Names _

Objectives:

- 1) Develop an understanding of RTDs
- 2) Understand sources of error in temperature measurement with RTDs
- 3) Investigate 2-wire, 3-wire, and 4-wire measurements

Deliverables

- 1) Analysis of 2-wire and 3-wire bridge measurements including an estimation of error.
- 2) Completed procedure

Procedure

2-wire RTD bridge measurement

1. Build the temperature measurement system shown below.

 $R_1 = R_2 = R_3 = 100 \ \Omega, R_{lead} = 2.7 \ \Omega$

schematic for 2-wire and 3-wire RTD laboratory measurements

- 2. With $V_s = 6V$, and the RTD at steady-state temperature in an ice bath, null the bridge with no R_{lead} . (use connections labeled **1** in the diagram above, measure at V_b for no R_{lead}).
- 3. Now, using 2-wire measurement (use connections labeled 2 and V_b at 2-wire), $V_b = _$ when RTD is in the ice bath.
- 4. Again, using 2-wire measurement, $V_b =$ _____ when RTD is at human body temperature.
- 5. Still using 2-wire, $V_b =$ _____ when RTD is in boiling water.

3-wire RTD bridge measurement

- 6. With $V_s = 6V$, and the RTD at steady-state temperature in an ice bath, null the bridge with no R_{lead} . (use connections labeled 1 in the diagram above, measure at V_b for no R_{lead}).
- 7. Now, using 3-wire measurement (use connections labeled 2 and V_b at 3-wire), $V_b = _$ when RTD is in the ice bath.
- 8. Again, using 3-wire measurement, $V_b =$ _____ when RTD is at human body temperature.
- 9. Again, using 3-wire, $V_b =$ _____ when RTD is in boiling water.

2-wire and 4-wire DMM measurements

10. Construct the measurement system shown below. ($R_{lead} = 2.7 \Omega$)

11. With the RTD in an ice bath, measure the apparent resistance of the RTD using 2-wire and 4-wire measurements.

R_{RTD(2-wire)} = _____

R_{RTD(4-wire)} = _____

12. With the RTD at human body temperature, measure the apparent resistance of the RTD using 2-wire and 4-wire measurements.

R_{RTD(2-wire)} = _____

R_{RTD(4-wire)} = _____

13. With the RTD in boiling water, measure the apparent resistance of the RTD using 2-wire and 4-wire measurements.

R_{RTD(2-wire)} = _____ R_{RTD(4-wire)} = _____

Table of temperature measurements

RTDs in lab are all 100 Ω platinum with DIN (European) standard RTD characteristics

For this table, record the temperature that corresponds to the apparent RTD resistance. Do not compensate for R_{lead} . For the bridge measurements, measure V_b and then calculate R_{RTD} for the case of R_{LEAD} =0. For DMM measurements, simply use table to find T corresponding to measured resistance.

	T _{ice bath}	T _{boiling water}	T _{body}
2-wire bridge			
3-wire bridge			
2-wire DMM			
4-wire DMM			

In the areas below, record the actual temperatures extracted corresponding to the true R_{RTD} by properly considering $R_{\text{tead.}}$

A. Calculations for 2-wire RTD bridge measurements

Estimated error caused by not compensating for R_{ead} in temperature measurement using 2-wire RTD bridge measurement.

DT_{ice bath} =_____

*DT*_{body} =_____

DT_{boiling water} =_____

B. Calculations for 3-wire RTD bridge measurements

5

Estimated error caused by not compensating for R_{ead} in temperature measurement using 3-wire RTD bridge measurement.

D T _{ice bath}	=	
D T _{body}	=	
DT _{boiling water} =		

C. Calculations for 2-wire RTD DMM measurements

Estimated error caused by not compensating for R_{ead} in temperature measurement using 2-wire DMM measurement.

 $DT_{ice bath} = _$ $DT_{body} = _$ $DT_{boiling water} = _$