Names \qquad

Deliverables

Using measurements from the circuit show below, find the actual value of the capacitance and the equivalent parallel resistance for the $0.1 \mu \mathrm{~F}$ capacitor.

Procedure

Equipment materials

Agilent 33120A function generator
180Ω resistor
$0.1 \mu \mathrm{~F}$ capacitor

1. Measure resistance of 180Ω resistor using DMM \qquad
2. Connect circuit below

Important practical information: The function generator is not an ideal voltage source-it has an internal resistance of 50Ω. Also, the capacitor is not an ideal capacitance-it has some dielectric losses (at these frequencies R_{c} should be very large). Therefore, a more accurate model for the circuit would be

3. Adjust function generator for $\mathrm{Hi}-\mathrm{Z}$ output termination and for an output amplitude for 10 V peak-to-peak as shown below.
ii) Turn on FG. The output default is a 100 mV peak-to-peak sinusoid at 1 kHz .

Hi-Z
Press shift then ENTER (MENU on/off).
Press \rightarrow three times to come to D: SYS MENU.
Press \downarrow twice to come to 50Ω
Press \rightarrow once to configure FG for HIGH Z termination.
Press enter.

10 V peak-to-peak
Press amplitude
Press green enter number.
Press 10 (1 and 0 are in green) then $\uparrow\left(\mathrm{V}_{\mathrm{pp}}\right)$

10 KHz
Press frequency
Press green enter number.
Press 10 (1 and 0 are in green) then $\downarrow(\mathrm{KHz})$
4. Using ch. 1 and ch. 2 of oscilloscope, measure the amplitude and phase of $v_{s}(t)$ and $v_{R}(t)$. Use X and Y cursors to make precision measurements. Remember to give RMS when using phasors ($\boldsymbol{V}_{\mathrm{s}}$ and $\boldsymbol{V}_{\mathrm{R}}$ below)
Take $v_{s}(t)$ as phase reference-that is, take phase of $v_{s}(t)$ to be 0°.

$$
\begin{aligned}
& V_{s}= \\
& V_{\mathrm{R}}= \\
& \hline
\end{aligned}
$$

5. Determine the phasor current \boldsymbol{I}, using $\boldsymbol{V}_{\mathrm{R}}$, Ohm's law, and the measured value of resistance.

$$
I=
$$

6. Give the time domain quantities, $v_{s}(t), v_{R}(t)$, and $i(t)$
$\mathrm{v}_{\mathrm{s}}(\mathrm{t})=$ \qquad
$\mathrm{V}_{\mathrm{R}}(\mathrm{t})=$ \qquad
$i(t)=$ \qquad

Model the capacitor as a capacitance in parallel with a resistance (resistance shown as R_{c} above).

Calculate the inductor impedance using information available from the measurements. That is, find $\boldsymbol{Z}_{\mathrm{c}}=\left(\frac{1}{R_{\mathrm{c}}}+\mathrm{j} \omega \mathrm{C}\right)^{-1}$ with $\boldsymbol{V}_{\mathrm{c}}$ (use KVL) and \boldsymbol{I}.

Calculate the value of the capacitor's capacitance and equivalent parallel resistance.

C = \qquad
$\mathrm{R}_{\mathrm{c}}=$ \qquad

Attach sheet(s) showing necessary calculations - neatly done please. Sloppy work will be downgraded a minimum of 20%.

