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Ørsted’s experiment 
Since the 1700’s, perhaps even earlier, suspicions existed that there was some connection 
between electricity and magnetism.  These suspicions were fed by observations of lightning.   
 

In 1735, a report was published discussing a curious result of lightning striking a house.  The 
bolt traveled through a box containing a number of knives and forks.  Subsequently, it was 
found that many of the knives were magnetized and could pick up nails.  This report led Ben 
Franklin to conduct his well known experiment in 1751 on the magnetization of needles with the 
discharge of Leyden jars.* 

 
During a course on “Electricity, Galvanism, and Magnetism,”, Hans Christian Ørsted, noticed 
that the compass needle was deflected in the presence of an electric current.  Surprised and not 
understanding the effect, Ørsted kept mum during the experiment and published his 
observations in July, 1820.  Ørsted was not the first to observe and publish the effect.  In 1802, 
Gian Domenico Romagnosi published an article in an Italian newspaper regarding the effect of 
an electric current upon a compass needle.** 
 
Biot-Savart law  
In September of 1820, Ørsted’s observations were presented at a meeting of the French 
Academy, and several of the members repeated and extended his experiments.*  Two of these, 
Jean-Baptiste Biot and Félix Savart, published what is now known as the Biot-Savart law.   
 
* A History of the Theories of Aether & Electricity by Edmund Whittaker, Dover. 
** http://en.wikipedia.org/wiki/Hans_Christian_%C3%98rsted  
 
Magnetic force between two moving charges 
Two moving charges, q1 and q2, exert a magnetic force on one another.  This force is different 
than the Coulomb force. The formulation below is valid for v1 and v2 both << c. (light in vacuum) 

( )1 2
m12 2 1 R m12 2 R 1 22

q  q       (  = force on q ,   = unit vector from q  to q
R

)∝ × ×F v v a F a

in SI units,  ( )1 2
m12 2 1 R2

q q =       
4 R
μ

× ×
π

F v v a  

where m is the permeability (discussed further in later section) of the material between q1 and 
q2.  In vacuum, μ = μo = 4π (10-7) H/m. 
 
An aside: the ratio of the magnitudes of the electric and magnetic forces between charges 

2
o 1 1 2m 1

o o 12 2
e 1 2 o

q v q v 4 RF v =  = v v  = 
F q q 4 R c

μ π
μ ε

π ε
2 2

2
v  

Given the minuteness of this factor, why do we ever see the magnetic force manifested between 
charges?  The answer lies in the exquisite level of charge neutrality normal materials and in 
many other situations. 
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Example: the vector cross-product 
Given two vectors A = A aA and C = C aC, their vector 
cross product A x C = AC sin θ an, where an is a unit 
vector normal to the surface defined by A and C. 
 
 
 
 
 
 
The sense of an is be determined by the right-hand rule 
illustrated on the right. 

 

From this definition, it follows that A x C = - C x A. 

 
 
The vector product can be expressed in determinate form, 

( ) ( ) ( )
x y z

x y z y z z y x z x x z y x y y x z

x y z

   = A A A  = A C  - A C  + A C  - A C  + A C  - A C
C C C

×
a a a

A C a a a  

 
Unit vectors 

(Cartesian)  ax x ay = az   ay x az = ax   az x ax = ay 

(cylindrical) aρ x aφ = az   aφ x az = aρ   az x aρ = aφ 

(spherical)  ar x aθ = aφ   aθ x aφ = ar    aφ x ar = aθ 
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Example: magnetic force between two moving charges  ☼ 
Take q’ at (x, y, z) = (x’, 0, 0) moving in the az direction and q at (-x, 0, 0) moving in the az. 
Consider q’ and q to be positive.  What is the nature of the force on q? 
 
 

( )m-q R2

qq' =     '  
4 R
μ

× ×
π

F v v a  

 
 
In this case, the force on q is an attractive force toward q’.  With currents, the analogous 
observation would be that parallel currents in the same direction attract one another. 
 
Magnetic flux density 
The force on q can be rewritten in a form involving B, the magnetic flux density in Wb/m2. 

m-q R2

q' = q   '   = q   
4 R

⎛ ⎞μ
× ×⎜ ⎟π⎝ ⎠

F v v a v × B  

 
This is the magnetic portion of the Lorentz force which acts on a charge moving in an 
electromagnetic field—charge q moving with velocity v in an electromagnetic field, E and B, 
experiences the a force, F, called the Lorentz force. 

F = q(E + v x B) 
 
The magnetic field due to a differential charge dq = ρvdv  moving with a velocity v can readily be 
found  (the differential volume is written here as dv to avoid confusion with velocity).  

R v2 2

R R2 2

d  =  dq    =  dv   
4 R 4 R

d  =  dv    =  I d   
4 R 4 R

μ μ
× ρ

π π
μ μ

× ×
π π

B v a v

B J a l

R× a

a
 

 
The permeability is a material parameter (as is conductivity and permittivity) relating the 
magnetic field to magnetic flux density, B = μH, and will be discussed more fully later.   
 
A differential relationship for dH is independent of permeability. 

R
2

I d   d  =   
4 R
l ×
π

aH  

 
Biot-Savart is obtained by integrating over the complete current path. 

 
 

R
2

current

I d    =   
4 R

×
π∫

aH l
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Example: the magnetic fields due to other current distributions   
The moving charge was expressed as a current over a path.  It could also be in the form of a 
surface current moving on a surface or simply be in the form of a current density over some 
volume. 
 
Starting from the general relationship, 

R
2

dq   d  =   
4 R

×
π

v aH  

 
an expression can be found for the case of a surface current, Js, in A/m 

R s
2 2

dq   ds   d  =   = 
4 R 4 R

× ×
π π

v a J aH R  

s R
2

surface

   =   ds
4 R

×
π∫∫

J aH  

 
and for a general current density, J, in A/m2. 

R R
2 2

dq   dv   d  =   = 
4 R 4 R

× ×
π π

v a J aH  

R
2

surface

   =   dv
4 R

×
π∫∫

J aH  

 
 
Example: infinite line of current  ☼ 
Using cylindrical coordinates, we have, 
 

( )
z z

z

' = z'  =  + z

 =  - ' =  + z - z'
ρ

ρ

ρ

ρ

r a r a a
R r r a a

 

 
Using Biot-Savart for this current distribution. 

( )

( )

R
2 3

current current

z z
3 222

z' = -

I d   I d    =    = 
4 R 4 R

I dz'    + z - z'
 = 

 + z - z'4

l l

∞
ρ

∞
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π π

⎡ ⎤× ρ⎣ ⎦
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∫ ∫

∫

a RH
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( )
3 222
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∞
φ

∞

ρ

⎡ ⎤π ρ⎣ ⎦
∫

a
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Because the range on z’ is infinite, no finite value of z can affect the result. 
 

3 2 3 22 2 2 2
z' = - z' = -

I  dz' I  dz' =  = 
44  + z'  + z'

∞ ∞
φ φ

∞ ∞

ρ ρ

π⎡ ⎤ ⎡ ⎤π ρ ρ⎣ ⎦ ⎣ ⎦
∫ ∫

a a
H  

 

From integral tables, 
( )

3 2 2 2
2 2 2

  =  
dz z

a z  + az  + a
∫  

2 22 2 2
z' = -

I  I  z 1 =   =  - -
4 4 z  + 
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2

∞

φ φ

∞

φ

⎛ ⎞ρ ρ 1⎡ ⎤⎛ ⎞⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟π πρ ρ ⎝ ⎠ρ ρ⎣ ⎦⎝ ⎠

πρ

a a
H

H a

 

 
Ampere’s law (derivation can be skimmed over without loss of continuity)    
The magnetic field of a charge q moving with a velocity v. 

R
2

q    =  
4 R

×
π

v aH  

 
Taking the dot product of both sides with dl and integrating about a closed path. 

( ) ( )

( )

R R
2 2

path path path

R
R

2 2
path path path

q     q  d  =    d  =   d
4 R 4 R

d '   d '    dq q 1dt  d   =    d   =   
4 R 4 dt R

× ×
π π

⎛ ⎞×⎜ ⎟ ×⎝ ⎠
π π

∫ ∫ ∫

∫ ∫ ∫

v a v a
H l l l

l a l a l
H l l

i i i

i
i i

v v v

v v v
 

 
For the vector triple product  
 

( )
x y z x y

R x y z x y z

Rx Ry Rz Rx Ry Rz

d d d d ' d ' d '
d     d  = d d d  = - d d d' ' ' '×

l l l l l l
l a l l l l l l l

a a a a a a
i

z

 

 
Where the triple product is represented as a determinant which changes signs when rows are 
exchanged.  Performing another row exchange, 
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( )

( ) ( )

Rx Ry Rz

R x y

x y

R R

d     d  = d d d
d ' d ' d '

d     d  = d   d '   

'

'

×

× ×

a a a
l a l l l l

l l l

l a l l l a

i

i i

z

z

 

 
 
Looking at this term, one can see 
that the triple product can be 
interpreted physically as outward 
normal projection of an elemental 
surface area—the familiar ds. 

 
Integrating over the closed path, the surface integral is seen to be equal to the difference between 
the solid angle of the path at r’ + dl’ (Ω2) and that at r’ (Ω1).   Let us label this difference dΩ. 
 
 

( )

2
path path

2 1
path

path

q 1 d  d  =  
4 dt R
q 1  d  =   - 

4 dt
q d  d  =  

4 dt

π

Ω Ω
π

Ω
π

∫ ∫

∫

∫

sH l

H l

H l

i

i

i

v v

v

v

 

 

 
Taking a differential of the above relationship, one arrives at the contribution of a current 
element. 

path

dq d id   d  =   = d
4 dt 4

Ω
Ω

π π∫ H liv  

 
If the effect of the entire current loop is accounted for, the result is 
 

path

i  d  = 
4

ΔΩ
π∫ H liv  

 
There are two distinct situations—the first being the case in which the path does not encircle the 
current and the second in which the path does encircle the current. 
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Case 1: path does not enclose the current.  
For this case, as the current loop is 
traversed, the solid angle subtended by the 
closed path by differential current elements 
both increases and decreases.   
 
If the beginning point is the same as the 
ending point—that is, if the path is closed 
path the solid angle at the beginning and at 
the end are equal Ω1 = Ω2 so that dΩ = 0. 
 

 
 
 
 
Case 2: path encloses current.  In this case, much 
the same occurs as the current loop is traversed 
from points 1 to 2 to 3.   
 
However, as the path is traversed from point 3 to 
point 1, the  solid angle continually increases—
overall, dΩ = 4π if the current links the path once.   
 
If the path is linked n times then dΩ = n 4π. 

path

  d  = ni∫ H liv  
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Ampere’s circuital law 
The result of the above discussion is Ampere’s law. 

inclosed
path

  d  =  i∫ H liv  

Ampere’s law plays a role in magnetostatics similar to that Gauss’ law plays in electrostatics.  
Just as Gauss’ law provided a powerful means of finding the electric field given sufficient 
symmetry of the charge distribution, so Ampere’s law provides a means of finding the magnetic 
field, again given sufficient symmetry in the source, here being a current distribution. 
 
Example:  Infinite line of current  ☼ 
The key to using Ampere’s law to determine the magnetic field is the existence of sufficient field 
symmetry to allow the Amperian integral to be evaluated.   
 
In this example, combining the right-hand rule 
from Biot-Savart with the current’s symmetry, 
the field must have certain symmetries. 
 
1)  H can only have an aφ component.  H = Haφ 
2) H can only depend on ρ 
 

This allows the selection of an Amperian path with which to evaluate the Amperian integral. 

path

  d  = i∫ H liv  

The object in choosing an Amperian path is to simplify the evaluation of the integral.  Here, a 
circle centered on the z-axis and parallel with the z = 0 plane has dl = ρ dφ aφ.  The result is, 

2 2

path  = 0  = 0

  d  = H   d   = H  d  = 2 H  = i
π π

φ φ
φ φ

ρ φ ρ φ π ρ∫ ∫ ∫H l a ai iv  

The magnitude of the magnetic field is determined from an evaluation of the integral; its 
direction is already known to be along aφ. 

i iH  =  = H  = 
2 2φ φ→

πρ πρ
H a a  

If one compares using Ampere’s law to using Biot-Savart, it may be appreciated that Ampere’s 
law is a powerful tool when there is sufficient symmetry.  If such symmetry does not exist, one 
must then revert back to the more general Biot-Savart law. 
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Example: Line of current density  ☼ 
-0.5 2

z

0  <
= 2   A/m a <  < b 

0  >

ρ
ρ ρ

ρ

⎧
⎪
⎨
⎪
⎩

J a
 a

 b
 

Magnetic flux 
The total magnetic flux through any surface can be expressed as a surface integral of the flux 
density. 

surface

 =   dφ ∫∫ B si  

Where φ is the magnetic flux in Webers, and B is the magnetic flux density in Webers per 
square meter (or Tesla).   
 
Example: flux linking an area  ☼ 
Given current i in the az direction, find the flux linking the area shown. 
 
Using Ampere’s law, the magnetic field is 
determined, 

i = 
2 φπρ

H a  

 
 

The magnetic flux density is therefore  
2i =   (SI units for  are Weber/m )

2 φ

μ
πρ

B a B  

 
A surface integral is used to find the total magnetic flux linking the area shown,  

surface

 =   dφ ∫∫ B si  

 
Notice for the area shown that there are two possible directions for the normal direction, -aφ and 
aφ.  Assuming the flux desired is that in the aφ direction, the differential vector area, ds, is 

d  = d dz φρs a  

 
The total magnetic flux is therefore 

o

o

o

o

z  + L b

z = z  = a

z  + L b

z = z  = a

i =     d dz
2

i id b = dz = L ln
2 2

φ φ
ρ

ρ

μ
φ ρ

πρ

μ μρ ⎛ ⎞φ ⎜ ⎟π ρ π ⎝ ⎠

∫ ∫

∫ ∫

a ai

a
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 Example: flux linking an area – numeric approximation 
Given the same current  as above, give a 
numeric approximation to the total flux linking 
the area shown. 
 
Divide each interval into 10 equal lengths. 
  
 

 
Working from the integral,  

o

o

z  + L b

z = z  = a

i =     d dz
2 φ φ

ρ

μ
φ ρ

πρ∫ ∫ a ai  

 
one obtains, 

( )
( ) ( )

10 10 10 10

j=1 i = 1 j=1 i = 1i

b-a 10i i L  z = 
2 2 10 a + i b-a 10  - b-a 20  
μ Δρ μ ⎛ ⎞φ ≅ Δ ⎜ ⎟π ρ π ⎝ ⎠

∑∑ ∑ ∑  

 
Magnetic flux lines  ☼ 
From Biot-Savart, the fundamental relation between moving charge and the resulting field,  

R2 =  q   
4 R

μ
×

π
B v a  

it can be seen that the lines of magnetic flux about a charge q moving with a velocity v are 
perpendicular to both the velocity and to the vector between the source and field points. 

 
From Biot-Savart,  B (magnetic flux density in 
Wb/m2) is perpendicular to both v and R since 
the vector cross product of v and R is 
perpendicular to the plane in which v and R lie. 

 
The implication is that magnetic flux lines form loops about moving charges.  Magnetic flux lines 
have no beginning or end; they circle about moving charges.  In contrast, electric flux lines 
begin at positive charges and end at negative ones. 
 

The form of magnetic flux lines is due to the absence of magnetic charge.  If magnetic charge 
existed, one would then see magnetic flux lines begin and end.  Researchers have looked for these 
“magnetic monopoles” for many years but had not found them to until August, 2009 when the first 
observation of magnetic monopoles was reported in Science (see page 42). 
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Conservation of magnetic flux  ☼ 
Since magnetic flux lines have no beginning or end, the net magnetic flux from a closed surface 
must be zero.   
 
Looking at the diagram below, there are only three types of interactions between closed 
surfaces and closed circular loops:  1) the loop is entirely within the surface, 2) the loop is 
entirely outside the surface, and 3) the loop intersects the surface.    There is obviously no net 
magnetic flux associated with interaction types 1) and 2).    With 3), there is no net flux since 
each time the flux line enters the surface, it must also leave—thus no net flux. 
 

 
 
Integral and point expressions  ☼ 
The net magnetic flux leaving a closed surface must be zero.  As discussed above, this is a 
consequence of the fact that magnetic lines are in the form of closed loops about moving 
charges or currents. 

out
surface

 =   d  = 0φ ∫∫ B siw  

Using the divergence theorem, 

surface volume

  d  =    dv = 0∇∫∫ ∫∫∫B s Bi iw  

 
This relation holds for any volume.  That is, for any arbitrary volume, the integral of the 
divergence of B over the volume must equal zero.  The only possibility for this to hold is for the 
divergence of B itself to be equal to zero. 

   = 0∇ Bi  

This is the point form of the conservation of magnetic flux (sometimes referred to as Gauss’ law 
for magnetic fields).  It is the second of Maxwell’s four equations discussed so far. (The first was 
the point form of Gauss’ law, ) v   = ∇ ρDi
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What is the meaning of ?   Since B is magnetic flux density,   ∇ Bi   ∇ Bi  must be the net 
magnetic flux out per unit volume.  
To review a bit, recall the discussion of  ∇ Di , the divergence of the electric flux density.  Here, 

 is the net electric flux out per unit volume.   ∇ Di
 
For the case of    ∇ Di

( )

v v

d dq   =  =     = q from Gauss' law
dv dv

dq   =  = 
dv

ψ
∇ ψ

⎛ ⎞∇ ρ ρ⎜ ⎟
⎝ ⎠

D

D

i

i
 

 
For the case of , since the net flux out of any volume must be zero due to the nature of 
magnetic flux lines. 

  ∇ Bi

d 0   =  = 
dv dv

   = 0

φ
∇

∇

B

B

i

i
 

 
 
Point form of Ampere’s law  ☼ 
The integral form of Ampere’s law for magnetostatics has been obtained from Biot-Savart. 

path

  d  =  i∫ H liv  

 
The point form of the law can be found using Stoke’s theorem and expressing the current as a 
surface integral of the current density.  Making these substitutions, 
 

( )
surface surface

   d   =   d  ∇×∫∫ ∫∫H s J si i  

 
This expression holds for any surface.    For this to hold for any arbitrary surface is for the 
integrands themselves to be equal.    
 
The result is an expression relating the curl of the magnetic field vector, H, to the current 
density, J.    

   = ∇ × H J  
 
This is the point form of Ampere’s law for magnetostatics. 
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Magnetic forces  ☼ 
The fundamental relation giving the force on a charge moving in an electromagnetic field is the 
Lorentz force law. 
 

( ) = q  +   

 is force on charge q
 is velocity of charge q
 is electric field
 is magnetic flux density

×F E v B

F
v
E
B

 

 
In many situations (motors, transformers, generators), the magnetic component is dominant.  
This is the case considered here. 
 

 = q   ×F v B  
 
Many times, especially with circuits, it is more convenient to speak of forces on currents rather 
than moving charges.   One can readily change variables. 
 
For an infinitesimal charge dq, 
 

dF  =  dq  v x B 
 
It is often useful to express this relation in terms of currents. 
 

dq v  =  ρv dv v  =   ρv A dL v = I dL 
 

dF  =  I dL  x  B  
 

 
v ~ particle velocity 
dv ~ differential volume 
A ~ area 
dL ~ differential length 
dL ~ vector differential length (in direction of current density) 
I ~ current 
B ~ magnetic flux density (Wb/m2) 

 
Since magnetic fields are produced by currents, this force can appear in different guises. 
 

1. Between currents 
2. Between currents and permanent magnets 
3. Between permanent magnets 
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Examples   ☼ 
i) Do the currents below attract or repel one another? 
 

 
 
 
 
 
ii) rail gun 

 
 
 
 
iii) DC motor 

 
 
Clearly the force on the end currents exert no torque about the axis of rotation so these 
forces need not be considered.  The magnitude of the force on each of the sides is  
 

 15

http://www.rose-hulman.edu/class/ee/HTML/ECE340/340-ms-magnetic-forces/340-ms-magnetic-forces.html


side

F = I d  x  = I b B∫ L B  

The total torque exerted by the two sides about the axis of rotation is 

( ) aT = 2 IbB  sin  = I A B sin where A = ab, the loop area
2

θ θ  

 
iv) Magnetics and their equivalence to current loops.  Do the magnets below repel or 
 attract one another? 

 
 
  
Compare the magnets above with the current loops below. 

 
 

 v) solenoids 
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Permeability ☼ 
The two magnetic vectors are the magnetic field, H, A/m, and the magnetic flux density, B, in 
Wb/m2.    The magnetic field vector is independent of permeability. 

 R
2

I d   d  =   
4 R
l ×
π

aH          inclosed
path

  d  =  i∫ H liv  

 
As can be seen from these two relations, the magnetic field vector depends only on the current 
distribution and is independent of permeability. 
 
The magnetic flux density vector, B, is related to H via the permeability in H/m.   Permeability is 
the magnetic material property, and fills a role similar to that of conductivity or permittivity.  

B = μH 
 
B is a flux density.  In this regard, it is similar to D and J.  The unit of magnetic flux in the SI 
system is Weber so that the units for B are in Weber/m2  or Tesla (T).  
 
Like the magnetic field, the magnetic flux density is dependent upon the current distribution.  
magnetic flux density, however, also depends on permeability. Magnetic flux density is in the 
Lorentz force law and is, therefore, perhaps the most physical of the two vectors. 
 
The source of the magnetic field is current.  The resulting flux density may be broken into two 
components, the first being the flux density that would be present in vacuum and the second 
being the contribution of internal atomic level “currents”  (electron spin or orbiting electrons) 
which exist or are aligned due to presence of the external field. 

( )r o o r o =  =  =  +  - 1μ μ μ μ μ μB H H H H  

μr ~  relative permeability 
μo ~  permeability of vacuum  (4π x 10-7 H/m) 

Permeability is a measure of how easily a material’s internal currents are aligned in response to 
an applied magnetic field.  These internal currents can also be referred to as internal magnetic 
dipoles since current loops are sources of magnetic fields with a north and a south pole – two 
poles, a dipole. 
 
A material's permeability is a measure of two things – 1) the degree to which a material 
possesses internal magnetic dipoles, and  2) how easy these magnetic dipoles are oriented in 
response to the applied magnetic field.   
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Current loops produce magnetic fields.  As already stated, another way to say this is that a 
current loop has a magnetic moment.  Materials have three sources of magnetic moments. 

1. orbiting electrons 

2. electron spin 

3. nuclear spin 

Nuclear spin is negligible with respect to a material's gross magnetic properties and shall be 
neglected here. 

 

Diamagnetism (universal but weak) 

Without an external field the magnetic fields produced by orbital electron motion and 
electron spin completely cancel.  Under an applied field the orbiting electrons increase or 
decrease their "speed" to maintain orbital stability.  This unbalances the spin and orbital 
components slightly and produces a minor diamagnetic response.  

μr  ≈  0.99999 

All materials are diamagnetic.  The effect is so weak however, that it is only important in 
materials in which the magnetic fields produced by orbital electron motion and electron 
spin completely cancel.  

 
 

Paramagnetism (alignment of individual permanent dipoles in a material) 

In paramagnetic materials, magnetic fields do not cancel (usually there are unpaired 
electrons).  Each molecule has a net magnetic moment.  With no applied field, thermal 
motion produces a cancellation among the dipoles. Under an external field, these 
dipoles align slightly to produce a magnetic field. 

μr  ≈ 1.00001  to 1.004 

This effect, while it can be much stronger than the diamagnetic effect, is nevertheless, 
too weak to be of much importance in most areas of electromagnetics.   
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Ferromagnetism 

In ferromagnetic materials, macroscopic domains (around 1 μm in linear dimension) 
exist having a net magnetic moment.  Without an applied field, these domains are 
randomly oriented. Under an external field, the domains partially orient with significant 
effect. 

μr  can be up to 106  (more typically a few thousand for non-exotic materials) 
 
Many ferromagnetic ones materials display hysteresis or magnetization or B-H curves. 
 



Notice some features on this path: 
1) Between point 2 and 3, H becomes zero – at this point the external field is zero.  At this 

point, although the external field is zero, the flux density from the material is not zero.  The 
material has become a permanent magnet.  The strength of the magnet is indicated by the 
remanance (so named because it is the remaining flux density of a magnetized material 
after the external force has been removed).   

 large Br  ~  strong magnet 
 

2) At point three, the flux density of the material has become nearly zero.  The material has 
been demagnetized, having at least once been magnetized.  The value of field required to 
demagnetize the material is called the coercive force. 

large Hc  ~  hard magnet (that is, hard to demagnetize) 
 
Continuing on the hysteresis curve, as the applied field, H, increases from point 4, the B-H 
curve does not retrace the same path taken as when H was decreasing.  Rather it takes the 
path to 5 and back to point 2. 
 
Hysteresis is indicative of loss.  In this case the loss is through lattice coupling.  Lattice 
vibrations are induced by the magnetization/demagnetization cycles and magnetic energy is 
transformed into thermal energy.  The magnetization-demagnetization cycle involves physical 
movement which couples to lattice vibrations in the material.  Each time the material goes 
though a cycle of magnetization-demagnetization, some EM energy is transformed into thermal 
energy.  The energy per unit volume lost for each cycle is the area of the hysteresis curve. 

energy volume
  =   d

cycle
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ H Biv  

 
Notice that a B-H curve with a large Br and/or a large Hc will tend to enclose a larger area that a 
B-H curve with Br and Hc both small. 
  
The mechanism the decreasing slope of the B-H curve for larger values of H is the increasing 
difficulty of achieving more and more orientation of the magnetic domains.  The first bit of 
orientation come easily – reflected in the large B-H slope (high μ), but it becomes increasingly 
difficult to push the dipoles into further alignment.   The resistance to further alignment is largely 
do to Coulomb forces (aligning the dipoles for minimum magnetic energy configuration is not 
likely to simultaneously achieve a minimum in electric energy). 
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Different types of B-H curves are required for different applications.  Consider those required for 
permanent magnets and compare these to those required by transformer cores. 

 
Permanent magnet  
Requirements would like focus on strength (higher Br, greater strength) and hardness (higher 
Hc, greater hardness).   The fact that these requirements would cause the material to be lossy 
for magnetization-demagnetization (since making Br and Hc larger will tend to increase loop B-H 
hysteresis curve areas) would likely be of little concern since most permanent magnets do not 
undergo repeated magnetization-demagnetization.  In this application, then, one can afford a 
lossy material. 
 
Transformer core 
What is desired for transformers core is control over permeability (often a large permeability is 
desired) and low loss—a thin hysteresis curve (low loss) with steep sides (high permeability).  
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Boundary Conditions for B  ☼ 
The normal component of B is continuous across a boundary between two media.   Before 
going on, it might be interesting to note the similarity between Gauss’ law and the conservation 
of magnetic flux.   Gauss’ law states that the total electric flux coming from any closed surface is 
equal to the net charge within the surface. 

 = qψ  
 
In terms of the electric flux density 

surface

  d  = q∫∫ D siw  

 
The boundary condition obtained for D is, 

1N 2N sD  - D  = ρ  
 
Using vector notation,  

( )n 1 2   -  = ρa D Di s  

 
Now compare Gauss’ law to the conservation of magnetic flux.   Since magnetic flux lines form 
closed loops, the net magnetic flux coming from a closed surface is zero. 

 = 0φ  
 
In terms of magnetic flux density,  

surface

  d  = 0∫∫ B siw  

 
Consequently, the boundary condition for B is, 

1N 2N 1N 2NB  - B  = 0 B  = B→  
 
Using vector notation, 

( )n 1 2   -  = 0a B Bi  
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Derivation of boundary conditions for B 

out
surface

 =   d  = 0

  d  +   d  +   d  = 0

φ ∫∫

∫∫ ∫∫ ∫∫1 2
top bottom sides

B s

B s B s B s

i

i i i

w
 

 
Since the sides are infinitesimal in area, the integral 
over the sides is zero 

( )

( ) ( )

2 r 2 r

inside 1 z 2 z
=0 =0 =0 =0

2 2
1z 2z

1z 2z 1N 2N

q  =   d d  +   d d -

B r   - B r  = 0

B  - B  = 0 or physically, B  - B  = 0

π π

φ ρ φ ρ

ρ ρ φ ρ ρ φ

π π

∫ ∫ ∫ ∫B a Bi i a

 
The result can be expressed compactly in vector notation using the vector normal to the 
interface directed from region 2 into region 1. (an = az above) 

( )n 1 2 -  = 0⋅a B B  

 
Boundary Conditions for H  ☼ 
The tangential component of H across two media differs by the surface current flowing at the 
interface.  It might be interesting to review just a bit here too, and notice the similarity between 
Faraday’s law and Ampere’s law.   Faraday’s law states that the voltage induced (line integral of 
the electric field) about a closed loop is equal to the changing magnetic flux enclosed by the 
loop.   

d  d  = -
dt
φ

∫
path

E liv   

 
If the loop is infinitesimal, a finite amount of flux cannot be enclosed by the path and Faraday 
reads, 

  d  = 0∫
infinitesimal
path

E liv  

 
The boundary condition obtained for E is, 

1T 2TE  = E  or, with vector notation, ( )n 1 2  -  = 0×a E E  

 
Compare this to using Ampere’s law which states that the line integral of H about a closed path 
is equal to the current enclosed by the path.  Here the path is an infinitesimal one on the 
boundary between two media.  The result will be 

( )1T 2T n 1 2 sH  - H  = K    -  =     ...  is surface current in A/m (  is also used)×a H H K K J  
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Derivation of boundary conditions for H 
Ampere’s law states,  

  d  = I ∫
path

H liv   

1 2
left side top right side bottom

  d  =   d  +   d  +   d  +   d  ∫ ∫ ∫ ∫ ∫
path

H l H l H l H l H li i i iv i

 
Since the side integrals are along infinitesimal lengths, they 
must be zero and can therefore be neglected. 

0

1 y 2 y
y=0 y=

1y 2y 1y 2y

  d  =   dy  +   dy  = K

H   -  H  = K               H   =  H→

∫ ∫ ∫
path

H l H a H ai i iv
l

l

l

l l l

  

 

 
Notice that ay is tangential to the boundary.  This result can be written more physically and 
independent of coordinate system choice by writing the result as  
 
H1T – H2T = K   (positive sense of H is to the right and that of K is into the sheet) 
 
Using vector notation, . ( )n 1 2   -  = ×a H H K
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Example: boundary conditions for B and H, permeability  
i)  find, μr1 B1 and H1 

ii) find μ2, μr2, B2, and H2 

 
 
i) Since H1 and μ1 are given, B1 and μr1 can be determined 

1 x y

1 x y

2
1 1 1 1 x y

 = 30 cos 60°  - 30 sin 60°  A/m

 = 15  - 15 3  A/m

 =  =  = 0.015  - 0.015 3  Wb/mμ

H a a

H a a

B H H a a

 

 ( )
4

-7
r1 1 o

10 = /  = 0.001/ 4 10  =
4

⎡ ⎤μ μ μ π⎣ ⎦ π
 

ii) Using the boundary condition H1T – H2T = K, the ax component of H2 can be determined and 
 then compared to B2x to determine μ2. 

H1T – H2T = K 
15 A/m – H2x = 2 A/m  (+2 A into the sheet) 
 
H2x = 13 A/m = B2x/μ2          therefore, μ2 = 0.01 H/m 
 
Using the boundary condition B1N = B2N, the ay component of B2 can be found, 

 2
2y 1yB  = B  = -0.015 3  Wb/m  

 
 At this point, B2 is known and, since μ2 was determined in i), H2 = B2/μ2, can be found. 

 2 x y = 0.13  - 0.015 3  Wb/mB a a  

 2 x y x y
0.015 3 = 13  -   A/m = 13  - 1.5 3   A/m

0.01
H a a a a  
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Example:  toroidal core   ☼ 
In exploring Ampere’s law, it was emphasized that a symmetric current distribution gives rise to 
a symmetric field – e.g., an infinite line of current produces a cylindrically-symmetric field.   
 
Another means of producing a symmetric flux density is to have a symmetrical region of high 
permeability.  With sufficiently high permeability, the flux density will have the same symmetry 
(after all, for high permeability material, vast majority of the flux density is due to the alignment 
of the internal magnetic dipoles, not to the external current).   For example, if the permeability is 
1000 μ0, then only 0.1% of the flux is due to the external current and 99.9% is due to internal 
circulating currents.  Since the flux density is the physically meaningful quantity, it then does no 
harm if it is assumed the field has the same symmetry. 
 
An important case is the toroidal core: 
 
i) find B and H inside the toroidal core 
ii) find the total magnetic flux, φ, in the core 
iii) find B and H just inside the inner radius (in the air) 
iv) find B and H just outside the outer radius (in the air) 
 

 
Solution: 
i) From the symmetry of the core,  

  B a ,   within the core, B depends only on φ≅ ρB  

 
Since    B a , it will be assumed that   H aφ φ≅ ≅B H

 

 A suitable Amperian path is a circle centered on 
 the z-axis for which dl = ρ dφ aφ 
 

From Ampere’s law 

enclosed
path

2

 = 0

  d  = i

H   d   = Ni

Ni NiH =  =  
2 2

π

φ φ
φ

φ

ρ φ

→
πρ πρ

∫

∫

H l

a a

H a

i

i

v

 

Ni =  =  
2 φ

μ
μ

πρ
B H a  

 26

http://www.rose-hulman.edu/class/ee/HTML/ECE340/340-ms-toroidal-core/340-ms-toroidal-core.html


ii) The total flux can be found by integrating over the 
 surface indicated (here it will be assumed the 
 desired direction of flux is in the aφ direction. 
 

o

o

o

o

z + t b

z = z  = a

z + t b

z = z  = a

Ni =    d dz
2

Ni Nid b = dz  = t ln
2 2

φ φ
ρ

ρ

μ
φ ρ

πρ

μ μρ ⎛ ⎞φ ⎜ ⎟π ρ π ⎝ ⎠

∫ ∫

∫ ∫

a ai

a

 

 
 
iii) At the air-core boundary on the inner radius, the field is totally tangential with zero surface 

 current.  Therefore, on the air side of the boundary, Ni=  
2 a φπ

H a  and o Ni =  
2 a φ

μ
π

B a  

 
iv) Likewise the field is tangential with zero surface  current at the outer radius also and 

 therefore, on the air side of the boundary, Ni=  
2 b φπ

H a  and o Ni=  
2 b φ

μ
π

B a  
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Inductance  ☼ 
Ampere’s law states that there is a linear relationship between current and the magnetic field it 
produces. 

path

  d  = i∫ H liv  

 
Given a linear relationship between B and H (constant permeability B = μH), the linear relation 
between H and i can be extended to a linear relation between B and i. 
 
Since flux is given through a surface integral of B, a linear relationship also exists between flux 
and current. 

area

=   dφ  ∫∫ B si  

 

surface

Ampere's law linear relation between  and i
 = linear relation between  and i  (isotropic, spatially invarient )

 =   d linear relation between  and i

→
μ →

φ → φ∫∫

H
B H B

B si

μ

 
Inductance is the linear relation between, not flux, but flux linkage, λ, and current.   Flux 
linkage is a new term and should be discussed before going further. 
 
Flux and flux linkage 
Flux linkage is the total flux enclosed by a closed path.  If the path consists of multiple loops 
with the same flux, then the flux linkage is the product of the number of loops and the flux linked 
by each individual loop. 
 
Consider the single current loop shown: 

For this loop the flux from the loop due to the current i 
is φ1T.  The flux linkage for this one loop is λ = φ1T.  
 

 

 
Now consider the N-turn coil consisting of N loops. 

For this coil, the total flux due to the current i is  
φTotal = Nφ1T.  The flux linkage for the N-turn coil is   
λ = N(φTotal) = N2φ1T. 
 

 

 

The self-inductance of a coil is defined as the ratio of flux linkage to current. 

L = 
i
λ  
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An aside utilizing Faraday’s law (can be omitted until Faraday’s law is described fully) 
While the above definition for self-inductance is complete, a more satisfactory understanding 
can be gained by understanding of what motivates inductance.  From circuits the well-known 
definition of inductance is  

di VV = L L = 
dt di dt

→ . 

 
That the two definitions are equivalent can be seen from Faraday’s law which states that a 
voltage is induced in a loop inclosing a changing magnetic field. 

dV = -
dt
φ  

 
The negative sign is fully counted for by labeling V and the current producing φ (that is, i) with 
the passive sign convention (more on this latter when discussing Faraday’s law).  For now, 
assume PSC between V and i so that there is no negative sign. 
 
Consider the single loop coil. 

1T 1T 1T
1T

1T
1T

d d diV  =  = i  =    
dt dt i i dt

Since L  =  =  is constant and depends only geometry and permeability.
i i

di diV =  = L  
i dt dt

φ φ φ⎛ ⎞
⎜ ⎟
⎝ ⎠

φ λ

λ

 

 
Consider now the N-turn coil 

1T 1T 1T
1T

2
total1T

N-turns 1T

dN N Nd diV  =  = i  = 
dt dt i i dt

NN di di di dV  = NV  =   =  =  = L
i dt i dt i dt dt

φ φ φ⎛ ⎞
⎜ ⎟
⎝ ⎠

φφ λ i
 

 
It can therefore be seen that the two definitions of self-inductance are equivalent. 

VL =  and L = 
i d
λ

i dt
 

 
Again, Faraday’s law will be described in much greater detail later. 
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Example: self-inductance of an N-turn inductor with a toroidal core ☼ 
In the toroidal core inductor the total flux was 
found to be  

Ni b = t ln
2 a
μ ⎛ ⎞φ ⎜ ⎟π ⎝ ⎠

 

 
The flux linkage is therefore 

2N i b = t ln
2 a

μ ⎛ ⎞λ ⎜ ⎟π ⎝ ⎠
 

 

 

 
which gives a self inductance 

2N t bL =  =  ln
i 2 a

μλ ⎛ ⎞
⎜ ⎟π ⎝ ⎠

 

 
Mutual inductance  ☼ 
Mutual inductance exists between coupled coils in which the flux due to a current in one coil 
links another coil.   If part of the flux from, say coil 1, were to link a second coil, say coil 2, these 
two coils would be said to be mutually coupled or have mutual coupling. 
 

 
 
The mutual coupling between the two coils is the ratio between the flux linkage of coil 1’s flux to 
of coil 2 to the current i1.   

2 12-total12

1 1

N
M =  = 

i i
φλ

  

 
It can be shown that the mutual coupling between coil 1 and coil 2 is the same as the coupling 
between coil 2 and coil 1.  That is,  

2 12-total12

1 1

1 21-total21

2 2

N
M =  = 

i i
N

M =  = 
i i

φλ

φλ
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Example: mutual couple of two coils on a toroidal core  ☼ 
In the toroidal core inductor with i2 = 0, the flux 
is  

1 1
1

N i b = t ln
2 a

μ ⎛ ⎞φ ⎜ ⎟π ⎝ ⎠
 

 
Mutual coupling between coil 1 and coil 2 is 
therefore, 

2 112

1

N N bM = = t ln  
i 2 a

μλ ⎛ ⎞ ⎜ ⎟π ⎝ ⎠
 

 

 

 

 
 
 
On the other hand, the flux with 

 is  1 2i  = 0 and i  0≠

2 2N i b = t ln
2 a2

μ ⎛ ⎞φ ⎜ ⎟π ⎝ ⎠
 

 
Mutual coupling between coil 2 and coil 1 is 
therefore, 

1 221

2

N N bM = = t ln  
i 2 a

μλ ⎛ ⎞ ⎜ ⎟π ⎝ ⎠
 

 

 

The result in this special case—that the mutual coupling between coils 1 and 2 is the same as 
that between 2 and 1—is true in general.  
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Incremental reluctor  ☼ 
In magnetostatics, most numerical approaches involve breaking the material into pieces that 
can be handled more readily.  
 
Looking at Ampere’s law, one is struck by the similarity between it and a similar integral of the 
electric field for a potential difference. 

b

ab
path a

  d  = Ni   d  = V↔∫ ∫H l E li iv  

Just as  can be thought of as a voltage (electromotive force) drop, so  can be 
thought of as a drop in magnetomotive force. 

  dE i l l  dH i

The sides of the incremental reluctor are parallel to the flux density so that any flux entering the 
element also leaves the element.  Its end surfaces are equipotential surfaces. 
 
The element relationship for the incremental 
reluctor, is similar to that of the incremental 
resistance, the ratio of the potential difference 
(in this case, Vm, the magnetomotive force in 
Ampere) to that of flux (in this case magnetic 
flux). 

m H HV =  =  = 
B A H A

 = 
A

Δ ΔΔ
Δ

Δφ Δ μ Δ
Δ

Δ
μ Δ

l l
R

l
R

  

 
Reluctance is central to magnetic circuits.   The self-inductance of a coil using a magnetic core 
with a reluctance R is  L = N2/R. 
 
Example: toroidal core  ☼ 
For the toroidal core, the incremental reluctor can be thin 
cylindrical shells of radius ρ, of height t and of thickness dρ. 
 

2d  = 
td

R
πρ

μ ρ
 

These shells will be in parallel and reluctances combine as do resistors.  If the reciprocal of 
reluctance is considered the combined reluctances will be the sum of the reciprocals of the 
shells. 

b

 = a

t d td t1 1d  =  =  = ln
2 2ρ

μ ρ μ ρ μ⎛ ⎞ ⎛→⎜ ⎟ ⎜πρ πρ π⎝ ⎠ ⎝∫R R
b

2 a
⎞
⎟
⎠
 

 
The corresponding inductance is 

2
2 tN bL =  = N ln

2 a
μ ⎛ ⎞

⎜ ⎟π ⎝ ⎠R
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Non-homogeneous permeability  ☼ 
In the case of the incremental reluctor, the procedure and equations look much the same, but 
one must not forget that what is being found is an approximation, not to the electrostatic 
potential function, but to a potential corresponding to a magnetomotive potential function. 
 
In the case of the incremental reluctor, 
conservation of magnetic flux gives 
 

surface

  d  = 0∫∫ B siw  

 
which resulted in the following equations for the 
node potentials, 
 

 
( ) ( ) ( ) ( )U 1 2 L 2 3 D 3 4 R 1 4

o
1 2 3 4

V  +   +  V  +   +  V  +   +  V  + 
V  =

2 
   

(  +  +   + )μ μ μ μ

μ μ μ μ μ μ μ μ
 

 
What is found is an approximation of the magnetostatic potential at discrete points from which 
one can approximate the magnetic fields and, knowing permeability, the magnetic flux density. 
 
Example: two-dimensional non-homogenous core   ☼ 
Consider the 2D core shown, find the reluctance of the core and the inductance of the coil  
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Solution: 
Strategy will be to find the reluctance, Rc, and then find the inductance of an N-turn coil using  

2

c

NL = 
R

 

 
Due to the core’s symmetry, the reluctance of ¼ of the core can be found and the reluctance of 
the total core can be found by placing four quarters in series.  In find the node equations, 
assume the permeability of the surrounding air is sufficiency low so that it may assume to be 
zero.   

1 2 5

2 3 6

node 1: 16V  = 4(0 A) + 8V  + 4V
node 2: 20V  = 5(0 A) + 2V  + 5V  + 8V
node 3:
node 4:

1

11

7

 

5 1 6 10

6 5 2 7

node 5: 16V  = 4V  + 8V  + 4V
node 6: 20V  = 8V  + 5V  + 2V  + 5V

 

8 4 9 13

node 7:
node 8: 24V  = 4V  + 4V  + 8V  + 8V

 

and so on for all 19 nodes. 
 
Assume all 19 node potentials have been found, the total magnetic flux can be calculated for the 
case of an applied magnetomotive force of 1 A-t.  Using the surface between nodes 1-4 and the 
0 A potential surface, one obtains 

( ) ( )1 o 2 o o 3 o o 4
t t t t = V  1200  + V  1200  + 300  + V  300  + 1200  + V  1200  
2 2 2 2

φ μ μ μ μ μ oμ  

 

The reluctance of the ¼ core can then be calculated as ¼
0.25 A-t = 

φ
R  

 
So that the core reluctance is 

( ) ( )1 o 2 o o 3 o o 4

1 A-t 1 =  = t t t tV  1200  + V  1200  + 300  + V  300  + 1200  + V 1200  
2 2 2 2

φ μ μ μ μ μ
R

oμ

 
 
For an N-turn coil about the core, the inductance would be 

( ) ( )

[ ]

2
2

1 o 2 o o 3 o o 4

2
o 1 2 3 4

N t t t tL =  = N V  1200  + V  1200  + 300  + V  300  + 1200  + V  1200
2 2 2 2

L = 300 N t 2V  + 2.5V  + 2.5V  + 2V

⎡ ⎤μ μ μ μ μ⎢ ⎥⎣ ⎦
μ

R oμ
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Magnetic energy density    ☼ 
The energy density (W/m3) stored in the magnetic field can be found by considering the 
inductance of the incremental reluctor. 

( )

( )

2
22 2

m

2 2
m

2m m
m

2
2

m

A1 1 N 1W  = L i  =  i  =  Ni
2 2 2

A1 1W  =  H  = H A
2 2

W W 1w  =  =  = H
v A 2

1 B   w  = H  =  = 
2 2 2

μΔ
Δ Δ Δ Δ Δ

Δ Δ
μΔ

Δ Δ μ Δ Δ
Δ

Δ Δ
μ

Δ Δ Δ

μ
μ

B Hi

R l

l l
l

l

 

 
Energy density can be used to determine inductance. 

m
2 m volume

m 2 2

volume volume
2 2

2 w d
2W1W  = Li L =  = 

2 i

  2  dv    dv
2

L =  = 
i i

→
∫∫∫

∫∫∫ ∫∫∫
B H B Hi i

v

i
 

 
Example: inductance of a toroidal-core inductor    ☼  
The magnetic field in the inductor core has 
been found to be 

Ni =  
2 φπρ

H a  

 
Therefore, calculating inductance using 
the magnetic energy stored 
 
 

 

0

o

0

o

z  + t 2b

 = a z = z  = 0volume
2 2

2 2z  + t 2b
2

 = a z = z  = 0

Ni Ni       d  dz d   dv 2 2
L =  =

i i

tN d  dz d N bL =    =   2  t ln  = N ln
2 2 a

π

φ φ
ρ φ

π

ρ φ

⎛ ⎞
μ ρ φ⎜ ⎟πρ πρ⎝ ⎠

⎛ ⎞ ⎛ ⎞ μφ ρ ⎛ ⎞ ⎛ ⎞μ μ π⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟π ρ π ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ ∫ ∫∫∫∫

∫ ∫ ∫

a aB H ii

b
2 a

ρ

π

 

 
Checking this result, one finds it the same as that found previously. 
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Magnetic circuits   
The magnetic circuit approximation considers 1) the magnetic field, H, is parallel to the 
Amperian path and 2) the magnetic flux density is uniform over the cross sectional area.  This 
approximation allows “lumped element” models to be developed for magnetic circuits. 

 
Ampere’s law states that, around a loop the total magnetomotive force “drops”  

path

  d∫ H liv  

 
is equal to the total of the magnetomotive force “rises” from mmf sources (current loops). 

enc
path

  d  = i∫ H liv  

 
Ampere’s law plays the role of Kirchoff’s voltage law (KVL) in magnetic circuits.  For lumped 
circuits, Ampere’s law reads 

i i j j
i j

H   = N il∑ ∑  

 
Notice that the dot product of vectors can be replaced by the ordinary product of magnitudes 
since the field vector and the differential length vectors are parallel in magnetic circuits. 
 
To further develop magnetic circuits, one needs to express Ampere’s law using a flow variable 
analogous to electrical current – a quantity that obeys conservation.  This will allow the use of a 
conservation law to play the role of Kirchoff’s current law (KCL) in magnetic circuits. 
 
Magnetic flux fills the need.  The left hand side of Ampere’s law, the mmf drops, are cast in 
terms of φ instead of H.  The sum of these mmf drops must be equal to the mmf of the current 
loops.   
 
Ampere’s law therefore plays the role of KVL, conservation of magnetic flux plays the that of 
KCL, and reluctance fills the role played by resistance in electric circuits. 
 

i ii
i i i i i j j

i i i i ji i i i i

i i j j
i j

BH   =    =   =   = N i
A A

  = N i         ~ magnetic "KVL", holds for all loops

l
l l l

R

φ
φ

μ μ μ

φ

∑ ∑ ∑ ∑ ∑

∑ ∑
 

 

 

  = 
A
l

R
μ

 

 
 
Conservation of magnetic flux at each node in the circuit yields, 

entering leaving =       ~ magnetic KCL, holds for each nodeφ φ∑ ∑  
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Example: the magnetic circuit approximation 
The assumptions behind the magnetic circuit approximation are 1) the core permeability is 
sufficiently high to cause the flux density follow its shape and so allows the Amperian path to be 
easily chosen since it is of the same shape as the core, 2) the flux density is uniform across the 
cross-sectional areas. 
 

 
 

path core gap

core core gap gap

  d  =   d  +   d  = Ni 

H  + H  = Nil l

∫ ∫ ∫H l H l H li i iv
 

 
In terms of flux density, 

gapcore
core gap

core gap

BB  +  = Nil l
μ μ

 

 
In terms of flux 

core gap
core gap

core core gap gap

 +  = Ni
A A
l l

φ φ
μ μ

 

 
Using flux conservation (φcore = φgap = φ) and using reluctance, Ampere’s law becomes 
. ( )core gap +  = NiR R φ  
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Forces in magnetic circuits   

Consider the force involved in magnetic actuation. Take 
the core and the air gap to have reluctances Rc and Rg.  
 
Using conservation of energy, consider the magnetic 
circuit as the system.  There are two ways of increasing 
the energy stored in the magnetic circuit—the source 
and the mechanical force (Fmech = - Fmag). 
 

dWmag = dWsource + dWmech 

2

mech
i dL = Vi dt  + F dy
2

 

( )
2 2

mech mech
g c

i N dd  = N i dt  + F dy = Nid  + F dy
2  + dt

φ ψ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠R R

 

( ) ( )2 2

mech mech
g c g c g c

Ni Ni1 Ni 1d  = Nid  + F dy - d  = F
2  +  + 2  + 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⇒⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠R R R R R R
dy  

 
For simplicity, assume that the core reluctance is much smaller than the gap reluctance. 

( ) ( ) ( )2 2 2
oo

mech2
g

Ni Ni Ni AA1- d  =  - d  = dy = F dy
2 2 y 2 y

μμ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠R

 

( )2 2
o

mag mech y y o2

Ni A 1 Ni = -  = -  = - A
2 y2 y

μ
μ

⎛ ⎞
⎜ ⎟
⎝ ⎠

F F a a  

 
 
Example: electromagnetic actuators   
For the common case of two air gaps, again 
assuming the reluctance of the core can be 
neglected. 

( )2

mech
g

Ni 1- d  = F d
2 2

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠R

y  

Where Fmech is the force on each gap. 
 

The force of actuation from the two gaps is 
2

mag - total mag - per gap mech o y
Ni

http://www.cst.com/Content/Applications/Category/Magnetostatics


Magnetostatic applications examples  
The micromotor shown below uses magnetostatics to manipulate the position of the 
ferromagnetic core.  The operation of the motor is elegant in its simplicity.  The idea is simply 
that forces will be in the direction to minimize the air gaps. 

 
MICROMOTOR  (from Foundations of MEMS by C. Liu) 

           
 

Digital light processing systems (DLPs) must efficiently be able to control light signals.  One 
technology is from Texas Instruments and utilized electrostatically actuated micromirrors.  
http://www.smalltimes.com/Articles/Article_Display.cfm?ARTICLE_ID=268087&p=109 

 
A competing technology is to use magnetostatically actuators to control the micromirrors. 

 
MICROMIRROR (from Foundations of MEMS by C. Liu) 
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Electric arc furnaces 

 
 
http://www.steeluniversity.org/content/html/eng/default.asp?catid=25&pageid=2081271928 
 
A few more include DC machines, electromagnets, non-destructive testing, maglev trains, all 
manner of solenoids, sensors. 
 

 41

http://www.steeluniversity.org/content/html/eng/default.asp?catid=25&pageid=2081271928


 

 42


