ECE 207 Elements of Electrical Engineering II

Final Exam

Name \qquad

Campus Mail \qquad

For full credit: 1)work neatly, 2)give appropriate units on answers, and 3)clearly show all your work.

Laptops and two 2-sided $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ sheets permitted.

$$
1 \mathrm{hp}=746 \mathrm{~W}, \mu_{o}=4 \pi\left(10^{-7}\right) \mathrm{H} / \mathrm{m}
$$

question	possible points	awarded points
1	25	
2	25	
3	25	
4	25	
5	25	
6	25	
7	25	
8	25	
Total	200	

1. A trace from an oscilloscope is shown below. The voltage channel was set on $10 \mathrm{~V} / \mathrm{cm}$, while the current channel was set on $2 \mathrm{~A} / \mathrm{cm}$. The time-base was set at $1 \mathrm{msec} / \mathrm{cm}$. Determine:
i) The phasors for voltage and current (in RMS).
ii) Complex power associated with the circuit.
iii) Power factor associated with the circuit (be sure to indicate lag or lead).
iv) Frequency (Hz) of the supply.
v) Impedance of the circuit (assume elements are in series).

Oscilloscope Trace of Voltage \& Current

2. A 1ϕ transformer is rated $500 \mathrm{kVA}, 7200 \mathrm{~V}: 600 \mathrm{~V}$ and has the following approximate equivalent circuit parameters referred to the high voltage side:

$$
\mathrm{R}=2.5 \Omega, \quad \mathrm{X}=5 \Omega, \quad \mathrm{R}_{\mathrm{c}}=4000 \Omega, \quad \mathrm{X}_{\mathrm{m}}=3000 \Omega
$$

Determine the Voltage Regulation and Efficiency when rated load is supplied at 600V and 0.8 leading pf.
3. A three-phase, $60 \mathrm{~Hz}, \mathrm{Y}$-connected source is connected to a Y -connected load through a threephase feeder. The three-phase load draws 900 kW at a 0.8 lagging power factor. The feeder has an impedance of $0.5+j 1.5 \mathrm{O} /$ phase. The voltage at the load is 13.8 kV . Determine:
i) Phase a line and phase voltages at the load (use $\mathbf{V}_{\text {an }}$ at the load as reference)
ii) Phase a line and phase currents (use V_{an} at the load as reference)
iii) Three-phase average power delivered by the source
iv) Capacitance ($\mu \mathrm{F} /$ phase) of a capacitor to improve the power factor to unity at the load
v) The magnitude of new line current after the power factor correction
4. Mark each true/false question either \mathbf{T} ORF (2 pts each)
\qquad Given a circuit with 7 nodes and 2 voltage sources, the number of KCL equations necessary when performing nodal analysis will be 5 .

__ The nodal equations are $\frac{\tilde{\mathrm{V}}_{1}}{4 \Omega}+\frac{\tilde{\mathrm{V}}_{2}}{6 \Omega}+\frac{\tilde{\mathrm{V}}_{2}}{j 12 \Omega}=2 \angle 15^{\circ} \mathrm{A}$ and $\tilde{\mathrm{V}}_{1}-\tilde{\mathrm{V}}_{2}=6 \angle 0^{\circ} \mathrm{V}$
- The average power delivered by the voltage source is $\operatorname{Re}\left[\left(6 \angle 0^{\circ} \mathrm{V}\right)\left(\frac{\tilde{\mathrm{V}}{1}}{4 \Omega}-2 \angle 15^{\circ} \mathrm{A}\right)\right]$
Why or why not? \qquad

\qquad $R=2 \Omega$ and $L=2 / 377 \mathrm{H}$.
The power absorbed is $\mathrm{P}=3.6 \mathrm{~kW}$ and the power factor is $\frac{1}{\sqrt{2}}$ lagging.
Why or why not?

Given two loads, both with lagging power factors: the one with the lowest pf requires a pf correction capacitor with a larger value in Farads to correct the power factor to 1.
\qquad In a balanced 3ϕ system, if $\tilde{V}_{a b}=120 \angle 30^{\circ} \mathrm{V}$ and $\tilde{I}_{a}=4 \angle 0^{\circ} \mathrm{A}$, then the $\mathrm{pf}=1$ and $\mathrm{P}_{3 \phi}=\sqrt{3}(120)(4) \mathrm{W}$.
Given two induction motors, both with the same rated speeds and efficiencies: Motor 1 is rated $480 \mathrm{~V}, 10 \mathrm{~A}$. Motor 2 is rated $240 \mathrm{~V}, 20 \mathrm{~A}$. Motor 1 and motor 2 have the same rated output power and the same rated torques.
\qquad The rated speed of an induction motor is 3480 rpm . Assuming a 60 Hz power system, this motor must be a 2 -pole motor and if connected to a load requiring $1 / 4$ its rated torque, the speed of the motor-load combination will be 3510 rpm .
__ A low-pass filter with $w_{b}=1000 \mathrm{r} / \mathrm{s}$ and a DC gain of 10 has a transfer function of $\frac{10}{\mathrm{~s}+1000}$ and its time-domain response to an input of $1 u(t) V$ is $10\left(1-e^{-t / 1000}\right) V$.
5. i) When a given load is placed on a four-active arm cantilever load cell, $\varepsilon=0.0002$. $S=2, V_{s}=15 \mathrm{~V}, R_{1}, R_{2}, R_{3}$, and R_{4} are 350Ω strain gages. Use $R_{a}=1 \mathrm{k} \Omega$
a. What is V_{b} ?
b. Specify the amplifier below to give an output of $\mathrm{V}_{0}=60 \mathrm{mV}$ for these conditions.

ii) A filtering stage is needed. Design an active lowpass filtering stage to filter V_{0} with $\omega_{b}=1000$ r / s and a gain of 20 dB . Use $\mathbf{C}=0.01 \mu \mathrm{~F}$ Neatly add this stage to the above schematic.
iii) Neatly sketch the straight line Bode magnitude plot for $\left|\mathrm{V}_{\text {out-bp filter }}\right| \mathrm{V}_{\mathrm{b}} \mid$

6. The system below consists of a separately excited DC motor-generator set. The field windings are
not shown. Determine:
i) the current at the motor input, lam
ii) the power delivered to $\mathrm{R}_{\text {load }}$
iii) the load voltage V_{g}

iv) Suppose the motor field current was increased (generator field current and $\mathrm{R}_{\mathrm{load}}$ remains constant). Explain (in words) what affect would this have on each of the following:

- the shaft speed, n_{m}
- the power delivered to $\mathrm{R}_{\text {Ioad }}$
- the shaft torque, T_{m}
- the motor input current, lam

7. For the shown DC motor speed control system, determine:
i) The ideal closed-loop gain
ii) The exact closed-loop gain in polynomial form
iii) Compare the steady-state values of parts i) and ii) by calculating the \% Error (use the ideal value as your reference)

8. Mark each true/false question either \mathbf{T} ORF (2 pts each)
__ The advantage of RTDs is that they can reliably measure higher temperatures than any type of thermocouple.

used fo- the next Iwo q-est गns

NUMERIC $\eta_{\mathrm{m}}=$ \qquad and $\eta_{g}=$ \qquad .

These efficiencies are not possible.
Why or why not? \qquad
Time and frequency domain. Lowering the break frequency of a low-pass filter will allow it, in its time-domain response to a step function input, to reach its steady-state value more quickly.

The two transformers are identical apart from different R_{c}. The transformer on the left will be more efficient.
Why or why not?

The unit step-response for a $2^{\text {nd }}-$ order system is $40-e^{-100.5 t}(\cos 1000 t+0.1005 \sin 1000 t)$. If ζ where increased (same value of ω_{n} and still underdamped), the frequency of oscillations in the transient response would be lower and the transient response would die out more quickly.

Given identical inputs, the steady-state speed of the motor in the left system will be lower than that of the right.

If the motor/load transfer function in the system on the left were changed to $100 /(0.2 s+1)$, the steady-state speed of its motor/load would be doubled for a given V_{c}.
Why or why not?

ANSWERS

1. Note the voltage and current waveforms are given in cm with conversion factors.
i) $\boldsymbol{V}=35.36 \angle 0^{\circ} \mathrm{V}, \boldsymbol{I}=7.07 \angle 44.64^{\circ} \mathrm{A}, \quad$ ii) $\boldsymbol{S}=250 \angle-44.64^{\circ} \mathrm{VA}, \quad$ iii) 0.7 lead,
iv) $100 \mathrm{~Hz}, \quad$ v) $\quad \boldsymbol{Z}=(3.56-\mathrm{j} 3.51) \Omega,[\mathrm{R}=3.56 \Omega, \mathrm{C}=453.4 \mu \mathrm{~F}]$
2. Note that, for leading pf, \%VR can be negative.
$\%$ VR $=-0.825 \%$, $\% \eta=94.2 \%$
3. i) That is, find $\boldsymbol{V}_{\mathrm{ab}}$ and $\boldsymbol{V}_{\mathrm{an}}$ at the load.
$V_{\mathrm{ar}}{ }^{\prime}=7967.4 \angle 0^{\circ} \mathrm{V}, V_{\mathrm{ab}}=13800 \angle 30^{\circ} \mathrm{V}$
ii) $\quad 47.1 \angle-36.9^{\circ} \mathrm{A}$
iii) $\mathrm{P}_{3 \emptyset}=903.3 \mathrm{KW}$
iv) $9.4 \mu \mathrm{~F}$
v) $\quad 37.7 \mathrm{~A}$
4. F, T, F, T, T, T, T, T, F, F
5. $6 \mathrm{mV}, 11.75 \mathrm{k} \Omega$
ii) $R_{\text {in }}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}=100 \mathrm{k} \Omega$
iii) LP, break frequency at $1000 \mathrm{r} / \mathrm{s}$, LF gain is 40 dB (20 dB from diff. amp and 20 dB from LP filter)
6. Note motor and generator efficiencies
i) 100 A
ii) 65 kW
iii) 1100 V
iv) note that $E_{a m}$ will remain relatively constant

- n_{m} decreases which will cause generator voltage to drop
- power to the load will therefore drop as approximately the square of the generator voltage
- $T_{g}=T_{m}$ will be reduced because of the lower generator current
- Since T_{m} is reduced even as ϕ_{m} is increased, $l_{a m}$ must reduce approximately quadratically

7. i) $200 \mathrm{rpm} / \mathrm{V}$
ii) $\frac{200000}{10^{-4} \mathrm{~s}^{2}+0.2005 \mathrm{~s}+1001}$
iii) -0.1%
8. F, T, F, T, F, F, T, F, F
