ is decreased, the power delivered by the voltage source increases. Why or why not? $\qquad$

As $R$ decreases, the magnitude of the voltage across it decreases.


If one or more of the switches are closed, the power delivered by the current source will increase from that delivered when all switches are open.

If one or more of the switches are closed, the voltage across $R_{s}$ will decrease from that present when all switches are open.
Why or why not? $\qquad$

If one or more of the switches are closed, the current through $R_{L}$ will increase from that present when all switches are open.

With all switches OPEN, $R_{s}=6 \Omega$ if the following conditions are true:
$\mathbf{I = 2 A}$, the voltage across $R_{L}$ is $\mathbf{1 0 V}$, and the current through $R_{L}$ is $\mathbf{1 / 3 A}$.

__ If additional resistances are place in parallel with $R_{L}$, the power absorbed by $R_{s}$ will increase If resistances are placed in parallel with $R$, the power absorbed by $R_{s}$ will remain the same, and the power delivered by the voltage source will increase.
Why or why not? $\qquad$

