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CHAPTER 6    

SYSTEM FREQUENCY RESPONSE 

Finding the frequency response of systems is important in many fields of engineering 
and science—wherever dynamic systems are encountered.  From vibration analysis in 
mechanical engineering to filter design in electrical engineering to investigations of the 
response of the human ear in biomedical engineering, the frequency response of a 
dynamical system is found to be an important analysis and design tool.   The utility of 
frequency-domain analysis, when combined with the Fourier techniques discussed in 
this chapter, can hardly be overstated.   
 The present methods used in frequency domain analysis have grown out of the 
work of Arthur Edwin Kennelly who presented a paper on “Impedance" to the American 
Institute of Electrical Engineers in 1893.  His paper represented the first published use 
of complex numbers in alternating current circuit theory.   Later in the same year, 
Charles Proteus Steinmetz discussed the significance of Kennelly’s paper before the 
International Electrical Congress in Chicago.  Steinmetz introduced the engineering 
community the utility of the jω notation in phasor analysis.  His first textbook, Theory and 
Calculation of AC Phenomena, was the first of many textbooks that he wrote.    
 Steinmetz worked at General Electric for several years.  A well known story about 
Steinmetz involved a $10,000 consulting bill he sent to General Electric in 1902 after he 
had retired from the firm.  The consultation involved trouble shooting  a complex system 
which had failed, and his work involved a chalk mark showing where the fault lay.  
Taken aback by the amount of the bill, General Electric asked for an itemized list of 
charges.  The invoice Steinmetz sent appears below. 

1. Making the chalk mark $1. 
2. Knowing where to make it $9,999.  

 A.E. Kennelly was professor of electrical engineering at Harvard University from 
1902-1930 and professor of electrical engineering at MIT from 1913 to 1924. C.P. 
Steinmetz’s work in AC machines and power resulted in many significant papers and 
patents.  In 1895, he patented a “system of distribution by alternating current.”   
 The revolutionary techniques of Fourier Analysis were born in 1807 when Joseph 
Fourier submitted a paper on the analytic theory of heat to the French Academy of 
Science.  In this paper Fourier Analysis was first outlined, but, instead of greeting the 
work as one of genius, the commission examining the work—Laplace, Lagrange, Biot, 
and Poisson attacked the work as lacking rigor.  Even the passage of four years were 
insufficient to satisfy Laplace and Lagrange as to the validity of Fourier’s methods when, 
in 1811, Fourier won the Academy’s grand prize in mathematics. 
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6.1 System Frequency Response 
When referring to a system’s frequency response, the system is considered to provide a 
relationship between an input and output.   The system input is the source of excitation 
and the system output is whichever system variable is of interest. 
 

 
Figure 6.1:  Dynamical System 

 In sinusoidal steady-state analysis, the input is assumed to be a sinusoid.  The 
system frequency response is defined by the sinusoidal steady-state response to the 
sinusoidal input.  In finding a system’s frequency response, the frequency is left as a 
variable.  Since the relation which results holds for all frequencies, the system 
frequency response contains an enormous amount of information.  The system 
frequency response contains not just information of the system’s response at a 
particular frequency, but can contain information at all frequencies of interest. 
 Since a system’s frequency response involves find the sinusoidal steady-state 
response of a system, the techniques can be considered to be applications of phasor 
analysis. 
 
Example 6.1 
Consider the system shown below, a force exerted on a mass that moves on a platform 
with viscous damping.  Let the output—that is, the system variable of interest—be the 
resulting speed. 
 

 
Figure 6.2:  Moving Mass with Viscous Damping  

From Newton’s 2nd Law 

dv(t)
m  = f(t) - bv(t)

dt
dv(t)

m  + bv(t) = f(t) 
dt

 

This is the time-domain system equation-of-motion (EOM).  To find the system 
frequency response, we first assume f(t) is a sinusoid, ( )ff(t) = F cos t + ω θ .   
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The corresponding phasor equation is ( )m j  + b  = ω V V F  

Note: In assuming RMS values for phasor quanties, electrical systems are a notable exception.  
In other areas of engineering and science, peak values of phasors are commonly used.  In this 
equation, let us take V and F to be peak phasors (the frequency-domain variables) 
corresponding to time-domain variables v(t) and f(t).     

v v

f f

v(t) = V cos( t + )  = V
f(t) = F cos( t + )  = F

ω θ θ
ω θ θ

⇔ ∠
⇔ ∠

V
F

 

Note that the differential EOM in the time domain has been transformed into an 
algebraic equation in the frequency domain. 
 
Let m = 0.25 kg and b  = 3 Ns/m.   Solving for V gives 

( )
 =  =  

j m + b j 0.25 kg  + 3 Ns/mω ω
F F

H  

The system frequency response, H, is expressed as a ratio of the output to the input. 

( )
1

 =  =  
j 0.25 kg  + 3 Ns/mω

V
H

F
 

( )
-1

H 2 2

1 0.25
 = H  = tan

30.25  + 3

ω
θ

ω

 ∠ ∠  
  

 

H  

If the system frequency response is known, the input and output can be determined 
once the other is known.  For example, in the example above, take  

f(t) = 20 cos (16t + 30°) N 
Noting that ω = 16 r/s, 

-1
H 2 2

m s1 4
 = H  = tan   0.2 53.1° 

3 N4  + 3
θ  ∠ ∠ ≅ ∠ 

   
H  

From the input peak phasor,  = 20 30° N∠F , and H, the output peak phasor, V, can 
readily be determined.  

( ) m/s
 =  = 20 30° N 0.2 53.1°  = 4 83.1° m/s

N
 ∠ ∠ ∠ 
 

V F H  

From V, the time-domain speed is readily seen to be v(t) = 4 cos(16t + 83.1°) m/s. 
 

Note:  This is not the complete response.  Sinusoidal steady-state analysis only finds the 
steady-state solution.  The natural or transient solution is not found. 
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Example 6.2 
Find the frequency response of the electrical system below.  The voltage source is the 
system input, and the output is i(t). 

 
Figure 6.3: LRC Series Circuit 

From KVL, we can obtain the time-domain EOM. 

t t
-4

s -6
t  =  - t  =  -

di(t) 1 di(t) 1
v (t) = L  + i(t) dt  + R i(t) = 10 H  + i( t) dt  + 4  i(t)

dt C dt 10 F′ ′∞ ∞

′ ′ ′ ′ Ω∫ ∫  

Taking derivatives to eliminate the integral and dropping e lement units for clarity, 

2
-4s

2 -6

dv (t) d i(t) 1 di(t)
 = 10  + i(t) + 4

dt dt 10 dt
 

( )2 -4 6
sj  = j 10  + 10  + j 4ω ω ωV I I I  

where the phasors are understood to be in RMS for this electrical system.  The system 
frequency response is found by taking the ratio of the output (the current) to the input 
(the source voltage). 

( )2 -4 6
s

j
 =  =  

j 10  + 10  + j 4
ω

ω ω
I

H
V

 

Let us take another look at this example.  The steps of finding the time-domain EOM, 
taking a derivative, and then finding the corresponding phasor equation can be 
simplified by using the phasor circuit. 

 
Figure 6.4:  Phasor Circuit 



chapter 6 

Where Vs and I are understood to be RMS phasors.  KVL gives the frequency-domain 
EOM. 

6
-4

s
10

 = j 10  -j  + 4ω
ω

V I I I  

Multiplying by jω results in the same equation as found above. 

( )2 -4 6
sj  = j 10   + 10  + j 4ω ω ωV I I I  

( )2 -4 6
s

j
 =  =  

j 10  + 10  + j 4
ω

ω ω
I

H
V

 

 
 
Example 6.3 
The most convenient technique with which to find the system frequency response, and 
the one used in the rest of this chapter, is to use Laplace transforms.  Since the system 
frequency response finds only the sinusoidal steady-state response, we can ignore 
initial conditions since they do not affect the steady-state response.  
 Let us use the same system as used in the previous example. 

 
Figure 6.5:  LRC Series Circuit 

The time-domain EOM is 

t
-4

s -6
t  = -

di(t) 1
v (t) =  10  + i(t) dt  + 4i(t)

dt 10 ′ ∞

′ ′∫  

Taking the Laplace transform (ICs assumed to be zero) of this equation gives.  

[ ] -4 6
s s ICs=0

I(s)
V(s) = v (t)  = 10 sI(s) + 10  + 4I(s)

s
L v v  

Multiplying by s and taking the ratio between I(s) and Vs(s), we obtain the system 
transfer function H(s). 
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-4 2 6
s

-4 2 6

sV (s) = 10 s I(s) + 10 I(s) + 4sI(s)
I(s) s

H(s) =  = 
V(s) 10 s  + 10  + 4s

 

The system frequency response, H, results when s is replaced by jω in the system 
transfer function, H(s). 

s j
s

 =  = H(s)
ω→

I
H

V
 

Note:  The question naturally arises about whether I and Vs in the relation above need to be in 
RMS or peak.  The answer is that it does not matter as long as they are both peak or both RMS.  
Since H is a ratio between two phasors, it will unaltered as long as both phasors are either peak 
or both RMS.  We will adopt the convention of using RMS for electrical systems and peak for 
others.   

 

 

 
 
6.2 s-Domain Analysis 
In electrical systems, one usually does not find the time-domain equations and then 
take the Laplace transform.  More typically, the s-domain circuit is found, and s-domain 
analysis is performed using this circuit.  The strategy is much like that in phasor 
analysis.  In s-domain analysis, the Laplace transforms of the element relations are 
found.  This results in algebraic relationships between the s-domain voltages and 
currents.  The ratio of the s-domain voltage across an element to the s-domain current 
through it—passive sign convention (PSC) assumed—is the s-domain impedance. 

 
Figure 6.6:  Impedance 

The s-domain element relations for the resistance, inductance, and capacitance are 
shown below. 

Lic=0[ v(t) = L
di(t)
dt

]  →   V(s) = sL I(s) 

Lic=0[ i(t) = C
dv(t)

dt
]  →   I(s) = sC V(s) 

Lic=0[ v(t) = R i(t) ]  →   V(s) = R I(s) 
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The resulting s-domain impedances are 

 
Figure 6.7:  Impedance of Inductance, Capacitance, and Resistance 

 
Example 6.4 
Using the same circuit as in the previous two examples, the time-domain and s-domain 
circuits are shown below. 
 

 
Figure 6.8:  Using Laplace Transforms in Circuit Analysis 

 KVL gives the s-domain equation of motion.   Taking the ratio of I(s) to Vs(s) gives 
the system transfer function. 

6
-4

s

6 2 -4 6
-4s

10
             V (s) = s10 I(s) + I(s) + 4I(s)

s
I(s) 1 s

H(s) =  =  = 
10V (s) s 10  + 10  + 4s

s10  +  + 4
s

 

 Substituting s with jω gives the same system frequency response as before. 

( )2s j -4 6
s

j
 =  = H(s)  = 

j 10  + 10  + 4jω

ω
ω ω→

I
H

V
 

Note:  As noted above I and Vs can be either peak or RMS as long as both are the same, that 
is, as long as both the input and output are either are RMS or else both peak.  One cannot be 
peak and the other RMS. 

 
 Suppose that the output is taken to be vR(t), the voltage across the 4 Ω resistance.  
The system frequency response for this system would be as shown below. 
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( )

R
R 2 -4 6

s js s s s j

R 2 -4 6

4  4 I(s) 4s
 =  =   =     =  

 V (s) s 10  + 10  + 4s

4j
                      =  

j 10  + 10  + 4j

ωω

ω
ω ω

→→

Ω ΩV I
H

V V

H

 

When combined with nodal analysis this technique becomes a very powerful and 
general method of finding the system frequency response in any linear lumped-element 
electrical circuit. 
 
 
Example 6.5 
Find the frequency response of this system. 
 

 
Figure 6.9: Time-Domain Circuit 

The first step is to produce the s-domain circuit. 
 

 
Figure 6.10:  s-Domain Circuit 

The nodal equations read 

1 s

2 32 1 2

3 2 3

1) V  =   V

V   -  VV   -  V V
2)   +    +  =  0

s 6 s 4
V   -  V V

3)  +    =  0
4 5
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Solving these equations for V1(s), V2(s), and V3(s) in terms of the source voltage, V i(s): 

1 s

s
2 2

s
3 2

V(s) = V(s)
18 V (s)

V (s) = 
3s  + 2s +18

10 V (s)
V (s) = 

3s  + 2s +18

 

 From nodal analysis, we know that any circuit variable (any voltage or current) can 
be expressed in terms of node voltages.  To complete the process, express the output 
in terms of node voltages, and find the system transfer function by taking the ratio of this 
output to the input source. 
 For the first example, consider Vc(s) as the output.  Expressing Vc(s) in terms of 
node voltages, one obtains, Vc(s) = V2(s) 

( )

c
c 2

s

c c 2s j

V (s) 18
H (s) =  = 

V (s) 3s  + 2s +18
18

 = H (s)  = 
3 j  + 2j  +18ω ω ω→

H
 

 As another example, consider Ix(s) as the output 

( )

3x
x 2

s s

x x 2s j

V (s) 5I (s) 2
H (s) =  =  

V (s) V(s) 3s  + 2s +18
2

 = H (s)  = 
3 j  + 2j  +18ω ω ω→

H
 

 As one further example, suppose vs(t) = 10 cos (2t -10°) V, find the resulting vc(t) in 
steady state. 

( )
c

c( 2r/s) 2
s =2r/s

18
 = =  = 2.50 -33.7°

3 j2  + 2j2 +18
ω

ω

= ∠
V

H
V

 

 Where Vc and Vs are assumed to be RMS since this is an electrical systems 
problem.   

c c s

c

10
 =   2.50 -33.7° 10° V  = 17.7 -23.7° V

2
v (t) = 25 cos (2t - 23.7°)V

 ≅ ∠ ∠ ∠ 
 

V H V
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6.3  Bode Plots 
The system transfer function that relates an input to an output is a complex number.  In 
polar form, H = H∠θH.  Both the magnitude, H, and the phase, θH, are functions of 
frequency.   Showing the system frequency response requires two graphs: one to show 
how the magnitude varies with frequency and a second to show how the phase varies 
with frequency.   
 Bode plots are a widely used method of graphically displaying the frequency 
response of systems—the Bode magnitude plot giving magnitude information and the 
Bode phase plot giving phase information. 
 The Bode magnitude plot shows magnitude versus frequency.  The  magnitude is in 
decibels, and the frequency is logarithmically scaled and can be either angular 
frequency (radian/sec) or linear frequency (Hertz).  Decibels are defined as 

dB 10 10H  = 20 log  = 20 log HH  

Note that the magnitude, H, can be readily recovered from HdB since 
dBH

20H = 10 . 
 The Bode phase plot shows phase versus frequency.  The phase is typically in 
degrees, but could be given in radians.  Like the Bode magnitude plot, the frequency is 
logarithmically scaled in either radian/sec or in Hertz.   
 Recall that, in s-domain analysis, the input and output are related via the system 
transfer function.  To be specific, consider the input and output to both be voltages (of 
course, depending on the system, they could be temperatures, currents, forces…). 

Vo(s) = H(s) V i(s) 

 The sinusoidal steady-state response is given when ω→s  j .  When s is replaced 

by jω, that Vo, TF, and V i all become complex functions of ω.   

Vo(ω) = H  (ω)Vi(ω) 

 Think of these phasor quantities in polar form. 

( )
o o TF i i

o o o
TF o i

i i i

V  = H  V
V V

H  =  =  - 
V V

θ θ θ
θ

θ θ θ
θ

∠ ∠ ∠
∠

∠ ∠
∠
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Example 6.6 
 Suppose a system has the frequency response shown below.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 6.11: System Frequency Response using MATLAB 

 
Assuming the frequency response is the ratio between two voltages, what is the output 
voltage in sinusoidal steady-state if the input is V i = 10 cos(500t – 15°) volts? 
 Evaluating the Bode plots at ω = 500 r/s, we can estimate the system frequency 
response’s magnitude and phase. 

( )

( )

17.5
20

dB

H

H  = 500 r/s  17.5 dB     H = H   10  = 7.5

?  = 500 r/s  63°

ω

ω

≅ ⇒ ≅

≅
 

 Now, knowing H = H∠θH, we can find the output thought the relation o i =  V H V .  In 

polar form this relation is  

o o H i i

o i o H i

V ?  = H ? V ?
V  = H V         and           ?  = ?  + ?

∠ ∠ ∠
 

 Using RMS phasors for the voltages, 

( ) ( )o o o = V ?   7.5 63° 7.071 -15°V  = 53.03 48°V∠ ≅ ∠ ∠ ∠V  
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 From Vo, v(t) can readily be determined. 

ov (t) = 75 cos(500t + 48°) V  

Note:  1)  Peak valued phasors could have just as easily been used rather than RMS.  In fact, if we 
  were interested in vo(t), using RMS phasors merely serves to force us to divide and then 
  multiply by √2.  If one were only interested in vo(t), the amplitude of 75 V could have been 
  calculated more straightforwardly by just multiplying the input amplitude, 10 V, by the  
  magnitude of H at ω = 500 r/s.   
  The only reason for the convention of using RMS in frequency domain analysis is for the 

 power relation to be S = V I* (for V and I RMS phasors) rather than S = ½V I* (for V and I 
 peak phasors phasors).   

 
    2) In this case, the transfer function, H, has no units since it is the ratio of two voltages.  

 This need not be the case.  The units of H are the units of the output divided by the units of 
 the input.  For example, if the input were a current and the output a voltage, then the units 
 of H would be that of voltage divided by current—Ohms. 

 
 The system transfer function can also be used in determining the input if the output 
is known.  For example, suppose the output voltage of the system is measured in the 
laboratory to be 30 cos(80t) mV.  What input voltage would this imply?  Evaluating the 

Bode plots at ω = 80 r/s, 
7.5
20  10 27° = 2.37 27°≅ ∠ ∠H    

o
i

i

30 0° V
2   =  = 8.95 -27° V

2.37 27°
v(t)  8.95 2 cos (80t - 27°) V = 12.7 cos (80t - 27°) V

∠
≅ ∠

∠
≅

V
V

H  

 
 
Sketching Bode Plots 
Begin with the s-domain transfer function.  The transfer function can be written as a 
ratio of polynomials in s. 

z z-1
n n

p p-1
d d

a s  + b s  + 
H(s) = 

a s  + b s  + 
L
L

 

 The coefficients are just parameters of the system and so are real numbers.  For 
polynomials with real coefficients, their roots are either real or occur in complex 
conjugate pairs.  For this case, the transfer function can be manipulated in the form 
below.  This form is called Bode form. 

2
n z1

2
bz1 nz1 nz1

b 2
p1m

2
bp1 np1 np1

s s 2
s ( + 1) (  + s + 1)

H(s) = K
2s s

s ( + 1) (  + s + 1)

ζ
ω ω ω

ζ
ω ω ω

L L

L L
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 To obtain the system frequency response, s is replaced by jω.   When s is replace 
by jω, the output-input ratio becomes complex. 

( ) ( )

( )

2
n z1

2
bz1 nz1 nz1

b 2
m p1

2
bp1 np1 np1

jj 2
j ( + 1) (  + j  + 1)

 = K
2j s

j ( + 1) (  + j  + 1)

ωω ζ
ω ω

ω ω ω
ζω

ω ω
ω ω ω

H
L L

L L
 

Bode Magnitude Plots 

( )

( )

db 10

db 10 b 10
bz1

2

z1
2
nz1 nz1 bp1

2
p1

2
np1 np1

H  = 20 log  

j
H  =20 log K  20 n-m  log j  + 20 log  + 1  +  

j 2 j
+ 20 log   + j  + 1  +  - 20 log  + 1  - 

2s
- 20 log   + j  + 1  - 

ω
ω

ω

ω ζ ω
ω

ω ω ω

ζ
ω

ω ω

+

H

L

L L

L

 

 
Note:  Advantages to using the Bode magnitude plot 
1) By using logarithms, the task of graphing the magnitude plot can be broken into pieces.  
 The task is really one of learning how to graph each type of term shown  above. 
2) By using logarithms, a wide range of values for the magnitude of H can be displayed on 
 one graph.  A graph that displays a range of 100 dB for HdB corresponds to a range 105  for 
 H! 
3) By plotting frequency with a logarithmic scale, one plot can give the behavior of HdB 
 over a wide range of frequency.  

 
 When sketching Bode plots by hand, one usually starts with the straight-line Bode 
plot, which is an approximation to the actual curve.  Then one adjusts the straight-line 
Bode plot where easy and convenient.  If one is neat, Bode magnitude plots can often 
be plotted to within ±1dB.  For complicated curves or if higher accuracy is required, 
computer tools are used. 
 The figure below shows the straight-line plots for the individual Bode factors given 
on the previous page. 
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Figure 6.12:  Straight Line Approximations for Terms in Bode Magnitude Plots 

 
Note: 

1) For the terms shown in (a), (b), and (c), the straight line plot is no different than the exact 
 curve. 

2) For the term in (d), the actual curve is 3db above the straight-line plot the break frequency 
 (ω = ωb) and 1 dB above the straight -line plot at the octave points (ω = ½ωb and ω = 2ωb). 

3) For the term in (e), the actual curve is 3db below the straight-line plot the break frequency 
 (ω = ωb) and 1 dB below the straight-line plot at the octave points (ω = ½ωb and ω = 2ωb). 

4) For the term in (f), the actual curve passes through 20 log10 2ζ at the break frequency. 

5) For the term in (g), the actual curve passes through 20 log10 (2ζ)-1 at the break frequency. 

6) For the terms in (f) and (g), actual curves are plotted in Figure 6.13.  
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Figure 6.13 Bode magnitude plots for 2nd-order terms with various ζ 

. 
Example 6.7 
Give the Bode magnitude plot for the low-pass transfer function shown below. 

2000 20
H(s) =  = 

ss + 100  + 1
100

 

 The magnitude plots for the individual Bode factors are shown in Fig. 6.14. 
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Figure 6.14 

 Add factors together to produce the composite straight line plot and adjust at ½ωb (-
1db), ωb(-3dB), and 2ωb (-1dB).  The result is the actual curve. 

 
Figure 6.15 

 
 
Example 6.8 
Give the Bode magnitude plot for the bandpass transfer function shown below. 

4

2 4

2(10 )s 2s
H(s) = -  = -

s ss  + 1010s + 10  + 1  + 1
10 1000

  
  
  

 

 The magnitude plots for the individual Bode factors are shown in Fig. 6.16. 
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Figure 6.16 

 The composite straight-line plot shown in Fig. 6.17 is readily found by summing the 
individual terms.  A convenient point with which to start is at ω = 1 r/s, where all the 
terms are 0 dB except for the Bode constant term.  

 
Figure 6.17 

 

Bode Phase Plots 

The phase response can naturally be expressed as a sum of the phases of the 
individual Bode terms.  This is in contrast to the magnitude plot in which it appears only 
as a sum after taking the logarithm. 
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( ) ( )

( )

H

H b
bz1

2
z1

2
nz1 nz1 bp1

2
p1

2
np1 np1

 = H ?  

j
?  = K  n-m j  + + 1  +  

j 2 j
+   + j  + 1 +  - + 1  - 

2s
-    + j  + 1  - 

ω
ω

ω

ω ζ ω
ω

ω ω ω

ζ
ω

ω ω

∠

 
∠ + ∠ ∠ 

 
   

∠ ∠        
 

∠  
 

H

L

L L

L

 

 As with magnitude plots, when sketching Bode phase plots by hand, one usually 
starts with the straight-line plot, which is an approximation to  the actual curve.  Then 
one adjusts the straight-line Bode plot where easy and convenient.  For phase plots, the 
necessary adjustments are reasonably straightforward for 1st-order terms.   
 The adjustments for 2nd-order terms, particularly for terms with low damping (ζ<<1), 
are not as simple and are more significant.  See Fig. 6.19 for details.   
 As an alternative to using these figures, one can either calculate the actual value of 
phase at several frequencies within a decade of the break frequency to determine the 
degree (no pun intended) to which straight-line plot deviates from the actual curve , or, if 
computer tools are available, one would probably choose to use them.   
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Figure 6.18 Straight Line Approximations to Terms in Bode Phase Plots 

Note: 

1) For the terms shown in (a), (b), and (c), the straight line plot is no different than the exact 
 curve. 

2) Note the multiple possible values the phase of Kb < 0.  This is a particular instance of the 
 general property of the phase being multivalued (for example, -270° is the same as +90°).  
 By convention, the phase of H(s) is displayed as being between -180° and +180°.   For Kb 
 < 0, its phase can be taken as either +180° or -180° whichever is the one which meets the 
 convention. 

3) For the term in (d), the actual curve is 5.7° above the straight-line plot at ω = 0.1ωb and 
 5.7° below the straight -line plot at ω = 10ωb.  The straight-line plot crosses the actual curve 

 at ω = ωb.     
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4) For the term in (e), the actual curve is 5.7° below the straight-line plot at ω = 0.1ωb and 

 5.7° above the straight-line plot at ω = 10ωb. The straight-line plot crosses the actual curve 
 at ω = ωb.   

5) For the term in (f) and (g), the straight-line plot crosses the actual curve at ω = ωb.  The 
 degree of deviation away from the break frequency depends on ζ, the damping ratio, at 
 illustrated in Fig. 6.19. 

 

 
Figure 6.19  Bode phase plots for 2nd-order terms with various ζ 
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Example 6.9 
Give the Bode phase plot for the bandpass transfer function shown below. 

2000s 20s
H(s) =  = 

ss + 100  + 1
100

 
 
 

 

 The phase plots for the individual Bode factors are shown in Fig. 6.18. 

 
Figure 6.20 

Add factors together to produce the composite straight line plot and adjust at 0.1ωb (-
5.7°) and at 10ωb (5.7°).  The result is the actual curve. 

 
Figure 6.21 
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6.4   Fourier Series 
Periodic waveforms can be expressed in as a sum of sinusoids, a Fourier series.  
Consider a periodic waveform, x(t), with a period To.  The Fourier series for x(t) appears 
below. 

o n o n
n=1

o
o

x(t) = A  + A  cos (n t + )                n = 1, 2, 3,    

2
where  = 

T

ω θ

π
ω

∞

∑ K
 

Ao is the average value of x(t) and allows Fourier series for periodic signals that have a 
non-zero average values. 

o o

o

t  + T

o
o t

1
A  = x(t) dt

T ∫  

Once all the An and θn are determined, the spectral content of x(t) is known.  That is, a 
complete description of x(t) can be plotted in the frequency domain. 

 
Figure 6.18  Fourier Magnitude and Phase Plots 

 The signal spectra, together with a sys tem’s frequency response, can be used to 
quickly determine the sinusoidal steady-state response to a periodic input.   It should be 
reinforced at this point that, since many of these techniques rely upon superposition, 
they are valid only for linear systems.  
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Example 6.10 
 Suppose a system has a frequency response as shown below.   

 

Figure 6.19 System Frequency Response , (j )ωH  

 Recall a system’s frequency response gives the sinusoidal steady-state response of 
the system.  In particular, it shows, as a function of frequency, the ratio of output to input 
sinusoid amplitudes and the phase shift between output and input sinusoids. 
 In this example, the system response, magnitude and phase, is given via the Bode 
magnitude and phase plots shown in Fig. 6.19.  Consider a periodic signal, x(t), as an 
input into the system.  What is the output?    
 The first step is to find the signal’s Fourier series representation.  The signal’s 
spectra are shown in Fig. 6.20.   

 
Figure 6.20  Fourier Series for x(t) 
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As one can see from the figure, x(t), in terms of sinusoids is 

x(t) = -1 + 0.5 cos(10t + 45°) + 2 cos(20t + 135°) + cos(30t + 90°) + 1.5 cos(50t - 45°)  

 To find the output, y(t), one employs superposition and systematically applies the 
system response to the different frequency components of x(t).  Evaluating H(jω) at ω = 
10, 20, 30, and 50 r/s, one finds 

3
20

7.5
20

11
20

16
20

(j10)  10 43°  1.41 43° 

(j20)  10 60°  2.37 60°

(j30)  10 63°  3.55 63°

(j40)  10 60°  6.31 60°

≅ ∠ ≅ ∠

≅ ∠ ≅ ∠

≅ ∠ ≅ ∠

≅ ∠ ≅ ∠

H

H

H

H

 

 
 To evaluate the DC response, we must make some assumptions if, indeed, we only 
know the system response for the frequencies included in Fig. 20.  Let us assume that 
the DC response is 1∠0° which could be a reasonable extension from the available 
information in Fig. 6.21. 

y(t) = -1(1) + 0.5(1.41) cos(10t + 45° + 43°) + 2(2.37) cos(20t + 135° + 60°)
         + 1(3.55) cos(30t + 90° + 63°) + 1.5(6.31) cos(50t - 45° + 60°)

 

 Simplifying, one obtains 

y(t) = -1 + 0.705 cos(10t + 88°) + 4.74 cos(20t - 165°) 
         + 3.55 cos(30t + 153°) + 9.465 cos(50t + 15°)

 

 This is the procedures used in using the techniques of Fourier series in sinusoidal 
steady-state analysis.   
 There are two observations in particular to be added.  First the system response at 
w = 0, can only have a phase of 0°, 180°, or -180°.  That is, the DC response must 
either be positive or negative.  Second, the phase convention is to use phases between 
-180° and 180°.  For example, when the output phase at ω = 30 r/s was calculated to be 
195°, the equivalent phase of -165° is used. 
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Finding Fourier Series 
Given x(t), some means of finding the Fourier coefficients is needed.  Ao represents the 
average value of x(t).   

o o

o

t  + T

o
o t

1
A  = x(t) dt

T ∫  

 The other Fourier coefficients, An and θn for n = 1,2,3,…, can readily be determined.  
Using Euler’s Identity, 

o n o n

o o

o

j(n t + ) -j(n t + )n
o n o n o

n=1 i=1

jn t -jn tn n
o n n

n = 1

jn t
o n

n = -
n  0

A
x(t) = A  + A  cos (n t + ) = A   + [e  + e ]

2

A A
      = A   +  e  + -  e  

2 2

      = A   +  e  

      = 

ω θ ω θ

ω ω

ω

ω θ

θ θ

∞ ∞

∞

∞

∞
≠

    ∠ ∠    
    

∑ ∑

∑

∑ X

ojn t
n

n = -

 e      ω
∞

∞
∑ X

 

 This form is called the complex Fourier series.  The advantage to the complex 
Fourier series is that the Xn can be readily found from  

o o

o

o

t  + T
-jn t

n n n n
o t

1
 = x(t) e ,   where  = X

T
ω θ∠∫X X  

 When one studies the development above, it is clear that n -n = ∗X X .  It is also clear 

that Xo is the average value of x(t) and that Xo = Ao.  That is, Xo is either a positive or a 
negative real number. 
 Once the Xn have been determined, the An and θn are known by inspection. 

o o

n n

n n

A  = X    

A  = 2X    n = 1, 2, 3, 

  =       n = 1, 2, 3, θ θ

K

K

 

Example 6.11 
Find the Fourier series for the signal shown below. 

 
Figure 6.21 
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 Since the waveform is periodic with a period of To = 2s, it can be represented as a 
Fourier Series. 

o n o n o n n
n=1 n=1

o
o

x(t) = A  + A  cos (n t + ) =   A  +   A  cos (n t + )             n = 1, 2, 3,    

2 2
where  =  =  =  r/s

T 2 s

ω θ π θ

π π
ω π

∞ ∞

∑ ∑ K
 

where    
o o

o

t  + T

o o
o t

1
A = X  = x(t) dt    n = 0

T ∫  

   
o o

o

o

t  + T
-jn tn

n n
o t

A 1
 =  = x(t) e  n 0

2 T
ωθ∠ ≠∫X  

 Since x(t) is periodic (after all, it must be to have a Fourier series), evaluating the 
above integrals over any period will give identical results.  To evaluate the integrals, we 
might as well choose the most convenient period which, in this case is for 0 < t < 2s.  In 
this range, x(t) is described as 

x(t) = 5t  V for 0 < t < 2 s  

 The average value can be found first 

t = 2s2
2

o
t = 00

1 1 5 1 5
A  = 5t dt = t  = 4 V = 5 V

2 2 2 2 2∫  

 The An and θn come next 
2s

-jn tn
n n

t = 0

A 1
 =  = 5t e  n = 1, 2, 3, 

2 2
πθ∠ ∫X K 

( )
( )

22s 2
-jn t -jn t -jn tn

n
t = 0 00

-jn2 -jn2 -jn2
2

j j(  - n2 ) j-jn22 2 2

A 5 5 1 1
 = t e  = t e  -  e dt

2 2 2 -jn -jn

5 1 5
= j e  + e  - 1  = j e

n nn

5 5 5
= e e  = e  = e

n n n

π π π

π π π

π π πππ

θ
π π

π ππ

π π π

   
∠    

   
∫ ∫

 

n

n

10
A  =   n = 1, 2, 3, 

n

 = 
2

π
π

θ

K
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  The series is shown below. 

10 5 10 5
x(t) = 5 + cos( t + 90°) + cos(2 t + 90°) + cos(3 t + 90°) + cos(4 t + 90°) + 

3 2
π π π π

π π π π
L

10 5 10 5
x(t) = 5 - sin( t) - sin(2 t) - sin(3 t) - sin(4 t) + 

3 2
π π π π

π π π π
L  

 
 
 
6.5 Summary 
Frequency domain analysis is important for any engineer to know.  It is not just an 
electrically engineering tool.  Mechanical engineers, physicists, biomedical engineers, 
chemical engineers, mathematicians civil engineers, and computer engineers all find 
use for frequency domain analysis.  Frequency domain analysis is based on phasor 
analysis.  To truly understand frequency domain analysis, one should first become 
familiar with phasor techniques.   
 It is important to bear in mind that frequency domain techniques are designed to 
find the sinusoidal steady-state response of systems.  The natural response is not found 
when one uses frequency domain analysis.  The range of application for frequency 
domain analysis is greatly extended using Fourier techniques.   Using Fourier series, for 
example, allows the steady-state response of periodic inputs, not just sinusoidal inputs, 
to be found.  (Using the more advanced techiques of Fourier Transforms, one can find 
the response even to non-periodic inputs.)   It is important to realize that many Fourier 
techniques depend upon linearity and are not applicable to nonlinear systems.  For 
instance, design example 6.7.1 below depends fundamentally on the linearity of the 
system.  This type of analysis would not be valid if the system were nonlinear. 
 Once a fundamental understanding of phasor technique is achieved, many find s-
domain analysis a convenient means of reducing the amount of complex arithmetic 
when working the frequency domain analysis.  The general outline of the procedure, 
starting from the differential equations which govern system behavoir in the time 
domain, is to obtain the Laplace transform of the system (in frequency domain analysis  
the initial conditions are taken as zero) and then substitute jω for s to obtain the complex 
frequency domain relation between input and output.   
 Fourier Series provide a method of splitting periodic signals into there sinusoidal 
components.  It is most useful to think of periodic signals as being described by their 
cosine series since this form of the series provides one with the signals spectra—that is, 
with the magnitudes and phases of its sinusoidal components.  This form, with its 
associated spectra, is readily used in conjunction with a systems frequency response, 
often in terms of its Bode magnitude and phase plots. 
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6.6 Computer Tools and Other Resources 
MATLAB is a convenient tool to generate Bode plots.  Consider the transfer function 
shown below. 

2

s + 100
H(s) = 

s  + 40s + 10000
 

The MATLAB code for the above transfer function is 
 
clear; 
s=tf('s'); 
TF=(s+100)/(s^2 + 40*s + 10000); 
bode(TF) 
grid 

 
A screen shot of the plot is shown  
to the right in Fig. 6.22a.  By copying  
and pasting, one can obtain the figure 
shown in Fig. 6.22b.  

Figure 6.22a 
 
 

 

 

 

 

 

 

 

 

 

Figure 6.22b 
 
MAPLE is a convenient tool to calculate Fourier series.  Consider the time-domain 
response of a second-order system to a train of periodic pulses as shown in Fig. 6.23. 
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Figure 6.23 

 
 
The required MAPLE code is shown below. 
 
Pulse train amplitude = 3 with a period of 10. 
> with(plots):T:=10: 
> w0:=2*Pi/T: 
 
Define the function. 
> g := piecewise(t<5,3,t<10,0 ): 
> plot(g,t=0..T); 
 

 
Calculate the Fourier Coefficients 
> Xn:=n->1/T*int(g*exp(-I*2*Pi*n*t/T),t=0..T): 
> X_mag0:=abs(Xn(0)): 
> X_mag:=n->2*abs(Xn(n)): 
> X_angle:=n->argument(Xn(n)): 
 
Converting phase into degrees 
> X_degrees:=n->180*argument(Xn(n))/Pi :   
 
Defining the Fourier expansion 
> f:=m->X_mag0+sum(X_mag(k)*cos(k*w0*t+X_angle(k)),k=1..m): 
 
Evaluating to n=5.  Only sine terms appear (or cosines with ±90° phases) due to the fact that g(t) is odd 
about its average value.  Also notice that the even harmonics are missing due to odd half-wave 
symmetry.    
 
> evalf(f(5),5); 

1.5000+1.9099*sin(.62832*t)+.63662*sin(1.8850*t)+.38197*sin(3.1416*t) 
 
Plot input and output 
> plot([g,f(10)],t=0..2*T,color=[blue,red]); 
 

 
 
Plot magnitude and phase of the Fourier Coefficients 
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> mag_points:=evalf({seq([i,X_mag( i )], i = 1..10 )}): 
> plot(mag_points,style=point,symbol=circle,title="magnitude spectra"); 
 

 
 
> phase_points:=evalf({seq([i,X_degrees( i )], i = 1..10 )}): 
> plot(phase_points,style=point,symbol=circle,title="Phase spectra"); 
 

 
 
Suppose g(t) is used as an input to a system defined by transfer function, TF below. 
> TF:=1/(s^2+s+100): 
 
Find the magnitude and phase after substituting in I*omega (I = j = √-1) 
> magTF:=omega->abs(subs(s=I*omega,TF)): 
> angTF:=omega->argument(subs(s=I*omega,TF)): 
 
Now find the time response 
> y:=m->X_mag0*magTF(0)+sum(X_mag(k)*magTF(k*w0)*cos(k*w0*t+X_angle(k)+angTF(k*w0)),k=1..m): 
> evalf(y(5),5): 
 
Plot the result 
> plot(y(25),t=0..2*T); 
 

 
 
 
6.7 Design Examples 
 The list of applications where frequency-domain analysis is used is nearly 
inexhaustible.  Analyzing the loading of bridges, electronic circuit design, economic 
analysis, printed circuit board layout, vibration analysis, and optical communications is a 
small sample of the applications.  This lists hints at the wide variety of applications in 
which frequency-domain analysis is used.  Engineers and scientists in a wide variety of 
disciplines use frequency-domain techniques to complement time-domain techniques 
when analyzing dynamical systems.   
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6.7.1.  Design Example 1:  Active Filters 
Filter design is one area in which frequency-domain analysis is particularly useful and 
one which is particularly useful in instrumentation systems.  Filters are frequency 
selective circuits.  Think of an equalizer on an audio system.  The equalizer is a series 
of filters that can adjust the strength of various frequency bands in order to make the 
music sound better.   
 Filters can be separated into two categories.  Passive filters are filters which used 
only passive components such a resistors, inductors, or capacitors.  In contrast, active 
filters are ones which use active components such as operational amplifiers.  Active 
filters are widely used in instrumentation and measurement.  Active filters have the 
advantage in that they can be designed to both amplify and filter.   
 Looking at the filter as an input/output relation, filters are classified by how the input 
and output magnitudes are related at different frequencies.  In this example, three types 
will be considered:  low pass, high pass, and bandpass. 
 
Low Pass 
 Low pass filters pass low frequency signals from input to output, but attenuate 
higher frequency signals.  The active low pass filter is able to amplify low frequency 
signals while, at the same time, attenuating higher frequency signals . 
 In this design example, the TL072 dual op-amp (from SGS-Thomson 
Microelectronics) will be used for illustration, and pin-outs will correspond to the TL072. 

 
Figure 6.24  Active low pass filter 

 
This op-amp is connected in the inverting configuration, and the  transfer function is: 



chapter 6 

o f f

in in in f

V Z R 1
 = -  = -

V Z R sRC + 1
 

When the transfer function is expressed in this form, the low frequency gain and break 
frequency can be clearly seen. 

b

o f
b

f in in<

V R1
 =  

R C V R
ω ω

ω ≅  

The Bode magnitude plot of the frequency response is 

 
Figure 6.25 

 
High pass 
 High pass filters pass high frequency signals from input to output, but attenuate 
higher frequency signals.  The active high pass filter is able to amplify high frequency 
signals while, at the same time, attenuating lower frequency ones. 

 
Figure 6.26  Active high pass filter 
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This op-amp is connected in the inverting configuration, and the transfer function is: 

o f f

in in in

V Z sR C
 = -  = -

V Z sR C + 1
 

When the transfer function is expressed in this form, the high frequency gain and break 
frequency can be clearly seen. 

o f
b

in in ins

V R1
 =  

R C V R
ω

→∞

≅  

The Bode magnitude plot of the frequency response is 

 
Figure 6.27 

Bandpass 
Bandpass filters are useful when one wishes to pass a band of frequencies while, at the 
same time, attenuating both lower and higher frequencies.  Active bandpass filters are 
able to amplify signals within a band of frequencies while, at the same time, attenuating 
lower or higher frequencies (frequencies outside the “pass band”). 
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Figure 6.28  Active bandpass filter 

General analysis 

( )
( ) ( )

f

f f0 f f in
2

in ins in f in f in f f in in

in

R
sR C  + 1V Z sR C

 = -  = -  = - 
sR C  + 1V Z s R R C C  + s R C  + R C  + 1

sC

 

 The resonant frequency occurs within the pass band . 

n
f in f in

1
 = 

R R C C
ω  

  The gain at this frequency is  

0 f in
n

s f f in in

V R C
 = , s = j  = j

V R C  + R C
ω ω  

 

 The element values for the bandpass filter can be chosen so that the bandpass filter 
can be seen as acting as a highpass filter for low frequencies, as an amplifier for pass 
band frequencies and as a low pass filter for high frequencies.    

 

Note: 
1. At low frequencies, the impedance of Cf  is much larger than Rf .  Replacing Cf  by an open 
 circuit, one can see the filter operates essentially as a high pass filter. 

2. In the pass band, 
in in f f

1 1
<  < 

R C R C
ω , the impedance of Cf  is still much larger than Rf  plus 

 the impedance of Cin is much smaller than Rin.  Replacing Cf  by an open circuit and Cin by 
 a short circuit, one can see the filter functions essentially as an amplifier. 
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3. At high frequencies, the impedance of Cin remains much smaller than Rin, while the 
 impedance of  Cf  can no longer be considered much larger than Rf .  Replacing Cin by a 
 short circuit, one can see the filter functions essentially as a low pass filter. 

  
Showing filter behavior via a Bode plot, 

 
Figure 6.29  Bandpass filter with RinCin >> RfCf 

 Note that the advantages in the bandpass filter designed as described above is that 
the gain can be made relatively constant over a wide range of frequencies while the 
lower and upper break frequencies can be readily adjusted independently of one 
another, so long as the condition R inCin >> RfCf is not violated. 
  
6.7.2.  Design Example 2:  Dynamic Measurement 
A thermocouple is a temperature transducer formed when two dissimilar metals  are 
joined together.  In this design example, a type N thermocouple (formed by Cr/Si/Ni and 

Si/Mg/Ni alloys) is used to measure the temperature of an exhaust gas which varies 
sinusoidally with time. 
 The thermocouple can be modeled as a first order system.   How does the 
thermocouple’s temperature varies as a function of time? 

tc
tc gas

tc tc gas

dT
time-domain dynamical equation  + T  = T

dt
frequency-domain (phasor) equation j  +  =   

τ

ωτT T T
 

 From the frequency-domain equation, the frequency response of the system can be 
found.  Note the input to the thermocouple is the gas temperature and the response (the 
output) is the thermocouple temperature. 
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tc

gas

1
 = 

j  + 1ωτ
T
T

 

 Note the frequency response has the form of a low-pass filter with a gain of one.  
This reflects the physics of the situation.  If the gas temperature were a constant 
temperature (low frequency) the thermocouple would become equal to the gas 
temperature.  The thermocouple temperature would not grow larger that the gas 
temperature, therefore the gain is one as is typical for situations involving heat transfer.  
If the temperature of the gas changed varied sinusoidally at a high frequency, the 
thermal mass of the thermocouple would prevent the thermocouple temperature from 
following the variations of gas temperature, but rather would remain at the average 
temperature. 
 If the temperature of the gas varied sinusoidally, sufficiently slowly so that the 
thermocouple temperature responds to the variations but too quickly for the 
thermocouple temperature to track it precisely.  In this event the engineer or scientist 
would need to know about frequency response. 
 Consider that a given thermocouple with a time constant of 5 seconds is used to 
measure a gas temperature which varies as 

Tgas = [300  +  50 cos(0.1t)]   °C 

tc

gas

1 1
 =  = 

j  + 1 j 5 + 1ωτ ω
T
T

 

 Superposition must be used, and the average temperature of 300 °C 
(corresponding to an input with ω = 0) considered separately from the variation at ω = 
0.1 r/s. 

[ ]
[ ]

tc

tc

at  = 0,   = ( =0) 300 0 °C = 300 °C

at  = 0,   = ( =0.1) 50 0 °C  44.7 -26.6 °C 

ω ω

ω ω

∠

∠ ≅ ∠

T H

T H
 

 The thermocouple temperature varies with time as  

Ttc(t) = [300 + 44.7 cos (0.1t – 26.6°)]  °C 

 As can be seen clearly, the thermocouple would indicate lower temperature swings 
than those actually present in the gas temperature and changes in the thermocouple 
temperature would lag the gas temperature by about 0.74 seconds. 

 
 


