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Charge vs. mass

Compare the repulsion of the Coulomb force = e-
between two electrons to their gravitational

attraction, let the separation be 1 m.

- 1m

m [9.11(10%")kg]’

kg s? (1 m)®
[1.6(10%)C]

478.854(10") F/m (1 m)’

F, =6.673(10™) =5.54(107") N

c

= 2.3(10-28) N

Fc ~ 42
= = 4.15(10%)

[¢]
With this enormous factor, it would be entirely possible that we'd be unaware of gravity.
Obviously we are aware—why? The reason is that gravity is noticed and does matter is
because most materials are, electrically, almost perfectly neutral. In fact, charge neutrality is
so finely balanced at the macroscopic scale that we easily observe the effects of magnetic
fields, which are actually a relativistic effect of moving charge (electromagnetics had already
accounted for special relativity!)

Charged people: If two average-sized people were separated by 1 m, each having just
1% more electrons than protons, what would be repulsive force between them?
Greater than Moench Hall? Yes. Greater than Vigo county down the depth of 1 mile?
Yes. Greater than the United States down to a depth of 10 miles? Yes.

In fact, the force would be greater than the “weight” of the entire earth!

What provides atoms with their stability? The attraction between the positive nuclei and
the negative electrons would, left to itself, cause the electrons to collapse upon the
nuclei (in which case, our world would not be nearly as roomy) is balanced by the
uncertainty principle from quantum mechanics (an electron’s mean square momentum
grows with increased confinement). This balance holds atoms together, but prevents
them from collapsing on themselves. Moving up from individual atoms, all of chemistry
is the interaction of orbital electrons.

How about the nucleus? What prevents the nucleus, made of electrically neutral
neutrons and positive protons from flying apart? The answer is the balance between the
repulsive Coulomb force (varying as 1/r%) and the attractive strong force (which is much
shorter range). These two forces work together to produce stable nuclei.

The interaction of time-varying electric and magnetic fields result in electromagnetic
waves, which can actually travel through empty space. Ask that of heat, sound, or any
other type of mechanical energy!
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Nuclear energy
Consider a U-235 atom undergoing fission

Fission yields
An example of one of the many fragments of

reactions in the uranium-235 A intermediate

fission process. mass, an average
of 2.4 neutrons,

and average

energy about

215 MeV.

e Impact by
slow neutron
with energy ﬂDmpﬂund 56 Ba
on order of nucleus is ¥ Meutrons can\
an eV, unstakble, initiate a chain

oscillates. reaction.

What is the source of the energy? Answer: largely electrostatics.

What is the potential energy of a Barium (AN = 56) atom separated by 10 fm from a
Krypton (AN =36) atom?

36(56)[1.6(10™ C)| _ (9)36(56)[1.6(10™ C) |

PE = : _ = (9)36(56)1.6°(10™) CV
47{109F](1044m) 10%F
367 m
PE = 4.6(10"") J=2.9(10°) eV = 290 MeV

This energy is in the ball park! The diameter used, after all, is just a reasonable rough
estimate for a nucleus with over 200 nucleons—the important point here is that the
“nuclear energy” in fission is seen to be largely due to the Coulomb force—a “Coulomb
spring” is kept coiled by the nuclear strong force until released. This happens when a
neutron taps the U-235 nucleus causing an oscillation which allows the proto-barium and
proto-krypton nuclei to separate beyond the ability of the very short range nuclear force
to hold them together.
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Electromagnetic waves
There are two keys to electromagnetic t
wave propagation. The first is that a 2z
time-varying magnetic field produces TN [
an electric field. The second is that a ¥, - ,
time-varying electric field produces a _ HE '
magnetic field. These two effects i f et
bootstrap themselves to produce a 4
traveling electromagnetic wave.

The study of electromagnetics provides the foundation for photonics, wireless, antennas,
electrical power, microwaves & RF, and high-speed circuits. The enormous topic of
lumped element circuit analysis (lumped elements, KVL, and KCL) is an approximation
to the electromagnetic equations, the quasi-static approximation.

The history of electromagnetics is a rich one. Following are a few random notes:
. Electron comes from the Greek for amber, Greek word for amber, niextpov. If
amber is rubbed with a cloth or with fur, it aquires an electrical charge.

. An old story, probably apocryphal, goes that a Greek shepard, Magnus, noticed the
iron nails in his sandles were attracted by some black stones—Iater called loadstones.

. Early electrical workers learned to store charge in Leyden jars in which the
“electrical fluid” was thought to “condense.”

. To obtain larger stores of charge, these Leyden jars were often arranged in rows,
which Ben Franklin thought looks like “batteries” — batteries of canon that is.

. Volta used stacks of dissimilar metals separated by a conductiving fluid to
produce the first “voltaic pile”, what we’d today refer to as a battery.

° Early workers notices that, upon lightning striking a house which took a course through the
cupboards, many knives and forks were melted, but others were found to be magnetized.

. In the 1860’s James Clerk Maxwell presented his electromagnetic theory.

) In the 1880’s Heinrich Hertz confirmed the existance of the EM waves.

The classic history of electromagnetism is a superb work by Edmund Whittaker, A
history of the theories of Aether & Electricity, which takes the topic to 1926.

Selected online sources:
http://www.abdn.ac.uk/physics/px4006/histem.pdf
http://history.hyperjeff.net/electromagnetism
http://www.electromagnetics.biz/History.htm
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Electromagnetics is fundamental to many areas of science and technology. ltis a
foundational topic in electrical engineering and provides a basis for advanced practice.

Knowledge of electromagnetics will maintain its utility even as technology constantly
changes — indeed, its importance will likely grow. Electromagnetics plays a role in most
technologies in electrical engineering and physics such as

semiconductor devices (LEDs, diode lasers, transistors, diodes, etc.)
optics and optoelectronics

high-speed electronic systems

electrical machines and power

antennas and wireless

sensors (resistive, magnetic, capacitive, optical)

electromechanical systems, MEMS (sensors, actuators, switches)

Nooabhowh~

Increasing frequencies used in high-speed design has made it critical that engineers in circuit
design and layout develop an understanding of electromagnetics (EM). At higher
frequencies area-fill capacitance and connection inductance can no longer be ignored, traces
become transmission lines, conductors become effective antennas. At higher frequencies,
simple lumped-element models become inadequate and electromagnetics is necessary to
simply understand circuit behavior.

Many of these effects become evident when system dimensions are comparable to signal

wavelength. Consider the table and graphic below showing wavelengths for an EM wave
traveling at a speed of 3(10%) m/s as the frequency is varied.

frequency vs. wavelength _
(540-1650 KHz) (88-108 MHz) Microwave
3 MHz — 100 m T |
AM Radio FM y
300 MHz - 1m 1GHz 1006Hz/ I
9
_)

700 600 500 400
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near ar
At 3 MHz, most systems are much sott” ™ btare”
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. . . ags Fi
gigahertz frequencies, this condition 1 e e e R P R
|
often no longer holds, and one must [
i e N I N MO [ GO N NN IO RIS BT (| . |
resort to electromagnetic fundamentals i1 (meters) T T e E e T
to understand system behavior. 5V = oDt g Vs Scde
4 YD INC; ®
- Lk S 3 ’ 3 Mount
Our study will define relationships R ol T Fednel B Bacia  Abm nucies
. Opti
between the field sources (charges and Radio window whklow
T I T
currents) and the resulting electric and : Transparent T 1M
10|0rn| 1Im I 1::m! ImLmlmolnm
10m 10cm 100 um  1pum

Copyright © 2005 Pearson Prentice Hall, Inc.
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magnetic fields. Fundamental quantities like energy, force, voltage and current and their
relationship to the EM fields will be discussed. The relation of the EM fields to electrical
parameters such as resistance, capacitance and inductance will be explored as will the
consequences of wave propagation for time-varying fields.

The idea of a electromagnetic field began with Michael Faraday in the early 1800’s
who pictured flux lines emanating from electric charge. The density of the flux lines was
associated with field strength, which, together with their direction constitutes a vector
field. The electric and magnetic fields, vector-valued functions of position and time, are
produced by charges and currents.

Michael Faraday pictured electric flux lines emanating from electric charges.

electric flux
+ + ~ oul -
~ in

He pictured magnetic flux lines surrounding currents.

magnetic flux

direction from
right-hand rule

Vector notation

Vector quantities will be bold type. F = Far denotes the vector F which consists of a
magnitude F in the direction of the unit vector a¢.

In class and videos, vectors will be underlined and unit vectors are denoted by a carrot. F = Fa,

is read that the vector F has a magnitude F and is directed along the unit vector a_ .

Remember to use vector notation properly in all your work—will help both your
understanding and your grade!

Some necessary mathematical fundamentals include
1. coordinate systems (rectangular, cylindrical, spherical)
2. vector operations (gradient, divergence, curl)
3. vector calculus (line integrals, surface integrals)
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Rectangular (Cartesian) coordinates
x distance along x-axis or distance from y-z plane
y distance along y-axis or distance from z-x plane
z distance along z-axis or distance from x-y plane

position vector
r=xax+yay+za,

differential lengths
dx, dy, dz vector differential length: dl =dxas+dya, +dza,

differential areas
(ds) dxdy, dydz, dzdx
(ds) +dxdy a,, *dydz a, +dzdx a,

differential volume
dxdydz

variable range
-c0 {0 oo for X, -co to oo for y, -oo to oo for z

Z axis
ds = dxdy a,
b 4
Z (< dz
e dv
dx
1 dy
a o
)X/ : - y axis
L, Ay
X /- - - ________ 4 —

Rectangular coordinates have some attractive properties and are often the standard
coordinates used when symmetry considerations do not urge the use of another system.

1. The directions of the unit vectors are constant and not functions of position.
2. The differential elements are not functions of the coordinates.

3. The unit vectors are mutually orthogonal (a, * a, = a,*a, =a, * ax = 0)
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Cylindrical coordinates
p distance from z-axis
¢ angle from +x-axis (to determine sense, align the thumb of your right hand in
along the +z-axis, direction of positive rotation is along your fingers)
z distance along z-axis or distance from x-y plane

position vector
r=pa,+za,
+ Note the position vector does not explicitly involve ¢ but is present via the a, unit vector.
« In the cylindrical coordinate system, both a, and a, are functions of position.

differential lengths
dp, pd¢, dz vector differential length: dl =dp a, + pd¢ a, + dz a,

differential areas
(ds) pdpd¢, dpdz, pdédz
(ds) +pdpd¢ a,, +dpdz a,, +pddpdz a,

differential volume
pdpdddz

variable range

0 to w for p, 0 to 27 for ¢, -0 to « for z
Z axis

f ds - pdidp a,
az

R K 1‘,/ dz
NS
ST

; y axis

i A
DQﬁ 2

X axis T <
3

Cylindrical coordinates are useful in systems with cylindrical symmetry.
1. The unit vectors in the cylindrical coordinate system are mutually orthogonal.
a *a, =ay *a;=a,*a, =0
2. Unlike the rectangular coordinate system, the unit vectors are not all of constant
direction. The direction for a, and a, depend on position.

>
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Spherical Coordinates
r distance from origin
06 angle formed starting from positive z-axis and moving to position vector
¢ angle from the positive x-axis (to determine sense, align the thumb of your right
hand in along the +z-axis, direction of positive rotation follows your fingers)

position
r=ra,

differential lengths
dr, r sin6 d¢, r do vector differential length: dl = dr a, + r sin6 d¢ a, + r d6 a,

differential areas
(ds) r sin® d¢ dr, r*sind d¢ do, r de dr
(ds)  rsin@ d¢ dr a,, 2r°sin® d dO a,, +r do dr a,

differential volume
r’sin® dr d¢ do

variable range
0 to o forr, 0 to n for 6, 0 to 2x for ¢

Z axis
z
: a, dr
5 - : rdo
-~ " aE]' p
- r :\ r sind di
- : y axis
;/_ ‘¢ - \ : H a - K - . - - .
—i
i A
¥ avie

Spherical coordinates are useful in systems with spherical symmetry.

1. None of the unit vectors have a constant direction. The direction of each is a
function of position.

2. The unit vectors are mutually orthogonal. a; *a, =a, *as=a,*ay =0.
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Electrostatics 3¢

In the 18" century, Charles-Augustin de Coulomb found the force between two charges
acts on a line connecting them, that it is proportional to the product of their charges, and
that it is inversely proportional to the distance between them. The force is attractive if
the charges are of opposite sign and repulsive for like signs. The relation is referred to
as Coulomb’s law.

F o % ar (force on q, due to q,)

R
In the MKS system, F = &22aR , Where ¢ is the
47 eR
permittivity of the material between g, and q.. X

The permittivity of vacuum, or free space, &, = 8.854(10™"?) F/m.

Coulomb’s law is linear with respect to sources, so that superposition holds.

Coulomb’s law and superposition: an example
Calculate the force that n charges, g1 through q,, at positions ry through r,, exert on
charge q atr.

F= .-1%:&2 |

R, =r-r (vector from position of i charge, r, to charge q at r)
R =|R| (distance from i charge to charge q)

a =R,/R (unit vector from i charge to charge q)

Electrostatic fields 3x
The electrostatic field, E, is the force per unit charge on a test charge q as the charge of
the test charge goes to zero.

E= lirnE
-0 q
The reason the electric field is defined as a limit is that a finite charge would carry its own
field which would affect the very field being characterized by measuring the force on q.
That is, if g were finite, its field would affect the F being measured. Defining the electric
field via an infinitesimal test charge avoids this difficulty.
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http://www.rose-hulman.edu/class/ee/HTML/ECE340/coulomb_electric_field/coulomb_electric_field.htm
http://www.rose-hulman.edu/class/ee/HTML/ECE340/es-340-efield-sup/es-340-efield-sup.html

Electric fields and superposition Ee3
From the force exerted on q by one charge q’,

i 47?qu2 o
The corresponding electric field is
E= limE = LzaR
=0q 4reR
R=r-r (vector from position q' at r' to charge g at r)
= |R| (distance from g' to q)
az =R/R (unit vector from q' to q)

The force exerted on q by a collection of five charges was found above to be

n

F= 2:47rgR2a

The corresponding electric field is therefore

Continuous charge distributions Ee3
The results from the preceding example can be extended to include the field from
continuous charge distributions rather than from discrete charges.
_ I dq'
47rgR2

For volume charge distributions (dq’ = p,dv’)

== ” 4ﬂ5R2dvaR

charge

dq'=pdv'atr infinitesimal source

r position of source charge (dqg')--source point
r position of test charge--field point

R=r-r vector from source to field point

ar =R/R unit vector from source to field point

Similarly, for surface charge distributions  E = ” ds' a;

charge

4ﬁ5R2

And, for line charge distributions  E = I 2 pRz dl' ag
neE

charge

Charge distributions

Electromagnetic Fields

11


http://www.rose-hulman.edu/class/ee/HTML/ECE340/coulomb_electric_field/coulomb_electric_field.htm
http://www.rose-hulman.edu/class/ee/HTML/ECE340/coulomb_electric_field/coulomb_electric_field.htm

Charge always exists in discreet chunks — the magnitude of the charge of an individual
electron is 1.6(10"°) Coulomb.

Since charge occurs in discreet quantities, charge can never be truly distributed. There is
always granularity. Uniform distributions are useful approximations when the scale of
interest is much larger than the scale in which granularity is evident. These
approximations are used constantly in macroscopic electromagnetics and it is well to
discuss them at this time.

Py Volume charge distributions (C/m?) are used for charge distributed over a volume.

Ps Surface charge distributions (C/m?) are used to indicate charge is distributed over
a given surface. This is itself an approximation to what is actually a volume
charge density where the charge is distributed in a region very close to some
surface. Consider a charged electrical conductor in which its excess charge is
confined to a region very close to the surface of the conductor. In this case, it is
reasonable to describe the charge distribution by a surface charge distribution (in
C/m?) rather than describe the distribution as a volume charge distribution.

pL Likewise, line charge distributions (C/m) are used for charge distributed over a length,
as, for example, in a charged wire.

Example: infinite line charge Ee
Find the electric field due to a line charge along the z axis.

—_ pL ]
= dl'a
ch;[ge4ﬂgR2 R
r=za, r=pa,+za,
R=r-r=pa,+(z-2)a ar=R/R
° a +(z-2z)a
E= [ L dla,= | R P G
Lam L e o o]
E= | = s [pa, + (z-2)a,]dz

z '°°4n8[p2+ (Z-Z')z]2

Since the limits are from z' = -« to o, any finite value of z does not affect the result.

E= I A 5 [pa, -Za, |dz

Z=- 4n8[p2 + 222

Since the limits along z’ are symmetric, the a,
component is zero after integration.
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E = .[ s 3,08. dz' z
Z‘°°47z'€[p +Z]

pLdZ’
_ Ppra, T z
dre ? ,O L g2 2 field point (r)
VS G Ay
47[5 pz Z'2 +,02 e X
p dz'[
E = prapi = A a )
4re p* 2mep ”

Example: infinite sheet of charge  xx
Consider an infinite plane of charge over the z = 0 plane.

= —s __ds'
4ﬂgR2 R

charge



To early researchers, action-at-a-distance relations such as Newton’s law of gravitation
and Coulomb’s law smacked of mysticism or magic. They sought an explanation that
would mesh with their experience and be consistent with intuition — in short, they sought
mechanical models to describe and think about EM fields.

In the 19" century, Michael Faraday proposed that charges and currents create
electromagnetic fields which act as an intermediary agent from source to effect. In
particular, for electric fields, Faraday pictured flux lines emanating from electric charge.

Gauss’ law states that the total electric flux leaving a charge is equal to the charge.

Ve =q ‘\\ 1 /‘/' \\ . /‘/

electric flux

Where v, is the total - + — + ~ out — - -
electric flux coming out ~ in

from charge q. a / # \:‘“ - ol / f b\“"‘

The total electric flux (in Coulomb) can also be found by taking the surface integral of the
electric flux density vector, D over a closed surface which encloses the charge q.

Using the flux density, Gauss’ law reads <ﬁ> D.ds=q

surface
The oval in the double integral sign indicates the integral is over a closed surface—a
surface that separates inside from outside, a boundary with no holes.

In this relation, D is the electric flux density vector in C/m?. The differential surface
element, ds, is also a vector quantity. Since Gauss’ law equates outward flux to charge,
the direction of ds should be taken as outward from the surface if the integral is to be
equal to the total electric flux coming out from the charge.

Surface integrals
Since electromagnetics involves many surface
integrals such as

Ve = @ D-.ds, desired flux

surface direction
let's take some time to simply explore surface %ﬁ
integrals in more detail.

First, note that a vector differential area always
has two possible directions for its unit normal. For
example dxdy a, or dxdy (-a,).

Electromagnetic Fields 14



To find the flux traveling in the direction indicated in the above diagram, the direction for vector
differential area is chosen in the same direction. For example, to find the flux leaving a
volume, an outward directed differential area (leaving the volume) would be used.

Example: Cartesian xx
Given D =2xy a, + 3xz a, C/m? find y passing through the surfacey =0, 0 <x <1 m,

0 <z <1m inthe a, direction.

Here, since the flux desired is in the +a, direction, ds is chosen to be dxdz a,.

— ds = dxdz a,
L y

v = .1[ j [(2xy|y=o)ax + 3xz ay} - dxdz a,

z=0x=0
=3 ﬁ1 2_2
2|, 2

Example: spherical surface ke
Given D = 5/r*a, C/m?, find the electric flux passing outward through the surface of a
sphere centered at the origin with a radius = 1.5 m.

1

J =0.75C

0

dl=dra +rdba, +rsin0d¢a,

The differential length is a good place to start. ris constant on the surface of a sphere
centered at the origin, so that ds =rd@ rsin 6 dp a, =r” sin 6 dod¢ a,

Ts
2
0¢:0r

=5 (-cos 0

a, r2|r=15m sin 6 dod¢ a,

r=15m

roo)(9%,) =5(4m) C

\V:

D
1| C— 3
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Example: spherical surface Ee3
Given D = 5/r*sin 8 a, C/m? find the electric flux passing outward through the surface
of a sphere centered at the origin with a radius = 1.5 m.

n 2n
5 . 2 .
y = — sinfa, «r_ sin 6 dod¢ a,
9'[04,'[0 2 r=15m |r—1.5m
2 T cos 20
=5(¢|¢=0) jsm 0do = 5(2r) j( )de
=51°C
Example: cylindrical surface Ee

Given D = 5/p a, C/m?, find the total electric flux passing outward through a closed
cylindrical surface with its axis on the z-axis, with radius 4 cm, extending from
3cm<z<2cm

Step 1: determine differential areas directed outward from surface

sides ds = p| 0, d0dza, = 0.04d¢dza,
top ds = pd¢dpa,
bottom ds = pd¢dp(-a,)

Step 2: form dot product D * ds on each surface

sides Ds.ds= i a, + 0.04d¢dza, =5d¢dz

Ply = 0.04m

top and bottom, D «ds =0

Step 3: determine limits and perform the integral y = Cﬂ.) D «ds

surface

answer: y =0.51 C

Numeric Approximation

One classic means of estimating the area of a definite integral is to express the integral as
a Riemann sum and approximate the area under the curve as the sum of the rectangular
areas of constant width and whose heights are determined by the function's value.

One possibility in determining rectangle heights would be to use the value of the function
at the initial point in the interval as the height of the rectangle. This would lead to the
formation of a left Riemann sum. Another possibility would be to use the value at the end
point for a right Riemann sum, and another would be to use the value at the midpoint for
a middle Riemann sum. Here, we will use a middle Riemann sum.
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http://www.rose-hulman.edu/class/ee/HTML/ECE340/340-es-spherical-surfaceint/340-es-spherical-surfaceint.html
http://www.rose-hulman.edu/class/ee/HTML/ECE340/340-es-cylindrical-surfaceint/340-es-cylindrical-surfaceint.html

The illustration below compares these approaches to approximating an integral. The first

uses rectangle heights at the initial point of an interval (width of rectangle), the second
uses the end point, and the third uses the value at the midpoint of the interval.

Taking the value at the midpoint
of an interval results in a robust
approximation that is more
accurate for most curves.

it \

¥

:

¥

nMpmﬂ

Numerical approximation: finite differences xx
Given D =2xa, + 3x’ya, C/m? find the approximate electric flux, y, passing through

thesurface z=0, 0<x<1m, 0<y<1m inthe a, direction. Use (0.1 m)2 areas.

It may be more straightforward to form the sum from the integral.

1 1

J' J (2xa,+ 3x°ya, ) « dxdya, = I

y=0x=0

1
y=0

x
Il —y

Using a computer to calculate the sum (here Maple is used)

1

y=0x=0

10 10

i=1 j=1

1
I 3x%y dxdy

(2x a,+ 3x’ya,)  dxdya, = > > 3(0.1j - 0.05)° (0.1i - 0.05)(0.1)(0.1)

> flux := sum (sum (3 * (0.1 *j - 0.05)"3 * (0.1 *i-0.05) * 0.1 * 0.1, i = 1..10),j = 1..10);

flux := .3731250000

Example: electric flux density from charge g at the origin.
Consider a point charge q at the origin. From the charge’s symmetry, the field must
have spherical symmetry, where the magnitude of the electric flux density vector is

independent of ¢ or 6 and can only depend on r. Symmetry also causes the direction of

the electric flux density vector to be in the a; direction.

D=Da
D not a function of ¢ or 6.

Given this, a surface, a Gaussian surface, is chosen so that the Gaussian integral can

be evaluated. Here, the Gaussian surface is a sphere, centered on the origin.

ds =r® sin0dedp a, —

T

Dr? | 2j sin 6d0d¢ = Dr? (¢

0=0$=0

T

<ﬁ>D-ds= .[

Electromagnetic Fields

in)(-coseu‘:o) =4nDr’=q —

j Da, -r? sin 6dod¢ a,

surface 0=04=0

D_

4pr? T

9_a
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Example: spherically symmetric distribution Ee3

Consider a volume charge density where a charge q is evenly distributed over a sphere
of radius a. Given this charge, the field has spherical symmetry, again meaning that the
magnitude of the electric flux density vector must be independent of ¢ or 6 and can only
depend on r with its direction in the a; direction.

z
q, radius a

D=Da,
e

D is not a function of ¢ or 6. /’7IL y

4

The Gaussian surface is a sphere, centered on the origin. The difference here is that
there are two cases, one for r<a and the other for r>a.

r<a
ﬁ) D.ds=q
surface
n  2n
[Da «rsinododga, = [[f p, dv= j j j 4 rsing' dr'de'dy’
0=09=0 volume ¢'=00"=0r= Ofﬂ;a3
n 2n
Dij jsin 6dod¢ = 4nDr? = %ﬂrg’
0=0¢=0 —ra’ 3
3
3
q r ar
D= —a = a
4nr’* @® " 4na® "
r>a
n 2n
J. D a, or? sin 0dodo a, = ” p, dv = J J I 4 r'2sin9'dr'd9'd¢.
0=06=0 volume $=00=0r= Ofﬂ;as
n 2n
* [ | sinododp=4rDr* = 9 A o
0=0¢=0 —rca3 3
3
D=—1_a
4rr

Notice the only difference in the mathematical procedure between the two cases is in the
r limit in the volume integral which changes from a (for the r<a case) to r (r>a case).

This one change results in marked differences in field behavior.
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Electric flux density
The electric flux density vector is related to the electric field via permittivity. The electric
field due to a point charge q at the origin (force per unit charge from Coulomb’s law).
E=—3
drer

al‘

The electric flux density due to a point charge q at the origin (from Gauss’ law)

p=_4

7 &
Therefore D = ¢E. This relation is general for linear homogenous materials, not just for
point charges at the origin—more about permittivity later.

Example: line of charge Ee3
Use Gauss’ law to determine the field due an infinite line of charge, p., on the z-axis.
Due to the clear symmetry involved, cylindrical coordinates will be used.

The fact that the charge is an infinite line charge along the z-axis permits the form of the
field to be determined: 1) since the line charge is infinite in extent along z, the strength
of the field cannot depend on z and neither can the field have a component in the a,
direction, 2) since the charge producing the field is an infinite line charge, symmetry
implies that the strength of the field cannot depend on ¢ and neither can the field have a
component in the a, direction, and 3) these considerations require the form of the field to
be D =D a,, where D can only depend on p.

The field’s symmetry is the key in using Gauss’ law to determine the field. With this
symmetry, a Gaussian surface (a cylinder with its axis on the z-axis. Choose the
cylinder to have radius a and length L as shown on the diagram below) can be chosen
such that the surface integral (the Gaussian integral) becomes tractable.

Note the central role of symmetry in this problem:

1. The field cannot depend on z since the line charge is on the z axis
and the line is considered infinite in length. The physical
environment is not a function of z, so neither is the field.

2. The field cannot depend on ¢ since the line charge is on the z axis
which so that the physics of the situation is also independent of ¢.

3. The field can only depend on p and, moreover, must point in the *a,
direction, depending on whether p, is positive or negative.
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Notice how the Gaussian surface serves to make zj

the evaluation of the Gaussian integral simpler. :1—;1 z,+L
|
pg (CIm) ——= |}
1) The field is perpendicular to the surface normal Gaussian L
on the end of the cylinder. surface : ' y
|
|
2) The field is parallel to the surface normal on the /,'T :
cylinder walls. Moreover, the field must be a " ] :
constant on the cylinder walls since p is ';—_!J z,
constant and it is established that D = D(p). +|3|""—
<.|.:'|'>D +ds=q
” D-ds+”D-ds+ ” D« ds = Qe
sides top sides
z, +L 27 a 2r a 2r
[ [Da,pdgdza, + | [Da,-pdgdpa,+ [ [Da,pdgdp (-a,)=p L
z=27, $=0 p=0¢=0 p=0¢=0
zo +L 27 2z, L 27
[ [Dpdgdz= (Dp) | [dgdz=p L
z=2, ¢=0 z=2, ¢=0

DpL2z=p L —» D=2

Knowing the magnitude and recalling from symmetry arguments that D = D a,,.

D=2 a4 — E=_—£_a
27p ”
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Example: infinite cylinder with its surface charged Ee3

Determine the electric field for a cylinder with a surface charge, ps = 3 pC/m?. The
cylinder has the z-axis as its axis. The radius of the cylinder, p = 0.15 m. The cylinder is

infinite in extent, -o< z <

There is cylindrical symmetry with p. = 27 (0.15 m) ps. Using the above result, one

_ [ 3 pC/m? p=015m
* |0 p # 0.15m
obtains.
0
answer: E =1:0.15(2r)3(10™) a

2mep

Example: distributed charge ke

Determine the flux density from an infinitely long cylinder of radius a with a distributed

N
’C

£<0.15m

0>0.15m

volume charge density, find D for p < a and for p > a.

_[2p C/m?® p<a
' 0 p>a

From the charge distribution, it is clear the field has cylindrical symmetry so that the

Gaussian surface is a cylinder of length L with its axis along the z-axis.

ZotL 27z p

[ [ [2p (pdpdgdz)

_ _ 7=z, ¢$=0 p=0
@D «ds = Qinside =

z,+tL 27 a

[ | 20 (pdpdpdz) + [ [ [0 (pdpdgdz)

2=z, ¢=0 p=0
2
2’; a, p<a
answer. D = 5
2a
3p a, p>a
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z=z, ¢=0 p=a

p<a
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Example: Coulomb’s law implies Gauss’ law
For a charge q at the origin, the force on a test charge q is

F — qqt

= a
4drer® "

The electric field—the force per unit charge due to the charge q at the origin is

E= -3 >,
drer

Integrating E over a sphere, centered on the origin, surrounding the charge q and using
the definition of permittivity, D = ¢E.

g:ﬁ D.ds = 43]3 9_a .ds= <ﬁ> 9_a,-r’sinddgdoa, = q

47r? zr? '

sphere sphere

<j:ﬁ D.ds =q

sphere

sphere

So that using Gauss’ law shows the charge to be q as was derived from Coulomb’s law.

The importance of symmetry in analytic solutions
In the two preceding techniques—using superposition integrals and using Gauss’ law,
the ability to find analytic solutions depended upon the charge distribution’s symmetry.

First, when using Coulomb’s law in the superposition integral, the charge’s symmetry
allowed us to analytically evaluate the resulting integrals to obtain a closed-form
solution. Itis true that the integrals could have readily been written without the given
symmetry since only a knowledge of the charge’s distribution in space is needed for this.
But, for analytic evaluation, symmetry was a critical factor.

Similarly, when using Gauss’ law, symmetry often resulted in the existance of a suitable
Gaussian surface. This allowed the crucial step of evaluating the Gaussian integral to
be carried out—often not possible without sufficient symmetry. With symmetry and the
proper choice of Gaussian surface, evaluating the Gaussian integral is often trivial.
Without this symmetry, however, its evaluation would often be anything but trivial and
usually required numeric evaluation.

How does one approach a more general situation, where perhaps the charge is not so

conveniently arranged? One approach is to use a numeric tool like MATLAB to evaluate
the resulting superposition integrals—an approach which will be explored via homework.
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This approach is general for those cases in which the charge distribution is known.

Unfortunately, in many cases, we're faced with a boundary value problem in which the

fields or potential on a boundary surface is known and the charge is an unknown. In this

case the knowns include the region’s geometry, material properties, and boundary
conditions. We have, therefore, two types of problems—one in which we know the

charge and the other in which we know boundary conditions. Both types are important.

Boundary value problems are solved via differential equations and, therefore, a
mathematical description of electromagnetics in terms of differential equations is
important.

Divergence Eed
Consider a cube of dimension Ax Ay Az with one corner at xyz.

X

The net flux leaving the volume Ax Ay Az in the a, direction is:
l//e—x(out) = [Dx (X + AX’ y’ Z) - Dx(X’y’Z)](Ay AZ)

Divide and multiply by Ax

_ [[Dy(x + Ax, y, z) - D, (x,y,2)]
x (out) AX

} (Ax Ay AZ)

In this expression, if Ax, Ay, and Az — 0, the result is:

@eor) = Drdxdydz = e dy

OX OX

Similarly,

oD oD,
(dl//e‘om)y = Wy dV and (dl//e—out)z = az dV
dl//e-out = (dl//e-om)x + (dy/e-out)y + (dl//e-out)z

oD oD
= aDXdV+ ydv+6DZdv=(aD"+ y+aDZ)dv
28 oy 0z x oy oz

The quantity within the parentheses occurs often and it called the divergence of D.

div D can be written as V « D, where V is the "del" operator
0 0 0

V= —"a +—a+—a,
ox oy ' oz
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The divergence is formed by the dot product of the del operator and a vector, in this
case the current density.

VeD = iax+iay+—aZ -(D,a, +D, a,+D, a,)
OX oy z
oD
V.D = oD, y . 0D,

The divergence of D, the electric flux density vector, is the net electric flux out per unit
volume.

D oD D

dl//e-out =(8X+ y+az)dv

X oy 0z
Can this differential relation be used to find the electric flux out of macroscopic bodies?
To answer this question, consider two adjacent differential cubes. The critical question
whether the electric flux at the adjacent areas is properly accounted for to allow
integration over macroscopic volumes

1 | » +dy (outof dv,) dy (into dv,) » o

It is apparent that, when taking the divergence over adjacent differential volumes, the
common flux across their shared surface areas will be positive for one and negative
which will cancel for the composite volume.

o

This observation for two adjacent differential volumes can be extended to any number of

differential volumes. This permits the use of integration of an infinite number of
differential volumes for the case of macroscopic bodies and allows divergence to be
used to find the electric flux out of macroscopic volumes.

l//e-out = Ij Ve D dV

volume

Electromagnetic Fields
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Example: charge within volume Ee3
Given that the electric field is U= 5 a, g find the total charge within a sphere of

4rer

radius 10 cm which is centered on the origin. Do this in two ways: with a surface integral
and then with a volume integral.

1) surface integral
by Gauss’ law q =y, = @5 D.ds

surface

4ner T C 4nr " m?
2n m 75
ve= | | a, + r’sind do d¢ a, =237C
¢=09=04TE\/F r=0.1m

2) volume integral

G=v,=§p D-ds = [[] V-Dav

surface volume
, 75
olr
1 4nr C _1(3:)75 C 3 75 C
VD= 3 T 2 A 3 T o - 3
r or m r 2 4t m 2r'’4n m

fIf v- de-ofzf j 3 75r3|n6d6dcpdr—237C

3/2
volume r=0¢=00= 02r

Divergence Theorem
Since the net electric flux out for a macroscopic volume can also be expressed in terms
of a surface integral, the result is a relation between a volume integral and a surface

integral.
Veor = [[[ V-Dav=JpD-ds

volume surface

Although this relation has been developed for the case of electric flux, the
derivation has been purely mathematical and holds for any vector quantity. The
relation is known as the divergence theorem.

If the volume is reduced to dv, it can be seen that the physical meaning of V « D is the
net electric flux out per unit volume.
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What is this quantity, the net electric flux out per unit volume? Using Gauss’ law which
states the electric flux out of a charge is equal to its charge, the flux out per unit volume
must be the charge per unit volume, p,. The result is the point form of Gauss’ law which
is discussed further below.

Point form of Gauss’ law fed
Combining the divergence theorem for electric flux density with Gauss’ law,

Veout = Q
[ ¥-0ov= ] n o
volume volume

This relation holds for any volume. The only possible way for two volume integrals to be
equal for an arbitrary volume is for the integrands themselves to be equal. The result is
the point form of Gauss’ law.

VeD=p,

From the meaning of divergence of a flux density (net flux out per unit volume), V « D
must be the electric flux out per unit volume. Taking this observation together with
Gauss’ law, which states that the electric flux coming from a volume is equal to the net
charge within the volume, the electric flux out per unit volume can be thought of as the
charge per unit volume. This is the meaning of the point form of Gauss’ law.

In terms of the electric field.
VecE=p,

If the permittivity is not a function of position, it passes unchanged through the del
operator.

vVeE= 2

&

So far, the focus of discussion has been on coordinate systems, vectors, vector calculus
and the relationship between charge and the electric field, electric flux and electric flux
density. Now, electromagnetics will be viewed through the lens of energy and potential.
One advantage in looking at the problem in this way is that one deals with scalar
functions (energy and potential), which can then be used to find fields.
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Potential Energy Ee3

A charge q in an electrostatic field E, is acted upon by the field with a force F = qE. To
move charge q against this field, an equal and opposite force, Fappieq = -F, must be applied
to move charge.

As the charge moves, work is done on the charge by the applied force. This work is not

lost to thermal energy through friction. The work done on the charge acts to increase the

charge’s potential energy, just as pushing against a spring increases the spring’s potential
or just as moving a ball uphill in a gravitational field increases its potential energy.

The reference point for potential energy—the point where the potential energy is
considered to be zero—is arbitrary. Only differences of potential energy are physically
meaningful (just as in circuit analysis where the absolute potential of the reference node is
arbitrary, since only potential differences affect circuit behavior). In electromagnetics, the
reference is typically taken to be at infinity. Also, by convention, the potential at infinity is
take to be zero.

As charge is moved from infinity to a position r, a force must be applied to the charge
which precisely balances the force exerted on the charge by the electric field. In moving
the charge, this force does work on the charge. The differential of this potential energy is

dW =F,_ e dl = -qE.dI
The resulting electric potential energy of the charge q at position r in the field E is
[ dw'= [ -qE.dI
=0 w0
W(r) = [ -qE-dl
Rather than tracking the potential energy of a particular charge q, the potential energy

per charge, the electrostatic potential, is often used.

V(r) = W(r)

= [ -E.dl

The electrostatic potential is analogous to a node voltage in circuit analysis. In nodal
analysis, a node voltage is defined as having its positive at the node in question and
having its negative sign at the reference node. Here, the electrostatic potential is
referenced to infinity. Infinity is the “reference node” for electrostatic potential, the place
where the negative sign goes.
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Example—potential difference between pointsa and b. s

W(b)

- W) _ [*-E-al Vib) = = > = [C-Eeal

q
V,, = V(@) - V(b) = ["Eedl - [ Eedl = [-Eeal

V(a)

V,, = [ -E-dl

b

Notice that is the work per unit charge expended in moving charge from b to a against
the field E. The following formula might be a convenient form in which to remember
potential differences.

V,, = [[E-dl V, = [ E-d
Example—electrostatic energy and electrostatic potential

Coulomb’s law gives the force between charges. The force F on charge q at r due to
charge g’ atr’is

z
q
/ 9
y
r r-r
X q

F = qq : r- r'

4 e |r - r'| |f - r|
Ir-r ~ distance between charges
|r - r'| ~ unit vector pointing from g' to q
r-r

Take r =0 (g’ at the origin).
__ 99 r

__a9g
ane (] Amer?

r
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Find the work or energy required to move q at « to an arbitrary position r.

As an aside, note the problem has spherical symmetry, which makes the spherical
coordinate system the natural coordinate system to use. The applied force -F moves q
against the coulomb force F.

dW =-F «dl (this is the differential of work done by the applied force -F)
r ' ] r ]
Wi = [ 99 g qq{_j j= qgq
w drer

4rer? dre| r
W is the work done on the charge g in moving it from <« to the position r. The work required to
move q is transformed in to potential energy, electrostatic potential energy. As the applied
force, -F, pushes q against the coulomb field established by q’, the potential energy of q
increases. The charge is being rolled up a potential energy hill. The applied force -F pushes
g up an electrostatic potential energy hill. The charge moves in mechanical equilibrium (the
external force, -F, just balancing the field’s force, F) so that kinetic energy is not increasing.
One speaks of work being done “against” the field.

r=oo

potential
energy of q

;
What shape are the surfaces of equipotential energy in this case? Due to the spherical

symmetry the field (which results in F having a radial direction), the surfaces of
equipotential are concentric spheres.

Consider the force required to move q in the coulomb field of g’. What force is required
to move q on the surfaces of equipotential energy?

Answer: None, otherwise work would be required for them to move on the surfaces,
which would then not be surfaces of equipotential energy.
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Potential energy, force, potential, electric field 3¢

From mechanics, the differential of energy done by a force -F is the dot product of the
force and the differential length (dW = -F « dl). Consider F to be the force exerted by
the field on a charge g and that -F is the force that must be exerted to move the charge
against the field. Therefore dW = -F - dl is the differential of the work done by the force
—F on the charge in moving the charge against the force of the field, F. The work done
on the charge by the applied or external force, -F, is equal to the increase in the potential
energy, W, of the charge q.

Now, consider the differential of work from purely a mathematical point-of-view. If the
scalar function W is a function of position (of x, y, and z in Cartesian coordinates), then
the total differential must be, by the chain rule.

oW oW oW

dW= —dx + —dy + —adz
OX oy 0z

This quantity can, in turn be expressed as the dot product of the gradient of W and the
differential length, dl.

dW:ﬂdX + %dy + ﬂdz = %ax + May + %az . (dxax +dyay +dzaz)
OX oy 0z OX oy 0z

With this observation, one can clearly appreciate the meaning of the first term in the dot
product, dW = -F « dI.
oW W oW _ [aw oW oW J
—a, *+ —a, — a, + a, + a

-F= _a‘x + AL Dx AL Ao Yz
ox oy ’ 0z ox oy ’ 0z

The expression
oW oW oW
—a, + —a, + —a
OX oy "’ 0z
is the result of the del operator acting on the scalar function W, called the gradient of W.

VW=(aX§+aa . aj _ W, oW oW
X

A az_ AL Yx + —a * _az
Yoy 0z Ox oy "’ 0z

The gradient of W is a vector valued function. It points directly “uphill”, in the direction of
the maximum increase in W. Its magnitude is the value of this maximum increase.

The gradient can be taken of other scalar functions of position and the meaning is

analogous. The gradient points in the direction of maximum increase in the scalar
function and its magnitude is maximum increase.
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1. The gradient of a scalar function of position is a vector.
2. The gradient of a scalar function has as its magnitude the maximum rate of
increase in the scalar function, and its direction toward maximum increase.

Here the scalar function of position is W, the electrostatic potential energy. What is the
meaning of increasing W or decreasing W? It simply refers to the fact that when W
increases, the potential energy of the charge q increases. As W decreases, the potential
energy of the charge decreases.

What does the gradient of scalar potential energy signify physically? The gradient of W
would give the magnitude and direction of the maximum increase in potential energy. It
is analogous to the hiker on the side of a hill. The gradient of the gravitational potential
energy in this case would indicate “uphill.” The gradient of the electrostatic energy is
analogous; it also indicates “uphill”, this time the hill being an electrostatic potential hill.

The force that the field exerts is downhill to lower potential energies. Greater energies
are only reached if an external force does work on the charge in moving it “uphill” to
greater potential energy. The force a charge experiences in an electrostatic field is
downhill, in the direction of decreasing potential energy.

The force exerted by the electrostatic field on a positive charge (the force F = gqE) points
“‘downhill”. To move the charge uphill to greater potential energy, an external force
equal to negative the field’s force (-F = -qE) must be applied to exactly balance the
field’s force and allow the charge to be moved.

dW =-F «dl = VW .« dl
F=-VW (where F is the field force)

F =-VW where VW is the gradient of the potential field W. W is a scalar function of
position (a scalar field) and VW is a vector field. V is the del operator, kind of a vector
derivative operator. It has different forms in the coordinate systems we use.

In rectangular coordinates, V = axi + ayi + azi
OX oy 0z
In cylindrical coordinates, V = api +a, 19 + azi
op yolol} 0z

In spherical coordinates, V = ar2 + ae1 0 + 120

—_ a¢ - _
or roo rsind og¢

F:-VW:-axﬂ + aﬂ + azﬂ
oX Yoy 0z
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Dividing the electrostatic energy by charge gives the potential (work per unit charge).
Taking the gradient would then result in the force per unit charge, or electric field.

E:-V
q

_Q|§

= =-VV= -[axg—v + ayﬂ + aﬁj
X

oy ‘oz

Restating, an alternate and equivalent way of thinking about the electric field is that it is
the negative gradient of the electrostatic potential, which is the electrostatic potential
energy per unit charge.

E:ﬂ:_ ﬂ:-vv
q q
E:ﬂ:E
q q

Electrostatic potential is the electrostatic potential energy divided by charge. The Sl unit
for energy per unit charge is volts, V = J/C. Since the electric field is the negative
gradient of the electrostatic potential (also referred to as just the “potential”), equivalent
units for the electric field are volts per meter (the del operator has units of m™). The
electric field can therefore be specified with two equivalent sets of units, J/C or V/m.

Two ways in which to think of the static electric field
1. The electric field is the force per unit charge. From the example above:
F q' r-r

E=—
q  dze|r-rfr-r

For g’ at the origin (r’ = 0):

E=—3
drer

a (SI units of E are N/C)

r

2. The electric field is potential difference per unit length. From the example above:

q

drsr

E=-VV=- V( j (SI units of E are also V/m)
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Coulomb’s law and superposition: an example
If the charge distribution is known, the superposition integral can be simplified by first
finding the electrostatic potenital and then finding the electrostatic field by talking the
negative gradient of the potential function.
dq'
V(r) =
( ) J‘47r¢9R

q

As was true when with using superposition integral with Coulomb's law, the integration
will be a single integral if the charge is distributed along a path, will be a double integral
if the charge is distributed on a surface, will be a triple integral if the charge is distributed
in a volume, and will be a sum if the distribution is a collection of discrete charges.

Example—E in spherical and rectangular coordinates

q
e r
will be done first using rectangular coordinates and then using spherical coordinates.

Consider a point charge q' at the origin. Use E =-VV to find E givenV = This

i)  Using rectangular coordinates, V = 9 - 9

e r

E:-VV:-ax& + aﬁ +azﬂ
ox Y oy 0z

_ q 0 (.2 2 2\ ) 0 (.2 2 2\ 0 (.2 2 2\ %
=-——|a,—(xX*+y* +z + a,—(xX* +y* +z + a,—(x*+y* +z
o R R MRy
_ g X y z
= a, + a + a,
4 e (x2+y2+22)% y(X2+y2+22)% (x2+y2+22)%

i) Using spherical coordinates, VV = ﬂar + 1oV a, + 1 ﬁ%
or roe rsing og¢

_q o1 10 (1 1 o(1)|_ o 1Y_ ¢
=-——la, |- |t |- | tQ——=| o || T % | T >a,
dre| " or\r rog\r rsing og\r 4 e r 4 er

The electric field derived is the same regardless of the CS 0x9 <</M25d7 26474<0n/M25d7 26474<0n/M20!







Potential Surfaces 3

If the directional derivative of the electric field is zero for a particular direction, this
indicates that the potential does not change in that direction. Since the electric field
points in some direction, any direction that is perpendicular to the electric field give a
directional derivative of zero. Taken overall all space these form a surface, an
equipotential surface, which is perpendicular to the electric field (or, which is the same
thing, to the negative gradient of the potential).

The equipotential surface is perpendicular to the gradient (or the negative of the
gradient) so that the electric field is always perpendicular to equipotential surfaces

The gradient of the potential (the negative of the electric field) is perpendicular to
these equipotential surfaces which are analogous to contour maps which show lines
of constant elevations. In the case of contour maps, the gradient of the gravitational
potential would be perpendicular to these elevation contours.

Using the physical definition of potential and the gradient operation, consider the
diagram below which shows a potential, V which depends only on x and y. This plot
provides information regarding energy, electric field and the charge distribution required
to produce it.

Graphically characterize the
potential gradient and the field
at points a, b, and c.

Sketch some representative
equipotential contours.
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Example—energy, potential, and polarity
Given the potential V(r) = 0.5 x* + 0.5 y? volts, find the energy required to move 1 coulomb of
charge from (000) to (110) meters.

At (000), the charge’s potential energy is 0 J. At (110), its potential energy is 1 J. Therefore, it
takes 1 J to move the charge from (000) to (110) meter.

What is the potential difference between (000) and (110)? Itis 1J/1C =1V. Whatis its
polarity? Where are the positive and negative signs? This is every bit as important is the
magnitude. If the voltage difference is 1 V, where are the positive and negative signs?

equipotential
circles =

As the +1C of charge is being pushed by an external force from (000) to (110), work is
done on the charge and is transformed into the charge’s potential energy.

Potential energy and electrostatic potential

One might ask whether the energy required in moving the charge was independent of
the path taken. Is the energy required to move the charge along a, from (000) to (100)
and then along a, to (110) the same as that required to move the charge (000) in a
straight line to (110)?

To demonstrate whether or not it is—and it is in this case—one must compare the line
integrals along the two paths. The integrand in this case is dW = -F « dl = -qE - dI

Wogies = [ dW= [ qE - dI

start S
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Line integrals, potential energy and voltage drops
The differential of energy required to move the charge is a given direction is
dW, = -qE « dl,. Integration is used to find the total energy required to move along a

given path. Since the differential may be a function of position, the integration must be
performed in a manner which incorporates the dependence. The result is a line integral
in which the effect of the path on the integrand is taken into account.

In terms of potential, the potential rise in a given direction is simply the energy divided
by the charge, dV, = -E . dl.. A path integral would then be used to determine the total

voltage rise along the path.

a N
Vyp =- J-b E . dl, which is numerically approximated as V,, = -ZE . a,Al
i=1

Line Integrals ¢
Line Integrals are evaluated using these three steps

Step 1 Form the dot product of the integrand and the differential length such as
dW, = -qE - dl, or dV, =-E - dl, .

Step 2 Incorporate the effects of the path on the integrand and on the path
- Are any of the variables constant over the path? If so this
would allow them to be treated as constants and their
differentials would be zero.

« Are any variables zero over the path?

Step 3 Integrate

Example—line integral: rectangular coordinates, non-conservative field

Given the electric field below, find V,, between z
a =(110) and b = (000) along the path bL- Vo y
(000) a, (100) a, (110). 000 +

X a 110

E=xax + 2za, - 3xa, V/m
Step 1
Form the integrand by taking the dot, or scalar, product of —E and dlI.
dv=-E.dl=-(xa, +2za, - 3xa,)-(dxa + dya, + dza,)
dV =-xdx-2zdy + 3xdz
Step 2
Incorporate the effect of the path on the integrand,
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1 1
V,, = I(-xdx-22dy+3xdz) + I(-xdx-szy+3xdz)
x=0 §y==z=zo=0 y=0 gzzad =0
1 1
V, = .[-xdx+ IO
x=0 y=0
Step 3
1 1 X2 1 1
Integrate V, = _[ -x dx + J' O0=-—| =-—-V
=0 =0 2 2
X y 0
It would require 1C (V) =-0.5 J to move 1 C from b to a.
z
Does the potential depend on the path taken? Vv
Consider taking the path below in the same field be- ab
(000) a, (001) a, (101) a, (111) a, (110) - 000.1+10
a
E=xa, + 2zay, - 3xa, Vim
Step 1
Form the integrand by taking the dot, or scalar, product of —E and dlI.
dV=-E.dl=-(xa, +2za, - 3xa,)-(dxa, + dya, + dza,)
dV =-xdx-2zdy+ 3xdz
Step 2
Incorporate the effect of the path on the integrand,
1 1
V,, = I (-x dx - 2z dy + 3x dz) + | (-xdx-2zdy + 3xdz) I

;
+ I (-x dx - 2z dy + 3x dz)
y=0

1 1 0

V, = jo [ xdx+ [ 2()dy+ [ 3(1)dz

x=0 y=0 z=
Step 3
Integrate
21
V, = -0 -2y| -32 = (-1 -2-3) V=51V
2], 2 2

For this field, the energy required to move charge between points depends on the path
taken. That is, the potential difference is path dependent.
Wa =qVa = 1C(-5.5V)=-55J
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Conservative Fields
What is implied if the energy required to move charge against the field depends on the
path taken? What are the causes and consequences?

Physically, there must be a changing magnetic field present. If a changing magnetic
field is enclosed by the loop, Faraday’s law states that a net electromotive force is
induced in the loop.

_ do
qBE.dl--a

loop

In circuits, Kirchoff's voltage law states the sum of voltage drops about any closed loop
is zero. This is assuming a special case exists. The assumption underlying KVL is that
the loop does not enclose changing magnetic fields.

Assuming there are no changing magnetic fields present, the sum of the voltages about
any loop is zero. The analogous statement in electromagnetics is that the path integral
of the electric field about any closed path is zero.

qSE.on:o

loop

If this condition holds, the field is said to be conservative. No net work is required to
move the charge about any closed loop, which implies a single-valued electrostatic
potential function (energy per unit charge) can be defined.

If the field is derived from an electrostatic potential, the field must be conservative.

Example—cylindrical coordinates, conservative field Eed
V(r)=0.5x*+ 0.5y*=0.5 p?
E=-VV=- ﬁa + lﬂ% + ﬂaz
op ' pog 0z
E=-pa, V/Im
Determine the work required to move -1 C from b = (p, ¢, z) = (1, n/4, 4) to
a = (2, n/2, 1) via the two paths shown.
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41b
‘e path 2
path 1 N— _—"
g I 3
; ' y axis
re 2
X axis

Path 1
work required to move q from b toais W =qV,,

V., T-E-dl =TE . dl

b
Voo j‘ -pap-(dZaz+pd¢a¢+ dpao) + j-pap-(dzaz+pd¢ a¢+dpap) * j.
p z=1 p=

210

- | P
-pa, *dpa, = -{;

0
L P

51

Vab

_T -pa, +dpa, + j' -pa, «dza, + j

p=2 z=1 p=0 2

W =qV,, = (-1C)(1.5V) =-15

Path 2
V,, = j' -pap-(dzaz+pd¢a¢+ dpap) + “J/.“ _pap.(dzaz+pd¢ a¢+dpap) + Jl
221 o =n/2 p=2

n/4 1

-pa, +(dza, +pdda,+dpa, )

=(2-05)V

-pa, +(dza, +pdda, +dpa, )

4 1 2
Vab = J;papodzaz + I -papopd(l) a¢ + Iz-papodpap = _% = (_05 + 2) \
z= p= o=

¢ =n/2 2

W =qV,, = (-1C)(1.5V) =-1.5J
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Conservative and non-conservative electric fields 3
What causes the potential difference to be path-dependent or path-independent? What
is implied? What are the implications and consequences?

Terminology: If the potential difference between two points is independent of the path
taken, the answer is the same no matter what path is taken and the electric field is said
to be conservative. Otherwise, if the potential difference is path dependent, the electric
field is said to be non-conservative.

Four implications of conservative fields.

b
1. For a conservative field, the path integral jE « dl is independent of path taken between

aandb.

2. For a conservative field, the path integral about any closed loop <§>E « dl is zero.

3. Electric fields are conservative when no changing magnetic fields are present. The

integral form of Faraday’s law states @E «dl = -%

4. Any electric field derived from an electrostatic potential, E = -VV , is a conservative
field.

For a conservative field, the following path integrals would be equal.
[Eedl= [ Eedl= [ E-di= [ E-dl
b b

b b
path1 path2 path3 path 4

path 1
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If the path integral between any two points is path independent, the path integral about
any closed loop is zero.

gSE.d|=o

Consider a few closed loops associated with the diagram above.

gﬁ E.dl= jE-dI + T E.dl= jE-dI -TE-dI =0
b b b

— path 1 a
« path 2 path1 path2 path1 path2

¢ E.dli=

— path 2
<« path 4 pal

E.dl +TE-d|= j‘E-dl-ja-E-dl =0
b b

a
h2 path4 path2 path4

Ct—yp

=3

As stated above, the electric field is non-conservative whenever there is a changing
magnetic field present in which, by Faraday’s law,

_ do
<j‘>E.c||--a

where vy, is the magnetic flux. The magnetic flux is related to the magnetic flux density
vector via a surface integral.

o= [[ B-ds

surface

A consequence of having no changing magnetic fields present is that a single-valued
electrostatic potential function can be defined such that E = -VV as stated above.

Given the discussion to this point, can one say, with certainty, whether the fields below
are conservative or not? Why or why not?

If a closed path is found for which cﬁE «dl # 0, then it can be stated with certainty

that the field is non-conservative. One need look no further. One path for which
ggE - dl # 0 is sufficient to show once and for all that the field is non-conservative.

If one must use cﬁE « dl to test whether the field is conservative and path after path
gives CJSE - dl =0, one can never say with certainty that the field is conservative,

one can only say that no path has been found yet for which (j)E «dl # 0 and that

the field may be conservative. The only certainty to be gained here would be if the
electric field is given in analytic form and an electrostatic potential is found for which
E =-VV. For this case one can say that the field is conservative. A better test is
needed.
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Conservative and non-conservative fields — curl and Stoke’s theorem
The curl and Stoke’s theorem allow one to say whether a field is conservative or not,
once and for all.

The curl is the third vector operation involving the del operator discussed so far (the
first two were the gradient and the divergence)

Terminology: the circulation of F is the line integral
of a vector F about a closed path = <j'>F o dl

- — . \dl
The term "circulation" is a term from fluid
mechanics. If a fluid's velocity has a non-zero
circulation, the fluid would be circulating like a
whirlpool. Extending this idea beyond fluids, when
any vector has a non-zero path integral, it is said to
have a non-zero circulation about that path.

Notice that if the path is split into two, the sum of the two circulations is equal to the
original circulation about the original loop since adjacent portions of the circulations in
loop 1 and loop 2 (below) would cancel and only the outside contributions remain.

Extending this, the loop could be split into an infinite number of infinitesimal paths.

s dx
right:  F(x+ ? y) dy 'S(X
] dx
left: F,(x- > y) dy
(xy)
g -dy Y ) Ady
top: F(xy+ ?y) dx
. dy >
bottom: F (x,y- —)dx
2 dx

infinitesimal path
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The circulation about this infinitesimal loop is

SFed = Fy(x+d7x,y)dy i Fx<x,y+d—2y)dx i Fy<x-d—2X,y>dy + Fx(x,y-%ymx

loop

Rearranging the terms and expressing as a product of derivatives and differential
surface areas,

dx dy dy

Foct Xy dy -F - 2y gy Fxy+ —2)dx - F(xy-—7)dx
SFE.dl = 2 2 dx - 2 2
loop dx dy

dx dx d d

Fy(x+ ?’y) -Fy(x- ?1 y) Fx(X’y+ ?y) - Fx(x’y- y)
S Fedl = dxdy - dx dy
loop dx dy

dF
SFed = ( Lo dl:‘jdxdy = (V x F), dxdy
ioop dx dy

This quantity, V x F, is the z-component of the curl of F in rectangular coordinates.
oF,  OF, (aF oF ) oF,  oF
V x F= L - —la + L - —%la +|— - —*|a,
oy oz oz ox)’ ox oy

For a loop of arbitrary orientation, the circulation of F about a closed loop is not just the
surface integral of the z-component of the curl, but simply the surface integral of V. x F.

$Fedi = [[(V x F)ds

surface

This relation is Stoke's theorem and can be seen to provide a physical meaning of the
curl of F. Considering some infinitesimal path, the normal component of the curl of F, is
the ratio of the circulation of F about the infinitesimal loop divided by the area of the loop.

Conservative fieldsand V x E

The curl of E can be understood qualitatively as quite literally the “curliness” of the vector
E. If the vector E has a nonzero curl, then the line integral of E about a closed path can
be nonzero.

On the other hand, if V x E is zero, then by Stoke’s theorem, the circulation of E about
any closed path must be zero and the field is therefore conservative.

$E-dl = [[ (V x E).ds

surface
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If V. x E =0, it then follows that

$E - di
$E « dl

If (V. x E) = 0, then
1) $E.dl =0

[[ (v xE)eds= [[ 0-ds

surface surface

0

2) E s a conservative field

b
3) J.E « dl is independent of the path taken between a and b

4) no time-varying magnetic field is present
5) the electric potential is single-valued
Line integrals along prescribed paths Eed
The line integrals considered so far have always been along paths which have been split

into segments where only one variable changes at a time. What is done in cases where
this does not hold? What if the path is chosen in which more than one variable varies?

The answer is that “constraint equations” defining the path must be incorporated into the
integrand. To illustrate, consider finding the line integral

fe
b

between (x,y) = (0,0) and (1,2) for E = xy ax - y*a,

For rectangular coordinates, dl =dx ax +dya,+dza, — E-dl = xydx - y? dy
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Evaluation

In line integrals, there can be only one independent variable. If an integrand has more
than one independent variable, constraint equations relating the variables are needed to
so that a single remaining independent variable in the integrand.

Path 1: A straight line from (0,0) to (1,2). The constraint equation describing this path is
y = 2x. The differential relation is dy = 2 dx

E-dl = x(2x)dx - (2x)’(2dx) = -6x*dx or

E-dl = (%2y)y (%dy) -y’ dy = -%y*dy

6x% dx = -2 or

[E«dl

[E«al

Path 2: The parabola y = 2x* from (0,0) to (1,2). The constraint equation is the
equation of the parabola. The differential relation is dy = 4x dx

E-dl = x(2x%)dx - (2x*)%(4x dx) = (2x*-16x°)d  or
E-dl = (%)% [Vady/(Yey)"] - ydy = (Yay - y?) dy
7 1
[Eedi = [2x° - 16x° dx = 2— or
. 6
£1 1
Eedl = [-y-y*dy = -2—
| ! Jy-yidy = 2o

Line integrals in 3-space

For a path integral in 3-dimensional space, two constraint equations would be required
to define the path. Each of the constraint equations in three space would define a
surface and their intersection (obtained through their simultaneous solution) would
define the path of integration.

The integration would be with respect to whichever of the three variables is not
eliminated with the two constraint equations.

In fact, we could consider the path integrals above as being performed in 3-space,
where one of the constraint equations is z = 0.

Electromagnetic Fields 46



Poisson’s and Laplace’s equations
The electrostatic field is the negative gradient of the electrostatic potential,
E=-VV

For a region bounded by surfaces of known potential, casting the problem in the form of
a boundary value problem using potential can be the most natural solution path. Starting
with Gauss’ law, the use of E = -VV gives the differential equation in V known as
Poisson’s equation.

Solving the boundary value problem for the potential avoids having to solve the vector
differential equation directly. It offers an “end run” by first solving for the potential, the
negative gradient of which is electric field.

Ve (-VV) = By (using E =-VV in the point form of Gauss'law V « E = p—”j
4 €

v.v= P
€

V « VVis the Laplacian operator operating on V and is written, V « VV = V2V .

The result is Poisson’s equation.
VZV = _p_V
€
In rectangular coordinates, this implies,

V.VV=V = axi+ayi+azi . axﬁ+ayﬁ+azﬂ =
OX oy 0z OX oy 0z
o’V oV .V _ p,
+ + = -
x> oy*  oz° €

For p, = 0, the result is Laplace’s equation.
VV=0

Poisson’s and Laplace’s equation and the subsequent gradient operation give the
electric field only for electrostatics—when the source of the fields, charge, is at rest.

When time-varying currents are present, Faraday’s law shows that the line integral of the
electric field about a closed path is no longer zero—the electric field is no longer a
conservative one. A non-conservative field cannot be expressed as the negative
gradient of a scalar potential. In this case, the concept of a vector potential is often
introduced. Here, the static case is treated.

Laplace's Equation 3x

Laplace’s equation is present is many branches of science and engineering.
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V:V=20
In electromagnetics, Laplace’s equation gives the electrostatic potential from which the
electric field can be found (E = -VV ) given no changing magnetic fields are present.

In rectangular coordinates Laplace’s equation reads,

2 2 2
a_2+a_2+a_2)v =0
oX oy oz

Laplace's Equation will be solved analytically for the case of variations with involving one
variable. (When more than one variable varies, the techniques of partial differential
equations must be used.)

Consider a potential for which the vV s=L
potential is a function of z and which s g
is independent of x and y. 0 z=0
o’V &V
2 - 7 -0
OX dy
solving,
2
d\2/=iﬂ=o N J.dﬂ=J‘0d =A
dz dz dz dz
VoA > Jdv=[Adz
dz
V(z)=Az+B

applying the bc's of V(0) =0 and V(L) =V,

V(0)=B=0
V.
V(L)=V, =AL - A=TS
V. z
V(z) = =
@)=

Using the gradient

E=- ﬁaz = _ﬁaz
0z L

Electromagnetic Fields 48



Laplace’s equation in cylindrical coordinates sz
Consider two concentric cylinders that are PECs (inner radius a,
outer radius b). Let the voltage of the outer cylinder be 0 and the

voltage of the inner cylinder be V.. z
Y
e -
V(a) =V, oV

Laplace's Equation in cylindrical coordinates

=0

2 2
vy 10 V), 1@V 2V

pop\’ Op P o fora
For this situation, there are no variations in 6 or ¢, and Laplace's
Equation reduces to

pop\" op pdp(" dp
Solving this
dv dv
dl p— | = [0pd - — =A
| (pdpJ [opdp 4
A
fdv =[=dp -  V=Aln(p) +B
2

Applying the boundary conditions (bc’s)

V(b)=AlIn(b) +B=0 -~  B=-Aln(b)

V(a)=A|n(a) -Aln(b) =V0 N =_ o

A= In\(/—"zj and B =- |n\éj In(b)
Yo Yo inp)=v, (2|

(%)
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Finding E

Numeric Techniques in solving Laplace's Equation

In rectangular coordinates, Laplace's equation reads

oV, PV, PV

v

Defining potentials at points on a grid.

Evaluating the first derivative with respect to x at A

AR

x|y  AX
and at C

kY V, -V,

xle  Ax

Evaluate the 2" derivative with respect to x at O.

Y

c’TXC OX |a
AX

o’V

Ox?

O
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substituting
oV VBt V-2V,

o, (AX)?

Similar expressions can be found for the second derivatives with respect to y and z.

o*V Vo + V- 2V,

2

oy |, (AyY

AV Vgt V- 2V,
|, (Az)?

o

Take Ax = Ay = Az = A.

The numerical approximation for Laplace's equation reads.
o’V . o'V 0V
4+ o+
ox’ oy’ 0z’

PV VF+VB+VR+\22+VU+VD-6VO o

This gives the reasonable result that the voltage at O is just the average of the
surrounding voltages. Why is this reasonable?

Vo + V + V + V. + 1V, +V,
6

~ V,

For the 2D case

Ve vV +V, +
4

~ Vo
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Linear equations

100 V
- 1 2 3
ov |- 456 50V
o 7 8 9 |
50 V

Develop nine equations and nine unknowns (V4 through Vy)
1) Vg +V +V, +V, =4V, = V,+0V+100V +V, =4V,

Once the potential voltage at the nodes is know, linear interpolation can be used to find
the potential at any point.

The general guideline that can be relied upon in homogenous resistors is that the
potential at any point « is the average of the potential at surrounding points arrayed
symmetrically about the point a.
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Using MS Excel

For 2D problems, iteration can be implemented on a spreadsheet. For example, in the
problem above, twenty-one (21) cells would be required... 9 for V, through Vg and 12 for
the boundaries. The potential of each of the cells corresponding to V4 through Vg is
calculated as the average of the four surrounding cells.

To begin, give the boundary cells their voltages and the interior cells zero volts. Begin
iterating. V4 through Vg will usually stabilize quickly.

Table as entered After 1% iteration (circular After 100" iteration
reference enabled by
clicking iteration under
tools-options-calculation)

100]100 100 100[100]100 100100100
0] 00| 0|50 0 | 25 |31.3/45.3| 50 0 | 50 | 67 |67.9] 50
0] 0 0] 050 0 16.25|9.38/26.2| 50 0 | 33|50 |54.5| 50
0] 0| 0] 0|50 0 [14.1]18.4/36.1| 50 0 [32.1]145.5| 50 | 50

50 | 50 | 50 50 | 50 | 50 50 | 50 | 50
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Ohm’s law and resistance
The ratio of current density to electric field in a material defines conductivity, .

J=ocE

This relation is the point form of Ohm’s law. It relates current density (A/m?) to the
electric field present (V/m) just as Ohm’s law relates current (A) to voltage difference (V).

V=IR - ==V

where S is Siemens, the Sl unit for conductance and equa