ECE 207 Elements of Electrical Engineering II

Final Exam

Name_____

Campus Mail_____

For full credit: 1)work neatly, 2)give appropriate units on answers, and 3)clearly show all your work.

Laptops and two 2-sided $8\frac{1}{2}x11$ " sheets permitted.

1 hp = 746 W, $\mu_o = 4\pi (10^{-7})$ H/m

question	possible points	awarded points
1	25	
2	25	
3	25	
4	25	
5	25	
6	25	
7	25	
8	25	
Total	200	

- 1. A trace from an oscilloscope is shown below. The voltage channel was set on 10 V/cm, while the current channel was set on 2 A/cm. The time-base was set at 1 msec/cm. Determine:
 - i) The phasors for voltage and current (in RMS).
 - ii) Complex power associated with the circuit.
 - iii) Power factor associated with the circuit (be sure to indicate lag or lead).
 - iv) Frequency (Hz) of the supply.
 - v) Impedance of the circuit (assume elements are in series).

Oscilloscope Trace of Voltage & Current

2. A 1φ transformer is rated 500 kVA, 7200 V : 600 V and has the following approximate equivalent circuit parameters referred to the high voltage side:

$$R=2.5\,\Omega, \qquad \qquad X=5\,\Omega, \qquad \qquad R_c=4000\,\Omega, \qquad \qquad X_m=3000\,\Omega$$

Determine the Voltage Regulation and Efficiency when rated load is supplied at 600V and 0.8 **leading** pf.

- 3. A three-phase, 60 Hz, Y-connected source is connected to a Y-connected load through a threephase feeder. The three-phase load draws 900 kW at a 0.8 lagging power factor. The feeder has an impedance of 0.5 + j1.5 O/phase. The voltage at the load is 13.8 kV. Determine:
 - i) <u>Phase a</u> line and phase voltages at the load (use V_{an} at the load as reference)
 - ii) <u>Phase a</u> line and phase currents (use V_{an} at the load as reference)
 - iii) Three-phase average power delivered by the source
 - iv) Capacitance (µF/phase) of a capacitor to improve the power factor to unity at the load
 - v) The magnitude of new line current after the power factor correction

- 4. Mark *each* true/false question either **T** OR **F** (2 pts each)
- ____ Given a circuit with 7 nodes and 2 voltage sources, the number of KCL equations necessary when performing nodal analysis will be 5.

____ Given two loads, both with lagging power factors: the one with the lowest pf requires a pf correction capacitor with a larger value in Farads to correct the power factor to 1.

In a balanced 3ϕ system, if $\tilde{V}_{ab} = 120\angle 30^{\circ}$ V and $\tilde{I}_{a} = 4\angle 0^{\circ}$ A, then the pf=1 and $P_{3\phi} = \sqrt{3}(120)(4)$ W.

_____ Given two induction motors, both with the same rated speeds and efficiencies: Motor 1 is rated 480V, 10A. Motor 2 is rated 240V, 20A. Motor 1 and motor 2 have the same rated output power and the same rated torques.

- ____ The rated speed of an induction motor is 3480 rpm. Assuming a 60Hz power system, this motor must be a 2-pole motor and if connected to a load requiring ¼ its rated torque, the speed of the motor-load combination will be 3510 rpm.
- A low-pass filter with $w_b = 1000$ r/s and a DC gain of 10 has a transfer function of $\frac{10}{s + 1000}$ and its time-domain response to an input of 1u(t) V is $10(1 e^{-\frac{1}{2}})$ V.

- 5. i) When a given load is placed on a **four-active arm** cantilever load cell, ε =0.0002. S=2, V_s=15V, R₁, R₂, R₃, and R₄ are 350 Ω strain gages. Use R_a = 1 k Ω
 - a. What is V_b ?
 - b. Specify the amplifier below to give an output of $V_0=60$ mV for these conditions.

ii) A filtering stage is needed. Design an active *lowpass* filtering stage to filter V₀ with ω_b =1000 r/s and a gain of 20dB. Use C = 0.01mF Neatly add this stage to the above schematic.

iii) Neatly sketch the straight line Bode magnitude plot for $|V_{out-bp filter}/V_b|$

6. The system below consists of a separately excited DC motor-generator set. The field windings are

not shown. Determine:

- i) the current at the motor input, I_{am}
- ii) the power delivered to R_{load}
- iii) the load voltage $V_{\rm g}$

- iv) Suppose the motor field current was increased (generator field current and R_{load} remains constant). Explain (in words) what affect would this have on each of the following:
 - the shaft speed, n_m
 - the power delivered to R_{load}
 - the shaft torque, T_m
 - the motor input current, I_{am}

- 7. For the shown DC motor speed control system, determine:
 - i) The ideal closed-loop gain
 - ii) The exact closed-loop gain in polynomial form
 - iii) Compare the steady-state values of parts i) and ii) by calculating the % Error (use the ideal value as your reference)

- 8. Mark *each* true/false question either **T** OR **F** (2 pts each)
 - ___ The advantage of RTDs is that they can reliably measure higher temperatures than any type of thermocouple.

Given identical inputs, the steady-state speed of the motor in the left system will be lower than that of the right.

____ If the motor/load transfer function in the system on the left were changed to 100/(0.2s+1), the steady-state speed of its motor/load would be doubled for a given V_c. Why or why not? _____

ANSWERS

- 1. Note the voltage and current waveforms are given in cm with conversion factors.
 - i) $V = 35.36 \angle 0^{\circ} \text{ V}, I = 7.07 \angle 44.64^{\circ} \text{ A}, \text{ ii})$ $S = 250 \angle -44.64^{\circ} \text{ VA}, \text{ iii})$ 0.7 lead,
 - iv) 100 Hz, v) $Z = (3.56 j3.51) \Omega$, [R = 3.56 Ω , C = 453.4 μ F]
- 2. Note that, for leading pf, %VR can be negative. % VR = -0.825%, % η =94.2%
- 3. i) That is, find V_{ab} and $V_{an'}$ at the load.
 - **V**_{an'} = 7967.4∠0°V, **V**_{ab} = 13800∠30°V
 - ii) 47.1∠-36.9° A
 - iii) $P_{3\phi} = 903.3 \text{ KW}$
 - iv) 9.4 μF
 - v) 37.7 A
- 4. F, T, F, T, T, T, T, F, F
- 5. 6 mV, 11.75 kΩ
 - ii) $R_{in} = 10 \text{ k}\Omega$, $R_f = 100 \text{ k}\Omega$
 - iii) LP, break frequency at 1000 r/s, LF gain is 40 dB (20 dB from diff. amp and 20 dB from LP filter)
- 6. Note motor and generator efficiencies
 - i) 100 A
 - ii) 65 kW
 - iii) 1100 V
 - iv) note that E_{am} will remain relatively constant
 - n_m decreases which will cause generator voltage to drop
 - power to the load will therefore drop as approximately the square of the generator voltage
 - T_g = T_m will be reduced because of the lower generator current
 - Since T_m is reduced even as ϕ_m is increased, I_{am} must reduce approximately quadratically
- 7. i) 200 rpm/V

- ii) $\frac{10^4 s^2 + 0.2005 s + 1001}{10^1 s^2 + 0.2005 s + 1001}$
- 8. F, T, F, T, F, F, T, F, F