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Charge vs. mass 
Compare the repulsion of the Coulomb force 
between two electrons to their gravitational 
attraction, let the separation be 1 m. 
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With this enormous factor, it would be entirely possible that we'd be unaware of gravity.  
Obviously we are aware—why?  The reason is that gravity is noticed and does matter is 
because most materials are, electrically, almost perfectly neutral.  In fact, charge neutrality is 
so finely balanced at the macroscopic scale that we easily observe the effects of magnetic 
fields, which are actually a relativistic effect of moving charge (electromagnetics had already 
accounted for special relativity!) 
 
Charged people:  If two average-sized people were separated by 1 m, each having just 
1% more electrons than protons, what would be repulsive force between them?   
Greater than Moench Hall?  Yes.   Greater than Vigo county down the depth of 1 mile?  
Yes.  Greater than the United States down to a depth of 10 miles?  Yes.   

In fact, the force would be greater than the “weight” of the entire earth! 
   
What provides atoms with their stability?  The attraction between the positive nuclei and 
the negative electrons would, left to itself, cause the electrons to collapse upon the 
nuclei (in which case, our world would not be nearly as roomy) is balanced by the 
uncertainty principle from quantum mechanics (an electron’s mean square momentum 
grows with increased confinement).  This balance holds atoms together, but prevents 
them from collapsing on themselves.   Moving up from individual atoms, all of chemistry 
is the interaction of orbital electrons. 

How about the nucleus?  What prevents the nucleus, made of electrically neutral 
neutrons and positive protons from flying apart?  The answer is the balance between the 
repulsive Coulomb force (varying as 1/r2) and the attractive strong force (which is much 
shorter range).  These two forces work together to produce stable nuclei. 

The interaction of time-varying electric and magnetic fields result in electromagnetic 
waves, which can actually travel through empty space.  Ask that of heat, sound, or any 
other type of mechanical energy! 
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Nuclear energy 
Consider a U-235 atom undergoing fission 

 
 
What is the source of the energy?  Answer: largely electrostatics. 
 
What is the potential energy of a Barium (AN = 56) atom separated by 10 fm from a 
Krypton (AN =36) atom?   
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This energy is in the ball park!  The diameter used, after all, is just a reasonable rough 
estimate for a nucleus with over 200 nucleons—the important point here is that the 
“nuclear energy” in fission is seen to be largely due to the Coulomb force—a “Coulomb 
spring” is kept coiled by the nuclear strong force until released.  This happens when a 
neutron taps the U-235 nucleus causing an oscillation which allows the proto-barium and 
proto-krypton nuclei to separate beyond the ability of the very short range nuclear force 
to hold them together. 
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Electromagnetic waves 
There are two keys to electromagnetic 
wave propagation.  The first is that a 
time-varying magnetic field produces 
an electric field.  The second is that a 
time-varying electric field produces a 
magnetic field.  These two effects 
bootstrap themselves to produce a 
traveling electromagnetic wave. 
 
The study of electromagnetics provides the foundation for photonics, wireless, antennas, 
electrical power, microwaves & RF, and high-speed circuits.  The enormous topic of 
lumped element circuit analysis (lumped elements, KVL, and KCL) is an approximation 
to the electromagnetic equations, the quasi-static approximation.  
 
The history of electromagnetics is a rich one.  Following are a few random notes:   
• Electron comes from the Greek for amber, Greek word for amber, ηλεκτρον.  If 

amber is rubbed with a cloth or with fur, it aquires an electrical charge.    

• An old story, probably apocryphal, goes that a Greek shepard, Magnus, noticed the 
iron nails in his sandles were attracted by some black stones—later called loadstones.   

• Early electrical workers learned to store charge in Leyden jars in which the 
“electrical fluid” was thought to “condense.”   

• To obtain larger stores of charge, these Leyden jars were often arranged in rows, 
which Ben Franklin thought looks like “batteries” – batteries of canon that is. 

• Volta used stacks of dissimilar metals separated by a conductiving fluid to 
produce the first “voltaic pile”, what we’d today refer to as a battery. 

• Early workers notices that, upon lightning striking a house which took a course through the 
cupboards, many knives and forks were melted, but others were found to be magnetized. 

• In the 1860’s James Clerk Maxwell presented his electromagnetic theory. 

• In the 1880’s Heinrich Hertz confirmed the existance of the EM waves. 
 
The classic history of electromagnetism is a superb work by Edmund Whittaker, A 
history of the theories of Aether & Electricity, which takes the topic to 1926.    

Selected online sources:  
http://www.abdn.ac.uk/physics/px4006/histem.pdf  
http://history.hyperjeff.net/electromagnetism 
http://www.electromagnetics.biz/History.htm 
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Electromagnetics is fundamental to many areas of science and technology.  It is a 
foundational topic in electrical engineering and provides a basis for advanced practice.  
 
Knowledge of electromagnetics will maintain its utility even as technology constantly 
changes – indeed, its importance will likely grow.   Electromagnetics plays a role in most 
technologies in electrical engineering and physics such as 

1. semiconductor devices (LEDs, diode lasers, transistors, diodes, etc.) 
2. optics and optoelectronics 
3. high-speed electronic systems 
4. electrical machines and power 
5. antennas and wireless 
6. sensors (resistive, magnetic, capacitive, optical) 
7. electromechanical systems, MEMS (sensors, actuators, switches) 
 
Increasing frequencies used in high-speed design has made it critical that engineers in circuit 
design and layout develop an understanding of electromagnetics (EM).  At higher 
frequencies area-fill capacitance and connection inductance can no longer be ignored, traces 
become transmission lines, conductors become effective antennas.  At higher frequencies, 
simple lumped-element models become inadequate and electromagnetics is necessary to 
simply understand circuit behavior.     
 
Many of these effects become evident when system dimensions are comparable to signal 
wavelength.  Consider the table and graphic below showing wavelengths for an EM wave 
traveling at a speed of 3(108) m/s as the frequency is varied. 
 
frequency vs. wavelength   
3 MHz     →   100 m 
300 MHz   →   1 m 
3 GHz     →  0.1 m = 10 cm  
30 GHz   →   1 cm 
 
At 3 MHz, most systems are much 
smaller than the wavelength.   At 
gigahertz frequencies, this condition 
often no longer holds, and one must 
resort to electromagnetic fundamentals 
to understand system behavior.  
 
Our study will define relationships 
between the field sources (charges and 
currents) and the resulting electric and 
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magnetic fields.  Fundamental quantities like energy, force, voltage and current and their 
relationship to the EM fields will be discussed.  The relation of the EM fields to electrical 
parameters such as resistance, capacitance and inductance will be explored as will the 
consequences of wave propagation for time-varying fields.   
 
The idea of a electromagnetic field began with Michael Faraday in the early 1800’s 
who pictured flux lines emanating from electric charge.  The density of the flux lines was 
associated with field strength, which, together with their direction constitutes a vector 
field. The electric and magnetic fields, vector-valued functions of position and time, are 
produced by charges and currents.  
 
Michael Faraday pictured electric flux lines emanating from electric charges. 

 
He  pictured magnetic flux lines surrounding currents. 

 

 
Vector notation 
Vector quantities will be bold type.  F = FaF denotes the vector F which consists of a 
magnitude F in the direction of the unit vector aF. 

In class and videos, vectors will be underlined and unit vectors are denoted by a carrot. ˆ
FF = Fa  

is read that the vector F  has a magnitude F and is directed along the unit vector a .     ˆ
F

 
Remember to use vector notation properly in all your work—will help both your 
understanding and your grade! 
 

Some necessary mathematical fundamentals include 
1. coordinate systems (rectangular, cylindrical, spherical) 
2. vector operations (gradient, divergence, curl) 
3. vector calculus (line integrals, surface integrals) 
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Rectangular (Cartesian) coordinates 
 x distance along x-axis or distance from y-z plane 
 y distance along y-axis or distance from z-x plane   
 z distance along z-axis or distance from x-y plane 
 
 position vector 
  r = x ax + y ay + z az 
 
 differential lengths 
  dx, dy, dz  vector differential length:   dl = dx ax + dy ay + dz az 
 
 differential areas 
  (ds)  dxdy, dydz, dzdx 
  (ds)  ±dxdy az, ±dydz ax, ±dzdx ay 
 
 differential volume 
  dxdydz 
 
 variable range 
  -∞ to ∞ for x, -∞ to ∞ for y, -∞ to ∞ for z 
 

 
 
Rectangular coordinates have some attractive properties and are often the standard 
coordinates used when symmetry considerations do not urge the use of another system. 

  1. The directions of the unit vectors are constant and not functions of position. 

  2. The differential elements are not functions of the coordinates. 

  3. The unit vectors are mutually orthogonal (ax • ay = ay • az = az • ax = 0) 
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Cylindrical coordinates 
 ρ distance from z-axis 
 φ angle from +x-axis (to determine sense, align the thumb of your right hand in 
  along the +z-axis, direction of positive rotation is along your fingers) 

 z distance along z-axis or distance from x-y plane 
  
 position vector 
  r = ρ aρ + z az   
  • Note the position vector does not explicitly involve φ but is present via the aρ unit vector.   
  • In the cylindrical coordinate system, both aρ and aφ are functions of position. 
 
 differential lengths 
  dρ, ρdφ, dz   vector differential length:  dl = dρ aρ + ρdφ aφ + dz az   
 
 differential areas 
  (ds)  ρdρdφ, dρdz, ρdφdz 
  (ds)  ±ρdρdφ az, ±dρdz aφ, ±ρdφdz aρ 
 
 differential volume 
  ρdρdφdz 
 
 variable range 
  0 to ∞ for ρ, 0 to 2π for φ, -∞ to ∞ for z 

 
Cylindrical coordinates are useful in systems with cylindrical symmetry.   
 1. The unit vectors in the cylindrical coordinate system are mutually orthogonal. 
  aρ  • aφ  = aφ  • az = az • aρ  = 0 
 2. Unlike the rectangular coordinate system, the unit vectors are not all of constant 
  direction.  The direction for aρ and aφ depend on position.  
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Spherical Coordinates 
 r distance from origin 
 θ  angle formed starting from positive z-axis and moving to position vector 
 φ angle from the positive x-axis (to determine sense, align the thumb of your right 
  hand in along the +z-axis, direction of positive rotation follows your fingers) 
 
 position 
  r = r ar 
 
 differential lengths 
  dr, r sinθ dφ, r dθ  vector differential length: dl = dr ar + r sinθ dφ aφ + r dθ aθ 
 
 differential areas 
  (ds)  r sinθ dφ dr, r2 sinθ dφ dθ, r dθ dr 
  (ds)  ±r sinθ dφ dr aθ, ±r2 sinθ dφ dθ ar, ±r dθ dr aφ 
 
 differential volume 
  r2 sinθ dr dφ dθ 
 
 variable range 
  0 to ∞ for r, 0 to π for θ, 0 to 2π for φ 
 

 
 
 

Spherical coordinates are useful in systems with spherical symmetry. 

 1. None of the unit vectors have a constant direction.  The direction of each is a 
  function of position. 

 2. The unit vectors are mutually orthogonal.  ar  • aφ  = aφ  • aθ = ar • aθ  = 0. 
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Electrostatics ☼ 
In the 18th century, Charles-Augustin de Coulomb found the force between two charges 
acts on a line connecting them, that it is proportional to the product of their charges, and 
that it is inversely proportional to the distance between them.  The force is attractive if 
the charges are of opposite sign and repulsive for like signs.  The relation is referred to 
as Coulomb’s law. 

 

1 2
R 22

q q    (force on q  due to q )∝F a
R 1  

In the MKS system, 1 2
R2

q q = 
4 Rπ ε

F , where ε is the 

permittivity of the material between q1 and q2.     

a

The permittivity of vacuum, or free space, . -12
o = 8.854(10 ) F/mε

 
Coulomb’s law is linear with respect to sources, so that superposition holds.   

 
 
Coulomb’s law and superposition: an example   
Calculate the force that n charges, q1 through qn, at positions r1 through rn, exert on 
charge q at r. 

n
i

i2
i = 1 i

qq = 
4 Rπ ε∑F a  

/

th
i i

th
i i

th
i i i

 =  -  (vector from position of i  charge, , to charge q at )
R  = (distance from i  charge to charge q)

 = R (unit vector from i  charge to charge q)

iR r r r r
R

a R
 

 
 
Electrostatic fields ☼ 
The electrostatic field, E, is the force per unit charge on a test charge q as the charge of 
the test charge goes to zero. 

q 0
 = 

q
lim

→

FE  

The reason the electric field is defined as a limit is that a finite charge would carry its own 
field which would affect the very field being characterized by measuring the force on q. 
That is, if q were finite, its field would affect the F being measured.  Defining the electric 
field via an infinitesimal test charge avoids this difficulty. 
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Electric fields and superposition  ☼ 
From the force exerted on q by one charge q’, 

R2

q'q = 
4 Rπ ε

F a  

The corresponding electric field is 

R2q 0

q' =  = 
q 4 Rπ ε→

FE alim  

 
/R

 =  - ' (vector from position q' at ' to charge q at )
R = (distance from q' to q)

 = R (unit vector from q' to q)

R r r r r
R

a R
 

 
The force exerted on q by a collection of five charges was found above to be 

n
i

i2
i = 1 i

qq = 
4 Rπ ε∑F a  

 
The corresponding electric field is therefore 

n
i

i2q 0 i = 1 i

q =  = 
q 4 R

lim
π ε→ ∑FE a  

 
 

Continuous charge distributions  ☼ 
The results from the preceding example can be extended to include the field from 
continuous charge distributions rather than from discrete charges. 

π ε∫ R2
q'

dq' = 
4 R

E a  

For volume charge distributions (dq’ = ρvdv’) 

v
R2

charge

 = dv' 
4 R

ρ
π ε∫∫∫E a  

ρv

R

dq' = dv' at ' infinitesimal source 
' position of source charge (dq')--source point

position of test charge--field point
 =  - ' vector from source to field point
 = /R unit vector  source  

r
r
r
R r r
a R from to field point

 

 

Similarly, for surface charge distributions  s
R2

charge

= ds
4 R

' ρ
π ε∫∫E a  

And, for line charge distributions L
R2

charge

= dl
4 R

' ρ
π ε∫E a  

Charge distributions 
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Charge always exists in discreet chunks – the magnitude of the charge of an individual 

ince charge occurs in discreet quantities, charge can never be truly distributed.  There is 

s well to 

v  Volume charge distributions (C/m3) are used for charge distributed over a volume. 

s Surface charge distributions (C/m2) are used to indicate charge is distributed over 

 
 

 

 
L Likewise, line charge distributions (C/m) are used for charge distributed over a length, 

 
xample:  infinite line charge ☼

electron is 1.6(10-19) Coulomb.   
 
S
always granularity.   Uniform distributions are useful approximations when the scale of 
interest is much larger than the scale in which granularity is evident.  These 
approximations are used constantly in macroscopic electromagnetics and it i
discuss them at this time. 
 
ρ
 
ρ

a given surface.  This is itself an approximation to what is actually a volume 
charge density where the charge is distributed in a region very close to some
surface.  Consider a charged electrical conductor in which its excess charge is
confined to a region very close to the surface of the conductor. In this case, it is 
reasonable to describe the charge distribution by a surface charge distribution (in
C/m2) rather than describe the distribution as a volume charge distribution. 

ρ
as, for example, in a charged wire. 

E  
e c ge along the z axis. Find the electric field due to a lin har

L = dl' R2
charge 4 R

ρ
π ε

r’ = z’ az        r = ρ aρ + z az 

∫E a  

R = r – r’ = ρ aρ + (z – z’) az   aR = R / R 
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Since the limits are from z’ = -∞ to ∞, any finite value of z does not affect the result. 

L =   - z' dz' ρ∞

⎡ ⎤ρ  z3
2 2z' = - 24  z'

ρ
∞

⎣ ⎦
⎡ ⎤πε ρ +⎣ ⎦

∫E a a

Since the limits along z’ are symmetric, the az 
component is zero after integration. 
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Example:  infinite sheet of charge ☼ 
onsider an infinite plane of charge over the z = 0 plane.   C

  



To early researchers, action-at-a-distance relations such as Newton’s law of gravitation 

t 

nd currents create 
In 

ge.   

auss’ law states that the total electric flux leaving a charge is equal to the charge. 

e = q 
 

here ψe is the total 
t 

and Coulomb’s law smacked of mysticism or magic.  They sought an explanation that 
would mesh with their experience and be consistent with intuition – in short, they sough
mechanical models to describe and think about EM fields.    

In the 19th century, Michael Faraday proposed that charges a
electromagnetic fields which act as an intermediary agent from source to effect.  
particular, for electric fields, Faraday pictured flux lines emanating from electric char
 
G

 
ψ

W
electric flux coming ou
from charge q. 

The total electric flux (in Coulomb) can also be found by taking the surface integral of the 

sing the flux density, Gauss’ law reads

electric flux density vector, D over a closed surface which encloses the charge q.  
 

surface

 d  = q∫∫ D siU  

The oval in the double integral sign indicates the integral is over a closed surface—a 

 this relation, D is the electric flux density vector in C/m2.  The differential surface 
rge, 

urface integrals 
tics involves many surface 

, 

 let's take some time to simply explore surface 

irst, note that a vector differential area always 
or 

surface that separates inside from outside, a boundary with no holes.   
 
In
element, ds, is also a vector quantity.  Since Gauss’ law equates outward flux to cha
the direction of ds should be taken as outward from the surface if the integral is to be 
equal to the total electric flux coming out from the charge.  
 
S
Since electromagne
integrals such as 

e
surface

 =   dψ ∫∫ D si

integrals in more detail. 
 
F
has two possible directions for its unit normal.  F
example dxdy az or dxdy (-az).  
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To find the flux traveling in the direction indicated in the above diagram, the direction for vector 
differential area is chosen in the same direction.  For example, to find the flux leaving a 
volume, an outward directed differential area (leaving the volume) would be used. 
 
Example: Cartesian ☼ 
Given D = 2xy ax   +  3xz  ay   C/m2

, find ψ passing through the surface y = 0,  0 ≤ x ≤ 1 m,  
0 ≤ z ≤ 1 m  in the ay direction.   
 
Here, since the flux desired is in the +ay direction, ds is chosen to be dxdz ay.  
 

 
 

 

( )
1 1

x yy=0
z = 0 x = 0

2 2

 = 2x y  + 3xz   dxdz  

x z   =  3  = 0.75 C
2 2

1 1

0 0

⎡ ⎤ψ ⎣ ⎦

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫ a a i ya

 

 
 
Example: spherical surface  ☼ 
Given D = 5/r2 ar   C/m2, find the electric flux passing outward through the surface of a 
sphere centered at the origin with a radius = 1.5 m. 

rd  = dr  + r d   + r sin  d  θ φθ θ φl a a a  

 
The differential length is a good place to start.  r is constant on the surface of a sphere 
centered at the origin, so that 2

r rd  = r d  r sin  d   = r  sin  d d  θ θ φ θ θ φs a a    

( )( ) ( )

2
2

r r2 r = 1.5 m
r = 1.5 m = 0  = 0

2
 = 0  = 0

5 =   r  sin  d d   
r

    = 5 -cos  = 5 4  C

π π

θ φ

π π

θ φ

ψ θ

θ φ π

∫ ∫ a ai θ φ
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Example: spherical surface  ☼ 
Given D = 5/r2 sin θ  ar   C/m2, find the electric flux passing outward through the surface 
of a sphere centered at the origin with a radius = 1.5 m. 

( ) ( )

2
2

r r2 r = 1.5 m
r = 1.5 m = 0  = 0

2 2
 = 0

 = 0  = 0
2

5 = sin    r  sin  d d   
r

1 cos 2    = 5  sin  d  = 5 2  - d
2 2

    = 5  C

π π

θ φ

π π
π

φ
θ θ

ψ θ θ

θ⎛ ⎞φ θ θ π ⎜ ⎟
⎝ ⎠

π

∫ ∫

∫ ∫

a ai θ φ

 θ  

 

Example: cylindrical surface  ☼ 
Given D = 5/ρ aρ  C/m2, find the total electric flux passing outward through a closed 
cylindrical surface with its axis on the z-axis, with radius 4 cm, extending from 
-3 cm ≤ z ≤ 2 cm 
 
Step 1:  determine differential areas directed outward from surface 
 sides  ds = =0.04 m d dz  = 0.04d dzρ ρρ

ρ φ φa a  

 top   ds =  zd dρ φ ρa

 bottom  ds =  ( )zd d -ρ φ ρ a
 
Step 2:  form dot product D • ds on each surface 

 sides 
 = 0.04m

5  d  =   0.04d dz  = 5d dzρ ρ
ρ

φ φ
ρ

D s a ai i  

 top and bottom,  = 0   dD i s
 

Step 3:  determine limits and perform the integral   
surface

 =    dψ ∫∫ D si  

 answer: ψ = 0.5π C 
 
Numeric Approximation 
One classic means of estimating the area of a definite integral is to express the integral as 
a Riemann sum and approximate the area under the curve as the sum of the rectangular 
areas of constant width and whose heights are determined by the function's value.   
 
One possibility in determining rectangle heights would be to use the value of the function 
at the initial point in the interval as the height of the rectangle.  This would lead to the 
formation of a left Riemann sum.  Another possibility would be to use the value at the end 
point for a right Riemann sum, and another would be to use the value at the midpoint for 
a middle Riemann sum.  Here, we will use a middle Riemann sum.  
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The illustration below compares these approaches to approximating an integral.  The first 
uses rectangle heights at the initial point of an interval (width of rectangle), the second 
uses the end point, and the third uses the value at the midpoint of the interval. 

Taking the value at the midpoint 
of an interval results in a robust 
approximation that is more 
accurate for most curves. 

 
Numerical approximation: finite differences ☼ 
Given D = 2x ax   +  3x3y az   C/m2, find the approximate electric flux, ψ, passing through 
the surface      z = 0,  0 ≤ x ≤ 1 m,  0 ≤ y ≤ 1 m  in the az direction.  Use (0.1 m)2 areas. 
 
It may be more straightforward to form the sum from the integral. 

( )
1 1 1 1

3 3
x z z

y = 0 x = 0 y = 0 x = 0

2x + 3x y   dxdy  = 3x y dxdy∫ ∫ ∫ ∫a a ai  

( ) ( ) ( )( )( )
1 1 10 10

33
x z z

i=1 j=1y = 0 x = 0

2x + 3x y   dxdy  = 3 0.1j - 0.05 0.1i - 0.05 0.1 0.1∑∑∫ ∫ a a ai  

 
Using a computer to calculate the sum (here Maple is used) 

  > flux := sum (sum (3 * (0.1 * j - 0.05)^3 * (0.1 * i - 0.05) * 0.1 * 0.1, i = 1..10),j = 1..10); 
 flux := .3731250000 
 
 
Example: electric flux density from charge q at the origin.  ☼ 
Consider a point charge q at the origin.  From the charge’s symmetry, the field must 
have spherical symmetry, where the magnitude of the electric flux density vector is 
independent of φ or θ and can only depend on r.  Symmetry also causes the direction of 
the electric flux density vector to be in the ar direction. 

 
D = D ar 

D not a function of φ or θ.  

Given this, a surface, a Gaussian surface, is chosen so that the Gaussian integral can 
be evaluated.  Here, the Gaussian surface is a sphere, centered on the origin. 

2
2 2

r r
surface  = 0  = 0

d  = r  sin d d      d  = D   r  sin d d  → ∫∫ ∫ ∫s a D s ai i
π π

θ φ

θ θ φ θ θ φ ra  

( )( )
2

22 2 2
r20  = 0

 = 0  = 0

qDr sin d d  = Dr  -cos  = 4 Dr  = q  = 
4 r

π π

θ
φ θ →∫ ∫ D a

π π

θ φ

θ θ φ π
π
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Example: spherically symmetric distribution   ☼ 
Consider a volume charge density where a charge q is evenly distributed over a sphere 
of radius a.  Given this charge, the field has spherical symmetry, again meaning that the 
magnitude of the electric flux density vector must be independent of φ or θ and can only 
depend on r with its direction in the ar direction. 

 

D = D ar 

  D is not a function of φ or θ. 
 

The Gaussian surface is a sphere, centered on the origin.  The difference here is that 
there are two cases, one for r<a and the other for r>a. 

r<a 

surface
2 2 r

2 2
r r v

3 = 0  = 0 volume ' = 0 ' = 0 r' = 0

2
2 2 3

3 = 0  = 0

  d  = q

qD   r  sin d d   =  dv =  r' sin ' dr'd 'd '4 a
3

q 4Dr sin d d  = 4 Dr  = r4 3a
3

π π π π

θ φ φ θ

π π

θ φ

θ θ φ ρ θ θ φ
π

π
θ θ φ π

π

∫∫

∫ ∫ ∫∫∫ ∫ ∫ ∫

∫ ∫

D s

a a

i

i  

3

r r2 3 3

q r qr =    =  
4 r a 4 aπ π

D a a  

 

r>a 
2 2 a

2 2
r r v

3 = 0  = 0 volume  = 0  = 0 r' = 0

2
2 2 3

3 = 0  = 0

qD   r  sin d d   =  dv =  r' sin ' dr'd 'd '4 a
3

q 4Dr sin d d  = 4 Dr  = a4 3a
3

π π π π

θ φ φ θ

π π

θ φ

θ θ φ ρ θ θ φ
π

π
θ θ φ π

π

∫ ∫ ∫∫∫ ∫ ∫ ∫

∫ ∫

a ai

 

r2

q =  
4 rπ

D a  

 
Notice the only difference in the mathematical procedure between the two cases is in the 
r limit in the volume integral which changes from a (for the r<a case) to r (r>a case).   
 
This one change results in marked differences in field behavior. 
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Electric flux density 
The electric flux density vector is related to the electric field via permittivity.   The electric 
field due to a point charge q at the origin (force per unit charge from Coulomb’s law). 

r2

q = 
4 rπε

E a  

The electric flux density due to a point charge q at the origin (from Gauss’ law) 

π r2

q = 
4 r

D a  

Therefore D = εE.  This relation is general for linear homogenous materials, not just for 
point charges at the origin—more about permittivity later.     
 
 
Example: line of charge  ☼ 
Use Gauss’ law to determine the field due an infinite line of charge, ρL, on the z-axis.  
Due to the clear symmetry involved, cylindrical coordinates will be used. 
 
The fact that the charge is an infinite line charge along the z-axis permits the form of the 
field to be determined:  1) since the line charge is infinite in extent along z, the strength 
of the field cannot depend on z and neither can the field have a component in the az 
direction, 2) since the charge producing the field is an infinite line charge, symmetry 
implies that the strength of the field cannot depend on φ and neither can the field have a 
component in the aφ direction, and 3) these considerations require the form of the field to 
be D = D aρ, where D can only depend on ρ. 
 
The field’s symmetry is the key in using Gauss’ law to determine the field.  With this 
symmetry, a Gaussian surface (a cylinder with its axis on the z-axis.  Choose the 
cylinder to have radius a and length L as shown on the diagram below) can be chosen 
such that the surface integral (the Gaussian integral) becomes tractable. 
 
Note the central role of symmetry in this problem: 

1. The field cannot depend on z since the line charge is on the z axis  
 and the line is considered infinite in length.   The physical    
 environment is not a function of z, so neither is the field. 

2. The field cannot depend on φ since the line charge is on the z axis  
 which so that the physics of the situation is also independent of φ. 

3. The field can only depend on ρ and, moreover, must point in the ±aρ  
 direction, depending on whether ρL is positive or negative. 

 

Electromagnetic Fields 19

http://www.rose-hulman.edu/class/ee/HTML/ECE340/340-es-gauss-linecharge/340-es-gauss-linecharge.html


Notice how the Gaussian surface serves to make 
the evaluation of the Gaussian integral simpler. 
 
1)   The field is perpendicular to the surface normal    

on the end of the cylinder. 
 
2)  The field is parallel to the surface normal on the 

cylinder walls.  Moreover, the field must be a 
constant on the cylinder walls since ρ is 
constant and it is established that D = D(ρ). 

 
 

  d  = q∫∫ D si  

( )

( )

inside

 + L a 2 a 2

z z
 = 0  = 0

 + L

  d  +   d  +   d  = q

D   d dz  + D   d d   + D   d d  -  =  L

D  d dz =  D d

l

π π π

ρ ρ ρ ρ
φ ρ φ ρ φ

π

φ

ρ φ ρ φ ρ ρ φ ρ ρ

ρ φ ρ

∫∫ ∫∫ ∫∫

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

o

o

o

o

sides top sides

z 2

z = z  = 0  = 0  = 0

z 2

z = z  = 0

D s D s D s

a a a a a a

i i i

i i i

 + L

dz =  L

D  L 2  =  L            D =         
2

l

l
l

π

φ

φ ρ

ρρ π ρ
π ρ

→

∫ ∫
o

o

z 2

z = z  = 0

 
Knowing the magnitude and recalling from symmetry arguments that D = D aρ. 

L L =       =  
2 2ρ ρ

ρ ρ
π ρ π ε ρ

→D a E a   
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Example:  infinite cylinder with its surface charged  ☼ 
Determine the electric field for a cylinder with a surface charge, ρs = 3 pC/m2.  The 
cylinder has the z-axis as its axis.  The radius of the cylinder, ρ = 0.15 m.  The cylinder is 
infinite in extent, -∞< z < �’ . 

2

s
3 pC/m       = 0.15 m

 = 
0       0.15 m

ρ
ρ

ρ
⎧
⎨

≠⎩
 

There is cylindrical symmetry with ρL = 2π (0.15 m) ρs.  Using the above result, one 
obtains. 
 

 answer:   -12

0    0.15 m
 = 0.15(2 )3(10 N     0.15 m 

2 C
)

ρ

ρ

ρ

<⎧
⎪

π⎨ >⎪ περ⎩

E
a

 

 
 
Example:  distributed charge  ☼ 
Determine the flux density from an infinitely long cylinder of radius a with a distributed 
volume charge density, find D for ρ < a and for ρ > a. 
 

3

v
2    C/m     < a

 = 
0      > a

ρ ρ
ρ

ρ
⎧
⎨
⎩

 

 
From the charge distribution, it is clear the field has cylindrical symmetry so that the 
Gaussian surface is a cylinder of length L with its axis along the z-axis. 

 

( )

( ) ( )

o

o

o o

o o

z +L

z=z
inside z +L z +La

z=z z=z a

2  d d dz        < a

  d  = q = 
2  d d dz    +  d d dz        > a

2

0 0

2 2

0 0 0

0

ρπ

φ ρ

ρπ π

φ ρ φ ρ

ρ ρ ρ φ ρ

ρ ρ ρ φ ρ ρ φ ρ

= =

= = = =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∫ ∫ ∫
∫∫

∫ ∫ ∫ ∫ ∫ ∫
D si  

 

answer:   

2

3

2        a
3 = 

2a     a 
3

ρ

ρ

ρ ρ

ρ
ρ

⎧
<⎪⎪

⎨
⎪ >
⎪⎩

a
D

a
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Example:  Coulomb’s law implies Gauss’ law 
For a charge q at the origin, the force on a test charge qt is 

t
r2

qq = 
4 rπ ε

F a  

The electric field—the force per unit charge due to the charge q at the origin is 

r2

q = 
4 rπ ε

E a  

Integrating E over a sphere, centered on the origin, surrounding the charge q and using 
the definition of permittivity, D = εE. 
 

2
r r2 2

sphere sphere sphere

sphere

q qd  = d  = r sin d d  = q
4 r 4 r

d  = q

θ φ θ
π π∫∫ ∫∫ ∫∫

∫∫

D s a s a a

D s

i i i

i

r

 

So that using Gauss’ law shows the charge to be q as was derived from Coulomb’s law. 
 
 
The importance of symmetry in analytic solutions 
In the two preceding techniques—using superposition integrals and using Gauss’ law, 
the ability to find analytic solutions depended upon the charge distribution’s symmetry. 
 
First, when using Coulomb’s law in the superposition integral, the charge’s symmetry 
allowed us to analytically evaluate the resulting integrals to obtain a closed-form 
solution.   It is true that the integrals could have readily been written without the given 
symmetry since only a knowledge of the charge’s distribution in space is needed for this.   
But, for analytic evaluation, symmetry was a critical factor.   
 
Similarly, when using Gauss’ law, symmetry often resulted in the existance of a suitable 
Gaussian surface.  This allowed the crucial step of evaluating the Gaussian integral to 
be carried out—often not possible without sufficient symmetry.  With symmetry and the 
proper choice of Gaussian surface, evaluating the Gaussian integral is often trivial.   
Without this symmetry, however, its evaluation would often be anything but trivial and 
usually required numeric evaluation.    
 
How does one approach a more general situation, where perhaps the charge is not so 
conveniently arranged?  One approach is to use a numeric tool like MATLAB to evaluate 
the resulting superposition integrals—an approach which will be explored via homework.    
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This approach is general for those cases in which the charge distribution is known.  
Unfortunately, in many cases, we're faced with a boundary value problem in which the 
fields or potential on a boundary surface is known and the charge is an unknown.  In this 
case the knowns include the region’s geometry, material properties, and boundary 
conditions.  We have, therefore, two types of problems—one in which we know the 
charge and the other in which we know boundary conditions.  Both types are important.  
Boundary value problems are solved via differential equations and, therefore, a 
mathematical description of electromagnetics in terms of differential equations is 
important.    
 
Divergence  ☼ 
Consider a cube of dimension Δx Δy Δz with one corner at xyz. 

 

The net flux leaving the volume Δx Δy Δz in the ax direction is: 
[ ]( )e-x (out) x x = D (x + x, y, z) - D (x,y,z) y zψ Δ Δ Δ   

 
Divide and multiply by Δx 

[ ] ( )x x
e-x (out)

D (x + x, y, z) - D (x,y,z)
 =  x y z

x
ψ

⎧ Δ ⎫
Δ Δ Δ⎨ ⎬

Δ⎩ ⎭
 

 
In this expression, if Δx, Δy, and Δz → 0, the result is:  

x x
e-out x

D D(d )   =  dx dy dz  =   dv
x x

ψ ∂ ∂
∂ ∂

 

Similarly,  

ψ ψ
∂ ∂
∂ ∂

y z
e-out y e-out z

D D(d )   =   dv and (d )   =   dv
y z

 

( ) ( ) ( )e-out e-out e-out e-outx y z

y yx z x

        d   =  d  + d  + d

D DD D D        =  dv + dv + dv  =  (  + + ) dv
x y z x y z

ψ ψ ψ ψ

∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

zD∂  

 
The quantity within the parentheses occurs often and it called the divergence of D. 

 div  can be written as   , where  is the "del" operator∇ ∇D Di
∂ ∂ ∂

∇
∂ ∂ ∂x y   =   + + 
x y z

a a za  
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The divergence is formed by the dot product of the del operator and a vector, in this 
case the current density. 

( )∂ ∂ ∂⎛ ⎞∇ ⎜ ⎟∂ ∂ ∂⎝ ⎠

∂∂ ∂
∇

∂ ∂ ∂

x y z x x y y z

yx z

      =   + +  D   + D  + D  
x y z

DD D    =   + + 
x y z

ii

i

D a a a a a

D

za

 

The divergence of D, the electric flux density vector, is the net electric flux out per unit 
volume.    

yx z
e-out

DD Dd   =  (  + + ) dv
x y z

ψ
∂∂ ∂

∂ ∂ ∂
 

Can this differential relation be used to find the electric flux out of macroscopic bodies?  
To answer this question, consider two adjacent differential cubes.  The critical question 
whether the electric flux at the adjacent areas is properly accounted for to allow 
integration over macroscopic volumes 

 
It is apparent that, when taking the divergence over adjacent differential volumes, the 
common flux across their shared surface areas will be positive for one and negative 
which will cancel for the composite volume. 

 
This observation for two adjacent differential volumes can be extended to any number of 
differential volumes.  This permits the use of integration of an infinite number of 
differential volumes for the case of macroscopic bodies and allows divergence to be 
used to find the electric flux out of macroscopic volumes. 

e-out
volume

 =     dvψ ∇∫∫∫ Di  
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Example: charge within volume  ☼ 

Given that the electric field is r
75 N =   

C4 rπε
a�ü , find the total charge within a sphere of 

radius 10 cm which is centered on the origin.  Do this in two ways: with a surface integral 
and then with a volume integral. 
 
1) surface integral 

by Gauss’ law  e
surface

q =  =   dψ ∫∫ D si

r r 2

75 N 75 C =    =   
C m4 r 4 r

→
πε π

�ü a D a  

 
2

2
e r r

 = 0  = 0 r = 0.1 m

75 =    r sin  d  d    = 2.37 C
4 r

π π

φ θ

ψ θ θ φ
π∫ ∫ a ai  

 
2) volume integral 

e
surface volume

q =  =   d   =    dvψ ∇∫∫ ∫∫∫D s Di i  

2
1
2

32 3 2 3

75r
4 r1 C 1 3 75 C 3 75 C =     = r   =  

r r m r 2 4 m 2r 42

⎛ ⎞
∂⎜ ⎟

π ⎛ ⎞⎝ ⎠∇ ⎜ ⎟∂ π⎝ ⎠
Di 3mπ

 

 

2

0.1 2
2

3
volume r = 0  = 0  = 0

3 75   dv =  r sin  d  d  dr = 2.37 C
2r 4

θ θ φ
π

π π

φ θ

∇∫∫∫ ∫ ∫ ∫Di  

 
 
Divergence Theorem 
Since the net electric flux out for a macroscopic volume can also be expressed in terms 
of a surface integral, the result is a relation between a volume integral and a surface 
integral. 

e-out
volume surface

  =     dv =   dψ ∇∫∫∫ ∫∫D Di i s  

Although this relation has been developed for the case of electric flux, the 
derivation has been purely mathematical and holds for any vector quantity.  The 
relation is known as the divergence theorem.   

 
If the volume is reduced to dv, it can be seen that the physical meaning of  is the 
net electric flux out per unit volume. 

  ∇ Di
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What is this quantity, the net electric flux out per unit volume?  Using Gauss’ law which 
states the electric flux out of a charge is equal to its charge, the flux out per unit volume 
must be the charge per unit volume, ρv.  The result is the point form of Gauss’ law which 
is discussed further below.   
 
Point form of Gauss’ law  ☼ 
Combining the divergence theorem for electric flux density with Gauss’ law,  

ψe-out = q 

 

v
volume volume

  dv =  dvρ∇∫∫∫ ∫∫∫Di  

 

This relation holds for any volume.  The only possible way for two volume integrals to be 
equal for an arbitrary volume is for the integrands themselves to be equal.  The result is 
the point form of Gauss’ law.  

v  = ρ∇ Di  

From the meaning of divergence of a flux density (net flux out per unit volume),  
must be the electric flux out per unit volume.  Taking this observation together with 
Gauss’ law, which states that the electric flux coming from a volume is equal to the net 
charge within the volume, the electric flux out per unit volume can be thought of as the 
charge per unit volume.  This is the meaning of the point form of Gauss’ law. 

  ∇ Di

 
In terms of the electric field. 

v  = ε ρ∇ Ei  

If the permittivity is not a function of position, it passes unchanged through the del 
operator. 

v  = ρ
ε

∇ Ei  

So far, the focus of discussion has been on coordinate systems, vectors, vector calculus 
and the relationship between charge and the electric field, electric flux and electric flux 
density.   Now, electromagnetics will be viewed through the lens of energy and potential.  
One advantage in looking at the problem in this way is that one deals with scalar 
functions (energy and potential), which can then be used to find fields. 
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Potential Energy ☼ 
A charge q in an electrostatic field E, is acted upon by the field with a force F = qE. To 
move charge q against this field, an equal and opposite force, Fapplied = -F, must be applied 
to move charge.   
 
As the charge moves, work is done on the charge by the applied force.    This work is not 
lost to thermal energy through friction.  The work done on the charge acts to increase the 
charge’s potential energy, just as pushing against a spring increases the spring’s potential 
or just as moving a ball uphill in a gravitational field increases its potential energy. 
  
The reference point for potential energy—the point where the potential energy is 
considered to be zero—is arbitrary.  Only differences of potential energy are physically 
meaningful (just as in circuit analysis where the absolute potential of the reference node is 
arbitrary, since only potential differences affect circuit behavior).   In electromagnetics, the 
reference is typically taken to be at infinity.  Also, by convention, the potential at infinity is 
take to be zero.   
 
As charge is moved from infinity to a position r, a force must be applied to the charge 
which precisely balances the force exerted on the charge by the electric field.  In moving 
the charge, this force does work on the charge.  The differential of this potential energy is 

applieddW = d  = -q dF l Ei i l  

The resulting electric potential energy of the charge q at position r in the field E is 
W

W = 0
dW' = -q d

W( ) = -q d

∞

∞

∫ ∫
∫

r

r

E l

r E l

i

i
 

Rather than tracking the potential energy of a particular charge q, the potential energy 
per charge, the electrostatic potential, is often used.  

W( )V( ) =  = - d
q ∞∫

rrr E i l  

The electrostatic potential is analogous to a node voltage in circuit analysis.  In nodal 
analysis, a node voltage is defined as having its positive at the node in question and 
having its negative sign at the reference node.  Here, the electrostatic potential is 
referenced to infinity.  Infinity is the “reference node” for electrostatic potential, the place 
where the negative sign goes. 
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Example—potential difference between points a and b.   ☼ 

a b

a b a

ab b
a

ab b

W(a) W(b)V(a) =  = - d V(b) =  = - d
q q

V  = V(a) - V(b) = - d  - - d  = - d

V  = - d

∞ ∞

∞ ∞

∫ ∫

∫ ∫ ∫
∫

E l E l

E l E l E l

E l

i i

i i i

i

 

Notice that is the work per unit charge expended in moving charge from b to a against 
the field E.   The following formula might be a convenient form in which to remember 
potential differences. 

b

ab a +
V  = d V  = d

−

+ −∫ ∫E l E li i  

 
Example—electrostatic energy and electrostatic potential   
Coulomb’s law gives the force between charges.  The force F on charge q at r due to 
charge q’ at r’ is 
 

 
 

2
q q'  - ' = 

 - '4   - '

 - ' ~ distance between charges
 - ' ~ unit vector pointing  q'  q
 - '

πε
r rF
r rr r

r r
r r from to
r r

 

 
Take r’ = 0 (q’ at the origin). 

 r2 2

 q q'  q q' =  = 
4  r4  πεπε

rF a
rr
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Find the work or energy required to move q at ∞ to an arbitrary position r.  
 
As an aside, note the problem has spherical symmetry, which makes the spherical 
coordinate system the natural coordinate system to use.  The applied force -F moves q 
against the coulomb force F. 
 
 dW = -F • dl   (this is the differential of work done by the applied force -F) 

( ) 2
 

 rr

 r = 

 q q'  q q' 1  q q'W r  = - dr = - -  = 
4  r 4 r 4  rπ ε π ε ∞∞

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∫ π ε
 

W is the work done on the charge q in moving it from ∞ to the position r. The work required to 
move q is transformed in to potential energy, electrostatic potential energy.  As the applied 
force, -F, pushes q against the coulomb field established by q’, the potential energy of q 
increases.  The charge is being rolled up a potential energy hill.   The applied force -F pushes 
q up an electrostatic potential energy hill.   The charge moves in mechanical equilibrium (the 
external force, -F, just balancing the field’s force, F) so that kinetic energy is not increasing. 
One speaks of work being done “against” the field. 

 
What shape are the surfaces of equipotential energy in this case?  Due to the spherical 
symmetry  the field (which results in F having a radial direction), the surfaces of 
equipotential are concentric spheres. 

 
Consider the force required to move q in the coulomb field of q’.  What force is required 
to move q on the surfaces of equipotential energy?   

Answer:  None, otherwise work would be required for them to move on the surfaces, 
which would then not be surfaces of equipotential energy. 
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Potential energy, force, potential, electric field ☼ 
From mechanics, the differential of energy done by a force -F is the dot product of the 
force and the differential length (dW = -F • dl).   Consider F to be the force exerted by 
the field on a charge q and that -F is the force that must be exerted to move the charge 
against the field.  Therefore dW = -F • dl is the differential of the work done by the force 
–F on the charge in moving the charge against the force of the field, F.  The work done 
on the charge by the applied or external force, -F, is equal to the increase in the potential 
energy, W, of the charge q. 
 
Now, consider the differential of work from purely a mathematical point-of-view.  If the 
scalar function W is a function of position (of x, y, and z in Cartesian coordinates), then 
the total differential must be, by the chain rule. 

W W WdW = dx   +  dy  +   dz
x y z

∂ ∂ ∂
∂ ∂ ∂

 

 
This quantity can, in turn be expressed as the dot product of the gradient of W and the 
differential length, dl. 

( )x y z x y
W W W W W WdW = dx  +  dy  +  dz  =    +     +     dx  + dy  + dz 
x y z x y z

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

a a a a a ai z

 
With this observation, one can clearly appreciate the meaning of the first term in the dot 
product, dW = -F • dl.    

x y z x y
W W W W W W-  =    +      +    = -    +      +   
x y z x y z

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
→ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

F a a a F a a az
 

 
The expression 

 x y
W W   +      +   
x y

∂ ∂ ∂
∂ ∂ ∂

a a az
W
z

  

is the result of the del operator acting on the scalar function W, called the gradient of W.
   

x y z x y
W W WW  =     +      +    W =    +      +   

x y z x y z
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

∇ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
a a a a a za  

 
The gradient of W is a vector valued function.  It points directly “uphill”, in the direction of 
the maximum increase in W.  Its magnitude is the value of this maximum increase. 
 
The gradient can be taken of other scalar functions of position and the meaning is 
analogous.  The gradient points in the direction of maximum increase in the scalar 
function and its magnitude is maximum increase.   
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 1. The gradient of a scalar function of position is a vector.   
 2. The gradient of a scalar function has as its magnitude the maximum rate of 
  increase in the scalar function, and its direction toward maximum increase.   
 
Here the scalar function of position is W, the electrostatic potential energy.  What is the 
meaning of increasing W or decreasing W?  It simply refers to the fact that when W 
increases, the potential energy of the charge q increases.  As W decreases, the potential 
energy of the charge decreases.   
 
What does the gradient of scalar potential energy signify physically?  The gradient of W 
would give the magnitude and direction of the maximum increase in potential energy.  It 
is analogous to the hiker on the side of a hill.  The gradient of the gravitational potential 
energy in this case would indicate “uphill.”  The gradient of the electrostatic energy is 
analogous; it also indicates “uphill”, this time the hill being an electrostatic potential hill.   
 
The force that the field exerts is downhill to lower potential energies.  Greater energies 
are only reached if an external force does work on the charge in moving it “uphill” to 
greater potential energy.  The force a charge experiences in an electrostatic field is 
downhill, in the direction of decreasing potential energy.      
 
The force exerted by the electrostatic field on a positive charge (the force F = qE) points 
“downhill”.  To move the charge uphill to greater potential energy, an external force 
equal to negative the field’s force (-F = -qE) must be applied to exactly balance the 
field’s force and allow the charge to be moved. 
 

dW = -   d  = W  d
 = - W  (where  is the field force)

∇
∇

F l l
F F

i i
 

 
 = - W∇F where is the gradient of the potential field W.  W is a scalar function of 

position (a scalar field) and is a vector field.   
W∇

W∇ ∇ is the del operator, kind of a vector 
derivative operator.  It has different forms in the coordinate systems we use.   
 

In rectangular coordinates, x y  =    +      +   
x y z z
∂ ∂ ∂

∇
∂ ∂ ∂

a a a  

In cylindrical coordinates, ρ z
1 =  +  + 

zφρ ρ φ
∂ ∂ ∂

∇
∂ ∂ ∂

a a a  

In spherical coordinates, r θ
1 1 =  +  + 

r r r sinφθ θ φ
∂ ∂ ∂

∇
∂ ∂ ∂

a a a  

 

x y z
W W = - W = -    +      +   
x y

⎛ ⎞∂ ∂
∇ ⎜ ⎟∂ ∂⎝ ⎠

F a a a W
z

∂
∂
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Dividing the electrostatic energy by charge gives the potential (work per unit charge).  
Taking the gradient would then result in the force per unit charge, or electric field. 
 

x y z
W V = -  = - V =  -    +      +   

q q x y
⎛ ⎞V V

z
∂ ∂ ∂

∇ ⇒ ∇ ⎜ ⎟∂ ∂ ∂⎝ ⎠

F E a a a  

 
Restating, an alternate and equivalent way of thinking about the electric field is that it is 
the negative gradient of the electrostatic potential, which is the electrostatic potential 
energy per unit charge.  

- W W =  = -  = - V 
q q

- W =  =   
q q

∇
∇ ∇

∇

E

FE
.    

 
Electrostatic potential is the electrostatic potential energy divided by charge.  The SI unit 
for energy per unit charge is volts, V = J/C.  Since the electric field is the negative 
gradient of the electrostatic potential (also referred to as just the “potential”), equivalent 
units for the electric field are volts per meter (the del operator has units of m-1).  The 
electric field can therefore be specified with two equivalent sets of units, J/C or V/m. 
 
Two ways in which to think of the static electric field 
1. The electric field is the force per unit charge.   From the example above: 

2
q'  - '=  = 

q  - 4   - 'πε
F rE 

r rr r '
r  

 For q’ at the origin (r’ = 0): 

r2

 q' = 
4  rπε

E a  (SI units of E are N/C) 

2. The electric field is potential difference per unit length.  From the example above: 

q' = - V = - 
4  rπε

⎛∇ ∇⎜
⎝ ⎠

E ⎞
⎟  (SI units of E are also V/m) 
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Coulomb’s law and superposition: an example 
If the charge distribution is known, the superposition integral can be simplified by first 
finding the electrostatic potenital and then finding the electrostatic field by talking the 
negative gradient of the potential function. 

( )
πε∫

q'

dq'V  = 
4 R

r  

As was true when with using superposition integral with Coulomb's law, the integration 
will be a single integral if the charge is distributed along a path, will be a double integral 
if the charge is distributed on a surface, will be a triple integral if the charge is distributed 
in a volume, and will be a sum if the distribution is a collection of discrete charges. 
 
Example—E in spherical and rectangular coordinates 

Consider a point charge q' at the origin.  Use = - V∇E to find E given  q'V = 
4  rπε

.   This 

will be done first using rectangular coordinates and then using spherical coordinates. 
 

i) Using rectangular coordinates, 
( )

1
2 2 2 2

 q'  q'V =  = 
4  r 4  x  + y  + zπε πε

 

x y z
V V = - V =  -    +      +    
x y

⎛ ⎞∂ ∂ ∂
∇ ⎜ ⎟∂ ∂ ∂⎝ ⎠

E a a a V
z

 

( ) ( ) ( )
1 1- -2 2 2 2 2 2 2 2 22 2

x y z
 q' = - x  + y  + z    +   x  + y  + z    +   x  + y  + z

4 x y zπε
⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎣ ⎦
a a a

1- 2

( ) ( ) ( )
x y z3 3 3

2 2 2 2 2 2 2 2 22 2 2

 q' x y z  =    +       +    
4 x  + y  + z x  + y  + z x  + y  + zπε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a a a  

 
 

ii) Using spherical coordinates, r θ
V 1 V 1 VV =  +  + 
r r r sin φθ θ φ

∂ ∂ ∂
∇

∂ ∂ ∂
a a a  

 

r θ φ r r2 2 -  +   + -
 q' 1 1 1 1 1  q' 1  q' =  = -  = 

4 r r r r r sin r 4 r 4 rπε θ θ φ πε πε
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
E a a a a a  

 
 

The electric field derived is the same regardless of the CS 0x9 <</M25d7 26474<0n/M25d7 26474<0n/M20.91tt12in 5085 .t360 >>BDC 
a .t1 0 0 1 254.9400024 229.139400024 229.139400024 229.139400024 229.139400024 229.139400024 22Tf
0 Tc002o0 Td
9t21the same regar



Potential Surfaces ☼ 
If the directional derivative of the electric field is zero for a particular direction, this 
indicates that the potential does not change in that direction.  Since the electric field 
points in some direction, any direction that is perpendicular to the electric field give a 
directional derivative of zero.  Taken overall all space these form a surface, an 
equipotential surface, which is perpendicular to the electric field (or, which is the same 
thing, to the negative gradient of the potential).    
 
The equipotential surface is perpendicular to the gradient (or the negative of the 
gradient) so that the electric field is always perpendicular to equipotential surfaces   

 
The gradient of the potential (the negative of the electric field) is perpendicular to 
these equipotential surfaces which are analogous to contour maps which show lines 
of constant elevations.  In the case of contour maps, the gradient of the gravitational 
potential would be perpendicular to these elevation contours. 
 
Using the physical definition of potential and the gradient operation, consider the 
diagram below which shows a potential, V which depends only on x and y.  This plot 
provides information regarding energy, electric field and the charge distribution required 
to produce it. 

 

Graphically characterize the 
potential gradient and the field 
at points a, b, and c.   
 
Sketch some representative 
equipotential contours. 
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Example—energy, potential, and polarity   
Given the potential V(r) = 0.5 x2 +  0.5 y2 volts, find the energy required to move 1 coulomb of 
charge from (000) to (110) meters. 
 
At (000), the charge’s potential energy is 0 J.  At (110), its potential energy is 1 J.   Therefore, it 
takes 1 J to move the charge from (000) to (110) meter. 
 
What is the potential difference between (000) and (110)?   It is 1J / 1C = 1V.   What is its 
polarity?  Where are the positive and negative signs?  This is every bit as important is the 
magnitude.  If the voltage difference is 1 V, where are the positive and negative signs? 
 

 
 

As the +1C of charge is being pushed by an external force from (000) to (110), work is 
done on the charge and is transformed into the charge’s potential energy. 
 
 
 
 
Potential energy and electrostatic potential 
One might ask whether the energy required in moving the charge was independent of 
the path taken.  Is the energy required to move the charge along ax from (000) to (100) 
and then along ay to (110) the same as that required to move the charge (000) in a 
straight line to (110)?   
 
To demonstrate whether or not it is—and it is in this case—one must compare the line 
integrals along the two paths.  The integrand in this case is dW = -F • dl = -qE • dl 

end end

required start start
W  = dW= -q   d∫ ∫ E li  
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Line integrals, potential energy and voltage drops 
The differential of energy required to move the charge is a given direction is 

idW  = -q   dE i il

l

l

.  Integration is used to find the total energy required to move along a 
given path.  Since the differential may be a function of position, the integration must be 
performed in a manner which incorporates the dependence.  The result is a line integral 
in which the effect of the path on the integrand is taken into account. 
 
In terms of potential, the potential rise in a given direction is simply the energy divided 
by the charge, i .  A path integral would then be used to determine the total 
voltage rise along the path. 

idV  = -   dE i

 
a

ab b
V  = -   d∫ E i , which is numerically approximated as 

N

ab i
i = 1

V     -   l≅ Δ∑E ai  

 
Line Integrals ☼ 
Line Integrals are evaluated using these three steps 
 
Step 1   Form the dot product of the integrand and the differential length such as  
   or . i idW  = -q   dE i l  i idV  = -   dE li
 
Step 2   Incorporate the effects of the path on the integrand and on the path 

• Are any of the variables constant over the path?  If so this 
would allow them to be treated as constants and their 
differentials would be zero.  

• Are any variables zero over the path?   
 
Step 3  Integrate 
 
 
Example—line integral: rectangular coordinates, non-conservative field 
Given the electric field below, find Vab between  
a = (110) and b = (000) along the path 

. x y(000)  (100)   (110)a a

E = x ax  +  2z ay   -  3x az  V/m 
 

Step 1 
Form the integrand by taking the dot, or scalar, product of –E and dl. 

( ) ( )x y z x ydV = -   d  = - x   +  2z    -  3x   dx   +  dy   +  dz  

dV = -x dx - 2z dy + 3x dz

E l a a a a a ai i z  

Step 2 
Incorporate the effect of the path on the integrand,  
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( ) ( )
1 1

ab
x = 1y = z = 0x = 0 y = 0 z = 0dy = dz = 0
dx = dz = 0

1 1

ab
x = 0 y = 0

V  = -x dx - 2z dy + 3x dz  + -x dx - 2z dy + 3x dz

V  = -x dx + 0

∫ ∫

∫ ∫

 

Step  3 

Integrate 
1 1 2

ab
x = 0 y = 0

x 1V  = -x dx + 0 = -  = -  V
2 2∫ ∫

1

0

 

It would require 1C (Vab) = -0.5 J to move 1 C from b to a. 
 
 
Does the potential depend on the path taken? 
Consider taking the path below in the same field 

 z x y z(000)  (001)   (101)  (111)  (110)a a a a
E = x ax  +  2z ay   -  3x az  V/m 

 
 
Step 1 

Form the integrand by taking the dot, or scalar, product of –E and dl. 

( ) ( )x y z x ydV = -   d  = - x   +  2z    -  3x   dx   +  dy   +  dz  

dV = -x dx - 2z dy + 3x dz

E l a a a a a ai i z  

Step 2 
Incorporate the effect of the path on the integrand,  

( ) ( )

( ) ( )

1 1

ab y = 0x = y = 0z = 0 x = 0 z = 1dx = dy = 0 dy = dz = 0

1 0

x = y = 1x = z = 1y = 0 z = 1
dx =dx = dz = 0

V  = -x dx - 2z dy + 3x dz  + -x dx - 2z dy + 3x dz

+ -x dx - 2z dy + 3x dz  + -x dx - 2z dy + 3x dz

∫ ∫

∫ ∫
 dy = 0

 

1 1 1 0

ab
z = 0 x = 0 y = 0 z = 1

V  = 0  + -x dx + -2(1) dy + 3(1) dz∫ ∫ ∫ ∫  

Step  3 
Integrate 

12

ab
0

x 1V  = -  - 2y  - 3z  = -  - 2 - 3  V = -5  V
2 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0
0 1

1
2

 

For this field, the energy required to move charge between points depends on the path 
taken.  That is, the potential difference is path dependent. 

Wab = qVab = 1C(-5.5 V) = - 5.5 J 
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Conservative Fields 
What is implied if the energy required to move charge against the field depends on the 
path taken?  What are the causes and consequences? 
 
Physically, there must be a changing magnetic field present.  If a changing magnetic 
field is enclosed by the loop, Faraday’s law states that a net electromotive force is 
induced in the loop.  

loop

d   d  = -
dt
φ

∫ E li  

In circuits, Kirchoff's voltage law states the sum of voltage drops about any closed loop 
is zero.    This is assuming a special case exists.  The assumption underlying KVL is that 
the loop does not enclose changing magnetic fields. 
 
Assuming there are no changing magnetic fields present, the sum of the voltages about 
any loop is zero.  The analogous statement in electromagnetics is that the path integral 
of the electric field about any closed path is zero.   
 

loop

   d  = 0∫ E li  

If this condition holds, the field is said to be conservative.  No net work is required to 
move the charge about any closed loop, which implies a single-valued electrostatic 
potential function (energy per unit charge) can be defined.   
 
If the field is derived from an electrostatic potential, the field must be conservative. 

 
 
 
 
 

Example—cylindrical coordinates, conservative field  ☼ 

 V(r) = 0.5 x2 +  0.5 y2 = 0.5 ρ2 

 =  = - V∇E ρ z 
V 1 V V-  +  + 

zφρ ρ φ
⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

a a a  

  = -    V/mρρE a  

Determine the work required to move -1 C from b = (ρ, φ, z) = (1, π/4, 4) to  
a = (2, π/2, 1) via the two paths shown. 
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Path 1 

( ) ( ) (

ab
a b

ab
b a

0 4 1

ab z z z
 = 2 z = 1  = 0

0

ab
 = 2

work required to move q from b to a is W = qV  

V  = -   d  =   d

V  =  - dz + d + d   +  - dz + d  +d   + - dz + d +d

V  =  -   d

ρ φ ρ ρ φ ρ ρ φ
ρ ρ

ρ ρ
ρ

ρ ρ φ ρ ρ ρ φ ρ ρ ρ φ

ρ ρ

∫ ∫

∫ ∫ ∫

∫

E l E l

a a a a a a a a a a a a

a a

i i

i i i

i

)ρρ

( )

( )( )

0 14 1 2 2

z
z = 1  = 0 2 0

ab

  +   -   dz   + -   d  = - +    = 2 - 0.5  V
2 2

W = qV  = -1 C 1.5 V  = -1.5 J

ρ ρ ρ
ρ

⎛ ⎞ρ ρ⎜ ⎟ρ ρ ρ
⎜ ⎟
⎝ ⎠

∫ ∫a a a ai i

 
 
Path 2 

( ) ( ) ( )

( )

4 /4 1

z zab
z = 1  = /2  = 2

14 /4 1 2

zab
z = 1  = /2  = 2  = 2

V  =  - dz + d + d   +  - dz + d  +d   + - dz + d +d

V  = - dz   +  - d    + - d  = -  = -0.5 + 2  V
2

W 

π

ρ ρ ρ ρ ρφ φ
φ π ρ

π

ρ ρ ρ ρφ
φ π ρ ρ

ρ ρ φ ρ ρ ρ φ ρ ρ ρ φ

ρρ ρ ρ φ ρ ρ

∫ ∫ ∫

∫ ∫ ∫

a a a a a a a a a a a a

a a a a a a

i i i

i i i

( )( )ab= qV  = -1 C 1.5 V  = -1.5 J

z ρφ ρ
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Conservative and non-conservative electric fields ☼ 
What causes the potential difference to be path-dependent or path-independent?  What 
is implied?  What are the implications and consequences?    
 
Terminology:  If the potential difference between two points is independent of the path 
taken, the answer is the same no matter what path is taken and the electric field is said 
to be conservative.  Otherwise, if the potential difference is path dependent, the electric 
field is said to be non-conservative. 
 
Four implications of conservative fields. 

1. For a conservative field, the path integral  is independent of path taken between 

a and b. 

b

a

 d∫E i l

l2. For a conservative field, the path integral about any closed loop  is zero.   d∫ E i

3. Electric fields are conservative when no changing magnetic fields are present.  The 

integral form of Faraday’s law states d d  = -
dt
φ

∫ E li  

4. Any electric field derived from an electrostatic potential, = - V∇E , is a conservative 
field. 

For a conservative field, the following path integrals would be equal.  

  d  =   d  =   d  =   d∫ ∫ ∫ ∫
a a a a

   b    b    b    b
path 1 path 2 path 3 path 4

E l E l E l Ei i i li  
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If the path integral between any two points is path independent, the path integral about 
any closed loop is zero. 

 d  = 0∫ E li  

Consider a few closed loops associated with the diagram above. 

 path 1
 path 2

  d  =   d   +   d  =   d   -   d   =  0
→
←

∫ ∫ ∫ ∫ ∫
a b a a

   b    a    b    b
path 1 path 2 path 1 path 2

E l E l E l E l E li i i i i    

 

 path 2
 path 4

  d  =   d   +   d  =   d   -   d   =  0
→
←

∫ ∫ ∫ ∫ ∫
a b a a

   b    a    b    b
path 2 path 4 path 2 path 4

E l E l E l E l E li i i i i  

 
As stated above, the electric field is non-conservative whenever there is a changing 
magnetic field present in which, by Faraday’s law, 

d d  = -
dt
φ

∫ E li  

where ψm is the magnetic flux.  The magnetic flux is related to the magnetic flux density 
vector via a surface integral. 

surface

=   dφ ∫∫ B si  

A consequence of having no changing magnetic fields present is that a single-valued 
electrostatic potential function can be defined such that = - V∇E as stated above.   
 
Given the discussion to this point, can one say, with certainty, whether the fields below 
are conservative or not?  Why or why not? 
 

If a closed path is found for which  d   0≠∫ E li , then it can be stated with certainty 

that the field is non-conservative.   One need look no further.  One path for which 

 is sufficient to show once and for all that the field is non-conservative.         d   0≠∫ E li

 

If one must use  to test whether the field is conservative and path after path 

gives , one can never say with certainty that the field is conservative, 

one can only say that no path has been found yet for which 

  d∫ E i

 0

l

  d  =∫ E li

 d   0≠∫ E li  and that 

the field may be conservative.    The only certainty to be gained here would be if the 
electric field is given in analytic form and an electrostatic potential is found for which 

.  For this case one can say that the field is conservative.   A better test is 
needed.   

 = -E V∇
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Conservative and non-conservative fields – curl and Stoke’s theorem 
The curl and Stoke’s theorem allow one to say whether a field is conservative or not, 
once and for all. 
 
The curl is the  third vector operation involving the del operator discussed so far (the 
first two were the gradient and the divergence)  
 
Terminology:  the circulation of F is the line integral 

of a vector F about a closed path =  d .∫ F li  

 
The term "circulation" is a term from fluid 
mechanics.  If a fluid's velocity has a non-zero 
circulation, the fluid would be circulating like a 
whirlpool.  Extending this idea beyond fluids, when 
any vector has a non-zero path integral, it is said to 
have a non-zero circulation about that path.   
 
Notice that if the path is split into two, the sum of the two circulations is equal to the 
original circulation about the original loop since adjacent portions of the circulations in 
loop 1 and loop 2 (below) would cancel and only the outside contributions remain. 
 

 
 

Extending this, the loop could be split into an infinite number of infinitesimal paths. 

y

y

y

x

dx

2
dx

2

dy

2
dy

2

right: F (x + , y) dy            

left: F (x - , y) dy 

top: F (x, y + ) dx           

bottom: F (x, y - ) dx 

     

      

      

  

 

 

 
infinitesimal path  
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The circulation about this infinitesimal loop is 

y x y x
loop

dx dy dx dy
  d   =  F (x + , y) dy  F (x, y + ) dx  F (x - , y) dy  +  F (x, y - ) dx

2 2 2
-   -  ∑F li

2
 

 
Rearranging the terms and expressing as a product of derivatives and differential 
surface areas, 

y y x x

loop

dx dx dy dy
F (x + , y) dy  - F (x - , y) dy F (x, y + ) dx  -  F (x, y - ) dx

2 2 2 2  d = dx - dy
dx dy

       ∑F li

y y x x

loop

dx dx dy dy
F (x + , y)  - F (x - , y) F (x, y + )  -  F (x, y - )

2 2 2 2  d = dx dy dx dy
dx dy

      -  ∑F li  

 

( )y x
z

loop

dF  dF
  d =   -  dx dy   x   dx dy

dx dy
      =  ∇

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑F l Fi  

 
This quantity, , is the z-component of the curl of F in rectangular coordinates.   x  ∇ F

y yz x z
x y

F FF F F F
  x   = -  + -  + - 

y z z x x y
   

∂ ∂∂ ∂ ∂
∇

∂ ∂ ∂ ∂ ∂ ∂
⎛ ⎞ ⎛⎛ ⎞

⎜ ⎟⎜ ⎟ ⎜⎝ ⎠⎝ ⎠ ⎝
F a a x

z

∂ ⎞
⎟
⎠
a

s

s

 

 
For a loop of arbitrary orientation, the circulation of F about a closed loop is not just the 
surface integral of the z-component of the curl, but simply the surface integral of .   x  ∇ F

( )
surface

  d   =   x    d  ∇∫ ∫∫F l Fi i  

 
This relation is Stoke's theorem and can be seen to provide a physical meaning of the 
curl of F.   Considering some infinitesimal path, the normal component of the curl of F, is 
the ratio of the circulation of F about the infinitesimal loop divided by the area of the loop.   
 
Conservative fields and    ∇ × E
The curl of E can be understood qualitatively as quite literally the “curliness” of the vector 
E.   If the vector E has a nonzero curl, then the line integral of E about a closed path can 
be nonzero. 
 
On the other hand, if  is zero, then by Stoke’s theorem, the circulation of E about 
any closed path must be zero and the field is therefore conservative.   

  ∇ × E

 

( )
surface

  d   =   x    d  ∇∫ ∫∫E l Ei i  
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If  = 0, it then follows that    ∇ × E
 

( )
surface surface

  d   =   x    d  = 0  d

  d   = 0

  

  

∇∫ ∫∫ ∫∫

∫

E l E s

E l

i i

i

si

l

 

 
If , then ( ) =  x   0  ∇ E

1)     d   = 0  ∫ E li

2) E is a conservative field 

3)   is independent of the path taken between a and b 
b

a

  d∫E i

4) no time-varying magnetic field is present 

5) the electric potential is single-valued 
 
Line integrals along prescribed paths ☼ 
The line integrals considered so far have always been along paths which have been split 
into segments where only one variable changes at a time.  What is done in cases where 
this does not hold?  What if the path is chosen in which more than one variable varies? 
 
The answer is that “constraint equations” defining the path must be incorporated into the 
integrand.    To illustrate, consider finding the line integral  

a

b

 d∫E li  

between (x,y) = (0,0) and (1,2)  for E  =  xy ax  - y2 ay 

 

 

 
For rectangular coordinates, dl = dx ax + dy ay + dz az    → E · dl  =  xy dx  - y2 dy 
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Evaluation 
In line integrals,  there can be only one independent variable.   If an integrand has more 
than one independent variable, constraint equations relating the variables are needed to 
so that a single remaining independent variable in the integrand.   
 
Path 1:  A straight line from (0,0) to (1,2).  The constraint equation describing this path is 
  y = 2x.     The differential relation is  dy = 2 dx 

 
E · dl  =  x(2x)dx - (2x)2(2dx)  =  -6x2 dx    or 
 
E · dl  =  (½ y) y (½dy)  - y2 dy  =  - ¾ y2 dy 
 

1
2

0
2

2

0

  d   =  -6x  dx   =  -2                  

3  d   =  - y  dy   =  -2
4

∫ ∫

∫ ∫

E l o

E l

i

i

r
 

 
Path 2:  The parabola y = 2x2 from (0,0) to (1,2).    The constraint equation is the  
  equation of the parabola.  The differential relation is dy = 4x dx 
 

E · dl  =  x(2x2)dx - (2x2)2(4x dx)  =  (2x3 - 16x5)d      or 
 
E · dl  =  (½y)½y [¼dy/(½y)½] - y2dy  =  (¼y - y2) dy 
 

1
3 5

0
2

2

0

1  d   =  2x   -  16 x  dx   =  -2                   
6

1 1  d   =  y - y  dy   =  -2
4 6

∫ ∫

∫ ∫

E l o

E l

i

i

r
 

 
Line integrals in 3-space 
For a path integral in 3-dimensional space, two constraint equations would be required 
to define the path.  Each of the constraint equations in three space would define a 
surface and their intersection (obtained through their simultaneous solution) would 
define the path of integration.   
 
The integration would be with respect to whichever of the three variables is not 
eliminated with the two constraint equations. 
 
In fact, we could consider the path integrals above as being performed in 3-space, 
where one of the constraint equations is z = 0. 
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Poisson’s and Laplace’s  equations  ☼ 
The electrostatic field is the negative gradient of the electrostatic potential, 
    = - V∇E
 
For a region bounded by surfaces of known potential, casting the problem in the form of 
a boundary value problem using potential can be the most natural solution path.  Starting 
with Gauss’ law, the use of  = - V∇E gives the differential equation in V known as 
Poisson’s equation. 
 
Solving the boundary value problem for the potential avoids having to solve the vector 
differential equation directly.  It offers an “end run” by first solving for the potential, the 
negative gradient of which is electric field. 

( ) ρ ρ
ε ε
v v  - V  = using  = - V  in the point form of Gauss' law     = ⎛ ⎞∇ ∇ ∇ ∇⎜ ⎟

⎝ ⎠
E Ei i  

ρ
ε
v  V =  -∇ ∇i  

  V∇ ∇i is the Laplacian operator operating on V and is written, . 2 V = V∇ ∇ ∇i
 
The result is Poisson’s equation. 

ρ
ε
vV =  -∇2  

In rectangular coordinates, this implies, 
ρ
ε

ρ
ε

v
x y z x y z

2 2 2
v

2 2 2

V V V  V =   =  +  +    +  +  =  -
x y z x y z

V V V +  +  =  -
x y z

⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂ ∂
∇ ∇ ∇ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝
∂ ∂ ∂
∂ ∂ ∂

a a a a a ai i ⎞
⎟
⎠  

 
For ρv = 0, the result is Laplace’s equation. 

V =  02∇  

Poisson’s and Laplace’s equation and the subsequent gradient operation give the 
electric field only for electrostatics—when the source of the fields, charge, is at rest. 
 
When time-varying currents are present, Faraday’s law shows that the line integral of the 
electric field about a closed path is no longer zero—the electric field is no longer a 
conservative one.    A non-conservative field cannot be expressed as the negative 
gradient of a scalar potential.  In this case, the concept of a vector potential is often 
introduced.   Here, the static case is treated. 
Laplace's Equation  ☼ 
Laplace’s equation is present is many branches of science and engineering. 
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V =  02∇  

In electromagnetics, Laplace’s equation gives the electrostatic potential from which the 
electric field can be found (  = - V∇E ) given no changing magnetic fields are present. 
 
In rectangular coordinates Laplace’s equation reads,  

2 2 2

2 2 2(  +  + ) V  = 0
x y z
∂ ∂ ∂
∂ ∂ ∂

 

 
Laplace's Equation will be solved analytically for the case of variations with involving one 
variable.  (When more than one variable varies, the techniques of partial differential 
equations must be used.) 
 
 Consider a potential for which the 

potential is a function of z and which 
is independent of x and y.    

 
2 2

2 2 =  0
V d V =

x dy
∂
∂

 

solving, 
 

2

2   =  
d V d dV dV = 0 d  = 0dz = A
dz dz dz dz
dV  = A dV = A dz
dz

→

→

∫ ∫

∫ ∫
 

V(z) = Az + B  
 

sapplying the bc's of V(0) = 0 and V(L) = V  

s
s

V(0) = B = 0
VV(L) = V  = AL A = 
L

→
 

sV  zV(z) = 
L

 

 
Using the gradient 

s
z z

VV = -  = -
z L

∂
∂

E a a  
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Laplace’s equation in cylindrical coordinates   ☼ 
Consider two concentric cylinders that are PECs (inner radius a, 
outer radius b).  Let the voltage of the outer cylinder be 0 and the 
voltage of the inner cylinder be Vo. 
 

V(b) = 0 
V(a) = Vo 

 
Laplace's Equation in cylindrical coordinates 
 

2 2
2

2 2 2

1 V 1 V VV =   +    +    =  0
 z

ρ
ρ ρ ρ ρ φ

⎛ ⎞∂ ∂ ∂ ∂
∇ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

 
For this situation, there are no variations in θ or φ, and Laplace's 
Equation reduces to 
 

2 1 V 1 d dVV =   =   = 0
d d

ρ ρ
ρ ρ ρ ρ ρ ρ

⎛ ⎞ ⎛ ⎞∂ ∂
∇ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

 

 
 

 

Solving this 
dV dVd   = 0 d   = A
d d

ρ ρ ρ ρ
ρ ρ

⎛ ⎞
→⎜ ⎟

⎝ ⎠
∫ ∫  

 
 

( )AdV = d V = A ln  + Bρ ρ
ρ

→∫ ∫  

Applying the boundary conditions (bc’s) 
 

( ) ( )

( ) ( ) o
o

V(b) = A ln b  + B = 0  B = -A ln b  
VV(a) = A ln a  - A ln b  = V A = -

aln
b

→

→
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

( )o oV VA =   and B = -  ln b
b bln ln
a a

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( ) ( )
( )
( )

o o
o

blnV VV =  ln   -  ln b  = V
b b blnln ln aa a

ρ
ρ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Finding E 

 = - V∇E  

z+  +  
V 1 V V

V  =         
zρ φρ ρ φ

∂ ∂ ∂
∇

∂ ∂ ∂
a a a  

 

( ) ( )o oV VV =  =  ln   -  ln b  
b bln ln
a a

ρ ρρ
ρ ρ

⎡ ⎤
⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

E a a  

 

( )
oV 1 =  

bln a
ρρ

E a  

 
 
Numeric Techniques in solving Laplace's Equation ☼ 
In rectangular coordinates, Laplace's equation reads 
 

2 2 2

2 2 2   =  0V V V +  + x y z
∂ ∂ ∂
∂ ∂ ∂

 

 
Defining potentials at points on a grid. 
 
Evaluating the first derivative with respect to x at A 

O B

A

V  - VV     
x x

∂
∂ Δ

 

 
 
and at C 

F O

C

V  - VV     
x x

∂
∂ Δ

 

 
 
Evaluate the 2nd derivative with respect to x at O. 

2
C A

2
O

V V - 
V x x    

x x

∂ ∂
∂ ∂ ∂
∂ Δ
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substituting 
2

F B
2 2

O

V  +  V - 2VV     
x x

∂
∂ Δ(

O

)
 

 
Similar expressions can be found for the second derivatives with respect to y and z. 

2
R L

2 2
O

2
U D

2 2
O

V  +  V  -  2VV     
y y

V  +  V  -  2VV     
z z

∂
∂ Δ

∂
∂ Δ

(

(

O

O

)

)

 

 
Take Δx = Δy = Δz = Δ. 
 
The numerical approximation for Laplace's equation reads. 

2 2 2

2 2 2

V V V
  =  0

x y z
 +  + ∂ ∂ ∂

∂ ∂ ∂
 

 

F B R L U D O
2

V   +  V   +  V   +  V   +  V   +  V   -  6VV      =  0∇
Δ

2  

 
This gives the reasonable result that the voltage at O is just the average of the 
surrounding voltages.    Why is this reasonable? 
 

F B R L U D
o

V   +  V   +  V   +  V   +  V   +  V V
6

     

 
For the 2D case 
 

R L U D
o

 V   +  V   +  V   +  V V
4
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Linear equations 

 
Develop nine equations and nine unknowns (V1 through V9) 
1)  R L U D o 2 4V  + V  + V  + V  = 4V V  + 0 V + 100 V  + V  = 4V⇒ 1

2)  

3) 

4) 

5) 

6) 

7) 

8) 

9) 
 
 
 
Once the potential voltage at the nodes is know, linear interpolation can be used to find 
the potential at any point.   
 
 
 
The general guideline that can be relied upon in homogenous resistors is that the 
potential at any point α is the average of the potential at surrounding points arrayed 
symmetrically about the point α.  
 
 
 
 
 

Electromagnetic Fields 52



Using MS Excel 
For 2D problems, iteration can be implemented on a spreadsheet.  For example, in the 
problem above, twenty-one (21) cells would be required… 9 for V1 through V9 and 12 for 
the boundaries.  The potential of each of the cells corresponding to V1 through V9 is 
calculated as the average of the four surrounding cells. 
 
To begin, give the boundary cells their voltages and the interior cells zero volts.  Begin 
iterating.  V1 through V9 will usually stabilize quickly. 
 
 

Table as entered 

 
 
 

 100 100 100  
0 0 0 0 50 
0 0 0 0 50 
0 0 0 0 50 
 50 50 50  

 
 

After 1st iteration (circular 
reference enabled by 

clicking iteration under 
tools-options-calculation) 

 100 100 100  
0 25 31.3 45.3 50 
0 6.25 9.38 26.2 50 
0 14.1 18.4 36.1 50 
 50 50 50  

 

After 100th iteration 

 
 
 

 100 100 100  
0 50 67 67.9 50 
0 33 50 54.5 50 
0 32.1 45.5 50 50 
 50 50 50  
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Ohm’s law and resistance 
The ratio of current density to electric field in a material defines conductivity, σ.   

J = σE 

This relation is the point form of Ohm’s law.   It relates current density (A/m2) to the 
electric field present (V/m) just as Ohm’s law relates current (A) to voltage difference (V). 

1V = IR I = V
R

→  

The units of conductivity are  

[ ] 1 S =  = 
m m

σ
Ω

 

where S is Siemens, the SI unit for conductance and equal to Ω-1. 
 
Example—resistor ☼ 
Find the resistance of the resistor shown. 

 
1) Solving Laplace’s equation (assuming no dependence on x or y) 

sVV(z) = z
L

 

 
2) The electric field is the negative gradient of the potential. 

s s
z z

V V = - V = -  z  = -
z L L

∂ ⎛ ⎞∇ ⎜ ⎟∂ ⎝ ⎠
E a a  

 
3) The current density is immediately known J = σE. 
 
4) The current density can be integrated to find the total current in the resistor.\ 

surface

I =   d∫∫ J si  

 where ds is in the direction of the desired current (here -az) 

r 2
s

z z
=0 =0

V rI = -    - d d   = V
L L

2π

ρ φ

πσ ρ ρ φ σ⎛ ⎞
⎜ ⎟
⎝ ⎠∫ ∫ a ai s  
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Consider the case where a voltage source sets up the electric field.  For this case, the 
electric field continuously loses energy, but does not grow smaller in magnitude since 
the voltage source provides energy to maintain the electric field (if the electric field did 
not receive energy from the voltage source, its magnitude would decrease).  In this case, 
the energy from the voltage source maintains the electric field, which does work on the 
moving charge and this work is transferred to the material through scattering from the 
material’s atoms (lattice scattering).  Overall, we can view this as power from the voltage 
source to the conducting material. 
 
Looking at the individual charge q in an electric field E moving 
with an average velocity v.  The time rate of work done by the 
electric field on the charge is 
 

dW d =    = q   
dt dt

P = q   

lF E

E v

i i

i

v
 

 

 

 

This is the power that is transferred from the electric field E to thermal energy, with the 
charge q acting as an intermediary.  Consider now the power associated with a 
differential charge dq. 

( ) ( )

( )

v

v

dP = dq    = dv   
dPp =  =   
dv

ρ

ρ

E v E v

E v

i i

i
 

 
Here p is the power absorbed per unit volume, Joule’s law, which is the point form of the 
familiar P = VI relationship giving the power absorbed by lumped circuit elements. 

vp =     =   
p =   

ρE v E
E J
i i
i

J
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Example: determining resistance using Joule’s law  ☼ 
Take the resistor that has previously been considered. 

 
 
Using Ohm’s law  

2 2
2

2

V VP = V I =  = I R R =  = 
R P

→
P
I

 

 
In terms of fields 

( )
22

volume
22

volume
surface

E dv  d
R =  = 

 E dv
  d

σ

σ ⎛ ⎞
σ⎜ ⎟

⎝ ⎠

∫∫∫∫
∫∫∫ ∫∫

E l

E s

i

i

 

 
In this case, the electric field has been found to be 

s s
z z

V V = - V = -  z  = -
z L L

∂ ⎛ ⎞∇ ⎜ ⎟∂ ⎝ ⎠
E a a  

 
 
Finding the resistance with R = V2/P. 
 

( )
20

s2
z z 2

z=L s
2 2 2L 2 r2 2

s s
volume

z=0 =0 =0

V-   dz  d L V L LR =  =  =  =  = 
AV V E dv d d dz L2

L L 2

π

ϕ ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

σπρ σσ ρ⎛ ⎞ ⎛ ⎞σ ρ ρ ϕ σ π⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫∫
∫∫∫ ∫ ∫ ∫

a aE l ii
 

 
And now with R = P/I2. 
 

( )

2L 2 r 2 2
s s

z=0 =0 =0
2 2 22 22 r

ss
z z

=0 =0

V Vd d dz L2L L LL 2R =    =  =  = 
AVV 2-   d d - L 2L

π

ϕ ρ

π

ϕ ρ

⎛ ⎞ ρ⎛ ⎞σ ρ ρ ϕ⎜ ⎟ σ π⎜ ⎟⎝ ⎠ ⎝ ⎠
σπρ σ⎡ ⎤ ⎛ ⎞ρ⎛ ⎞⎛ ⎞ σ πσ ρ ρ ϕ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

∫ ∫ ∫

∫ ∫ a ai
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Example—cylindrical resistor with Laplace  ☼ 
Find the resistance between two PECs forming concentric cylinders (inner radius a, 
outer radius b) of length L.  Let the voltage of the outer cylinder be 0 and the voltage of 
the inner cylinder be Vo.  Let the conductivity of the material between the PECs be σ. 
(from symmetry, V should not vary with φ and the model used takes the length to be 
large so that variations z can be neglected) 
 

 

V(b) = 0 
V(a) = Vo 

 
Laplace’s equation has been solved for cylindrical coordinates with these boundary 
conditions--see pages 47-48 of these notes.     

( ) ( )
( )
( ) ( ) ( )

( ) ( ) ( )

o o
o

o o

blnV VV =  ln b - ln  = V  = ln b - ln 
b b bln ln lna a a

V V 1 =  - V = - ln b - ln  =  
b bln lna a

ρ ρ

ρ
ρ ρ

⎡ ⎤∂ ⎢ ⎥∇ ρ
⎢ ⎥∂ρ ρ
⎣ ⎦

E a a

 

 

( )

( )

( )

( )

( ) ( )

( )

( ) ( )

( )

o

o

o

o

b
- o

a
+

z +L2
o

surface
=0 z = z

b
o o o

a

z +L2
o oo

=0 z = z

V 1    d    d blnV aR =  =  = 
I   d V 1    dzd  

bln a

V V Vd b ln b - ln a ln ab b bln ln lna a aR =  =  = V VV 2 L 2 Ldzd  b bln lnbln a aa

R =

ρ ρ

π

ρ ρ
φ

π

φ

ρ
ρ

σ ρ φ
ρ

ρ
ρ

σ π σσ φ

∫∫

∫∫ ∫ ∫

∫

∫ ∫

a aE l

J s a a

ii

i i

π

( )bln a 
2 Lσ π
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Boundary conditions ☼ 
Consider two materials sharing a common boundary.  Material 1 has conductivity σ1 and 
permittivity ε1, and material 2 has conductivity σ2 and permittivity ε2.  The laws of 
electromagnetics require certain relations for the J, D, and E vectors at the boundary. 
 
 
Boundary conditions for J 

out
surface

out

I  =   d  = 0

I  =   d  +   d  +   d

∫∫

∫∫ ∫∫ ∫∫1 2
top bottom sides

J s

J s J s J s

i

i i i

a

 

 
Since the sides are infinitesimal in area, the integral 
over the sides is zero 

( )

( ) ( )

2 r 2 r

out 1 z 2 z
=0 =0 =0 =0

2 2
out 1z 2z

1z 2z 1N 2N

I  =   d d  +   d d -

I  = J r   - J r  = 0

J  = J  or physically, J  = J

π π

φ ρ φ ρ

ρ ρ φ ρ ρ φ

π π

∫ ∫ ∫ ∫J a Ji i

 
The result of conservation of magnetic flux can be expressed compactly in vector notation 
using the unit normal, an, to the interface directed from region 2 into region 1. (an = az above) 

( )n 1 2 -  = 0⋅a J J  

 
Boundary conditions for D 

ψout inside
surface

inside

 =   d  = q

q  =   d  +   d  +   d

∫∫

∫∫ ∫∫ ∫∫1 2
top bottom sides

D s

D s D s D s

i

i i i

a

 

 
Since the sides are infinitesimal in area, the integral 
over the sides is zero 

( )

( ) ( ) ( )ρ

ρ ρ

2 r 2 r

inside 1 z 2 z
=0 =0 =0 =0

2 2 2
s 1z 2z

1z 2z s 1N 2N s

q  =   d d  +   d d -

 r = D r   - D r

D  - D  = or physically, D  - D  = 

π π

φ ρ φ ρ

ρ ρ φ ρ ρ φ

π π π

∫ ∫ ∫ ∫D a Di i

 
The result from Gauss’ law can be expressed compactly in vector notation using the 
vector normal to the interface directed from region 2 into region 1. (an = az above) 

( )n 1 2 -  = sρ⋅a D D  
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Boundary conditions for E 
Faraday’s law states that the voltage induced about a 
closed loop is equal to the changing magnetic flux 
enclosed by the loop.  Since voltage can be expressed in 
terms of a line integral of the electric field,  

d  d  = -
dt
φ

∫
path

E li   

 
If the loop is infinitesimal, a finite amount of flux cannot be 
enclosed and Faraday reads, 

  d  = 0∫
path

E li  

 

 

The result from Faraday’s law can be expressed compactly in vector notation using the 
vector normal to the interface directed from region 2 into region 1. (an = az above) 

( )n 1 2 -  = 0×a E E  

 
Note that the contributions of the sides are infinitesimal due to their infinitesimal lengths. 

0

1 y 2 y
y=0 y=

1y 2y 1y 2y

  d  =   dy  +   dy  = 0

E   -  E  = 0              E   =  E

l

l

l l →

∫ ∫ ∫
path

E l E a E ai i i
 

 
This result could be expressed more physically by noting that the ay direction is 
tangential to the boundary, 

( )1T 2T n 1 2E   =  E  -  = 0→ ×a E E  

 
Planes and normals 
A plane can be defined as all the vectors that are normal to a given vector. 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

o x x y y z z o x o y o z

x o y o z o

x y z x o y o z o

n

   -  = N  + N  + N   x - x  + y - y  + z - z  = 0

N x - x  + N y - y  + N z - z  = 0

N x  +  N y  +  N z  =  N x  +  N y  +  N z equation of plane

 =  / N  unit vector normal to

⎡ ⎤⎣ ⎦N r r a a a a a a

a N

i i

( ) plane

 

 
Example 

( )
( ) ( )2 2 2

n x y z

2x  +  5y  -  3z  =  11 equation of plane

 = 2   +  5   -  3 / 2  + 5  + 3   unit vector normal to planea a a a
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Conductors and the perfect electrical conductor approximation 
Good conductors have a large conductivity, σ.   A perfect electrical conductor (PEC) 
has infinite conductivity.  This implies that the electrical field inside a PEC is zero.  That 
this must hold can be seen from the point form of Ohm’s law. 

J = σE 

The magnitude of J must remain finite, for a PEC with infinite σ, the magnitude of E must 
be zero.  Of course, this condition is not exactly met within a good conductor, but it is 
nearly so as one can see in the example below. 
 
Example—field required for DC currents in copper conductors 
30 A is the maximum current permitted by the National Electric Code (assuming 30°C 
ambient temperature) for 10 AWG copper conductors.  What is the electric field inside a 
10 AWG conductor carrying its maximum permissible current. 

 
radius for 10 AWG conductor = 1.29 mm 

J for 30 A in 10 AWG conductor = 5.7 (106) A/m2 

E = J/σ = 0.1 V/m 
 

For a wire more on the order of that used for electronics, consider the field required for a 
10 mA current in a 24 AWG copper conductor 

 
radius for 24 AWG conductor = 0.256 mm 

J for 10 mA in 24. AWG conductor = 4.86(104) A/m2 

E = J/σ = 0.84 mV/m 
 

Boundary conditions for perfect electric conductors (PECs) ☼ 
1. Since E = 0 inside a PEC, Etan = 0 inside a PEC.  This requires that the tangential 

component of the electric field at the boundary of a PEC is zero.  The tangential 
component of the electric flux density at the boundary of a PEC is zero as well. 

ET = 0  and     DT = 0 
 
2. Since E = 0 inside a PEC, D = 0 inside a PEC as well.  This, combined with the fact 

that Dtan = 0 at the boundary of a PEC implies both the electric field and the electric 
flux density vector are always normal to the surface of a PEC.  

DN = ρs  and           EN = ρs/ε 
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Incremental resistor  ☼ 
Additional insight can be gained from a discussion of the incremental resistor.  This can 
aid in numerical approaches which typically involves breaking regions into small pieces 
that can be approached more readily.  
 
Looking at the relation between potential difference and electric field,  

b

ab
a

  d  = V∫E li  

 
By incorporating geometry and material properties on can obtain a relationship between 
current and voltage for a small region of resistive material, the incremental resistor. 
 
The sides of the incremental resistor are parallel to the current flux so that any charge 
entering the element also leaves the element.  Also, the ends of the incremental reluctor 
are equipotential surfaces. 
 
The element relationship for the 
incremental resistor is the ratio of the 
potential difference to current, Ohm’s law. 
 

E EVR =  =  = 
i J A E

R = 
A

Δ ΔΔ
Δ

Δ Δ σ Δ
Δ

Δ
σΔ

l l

l
A

 

 
 
Using Ohm’s law and the incremental resistor, it can be shown that the power relation P 
= VI for a resistance is consistent with the fundamental considerations used to derived 
Joule’s law. 
 

( ) ( )σ
σ σ

2 2

2

d ddP = dV di = dRdidi =  JdA  =  EdA
dA dA

dP = σE dldA = σEEdv = JEdv
dP  = JE =      (  and  are parallel)
dv

J E J Ei

l l
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Per-square resistance 
Suppose the incremental resistance is two-
dimensional in character with a thickness t. 
 

In this case, R =  =  
A t w
l lΔ Δ

Δ
σ Δ σ Δ

 

 
Suppose further, that Δl = Δw, in which case 

1R  = R =  
t

Δ
σ

  

Where R  is referred to as resistance per square.  This nomenclature is used in PCB 
and IC manufacturing where most structures are 2D in nature. 
 
Example: resistance of PCB trace 
Find the resistance of the PCB trace below if it is patterned from a 2-oz copper layer. 
 

 

 

2-oz copper (2 oz copper spread over 1 ft2) has a typical thickness of 6.81(10-5) m.   
 

( )

3
cu 2 2

2

-5
2 2

2 3

1 lb 1 kg2 ozm 16 oz 2.205 lb = 8960 kg/m  =  = 
v 12 in 0.0254 m1 ft  t

1 ft 1 in
1 lb 1 kg2 oz

16 oz 2.205 lbt  =  = 6.81 10  m
12 in 0.0254 m1 ft  8960 kg/m
1 ft 1 in

ρ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 
For σcu = 5.8(107) S/m, the per-square resistance for copper is approximately 0.253 mΩ 
per square. 
 
Given this per-square resistance, an estimate of the DC trace resistance can quickly be 
obtained for this 20-square trace. 

traceR  =  20 R  = 5.06 m  Ω  
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Resistivity estimates of irregular 2D shapes – curvilinear squares. 
The approach taken above in per-square resistance can be generalized for application 
regarding resistors with more general cross-sections.  Here shapes are chosen so that 
the average width is equal to the average height.    
 
The boundaries of these “curvilinear squares” are chosen so that their sides are parallel 
to the current flow (so that the current "in" is equal to the current "out") and their ends 
are equipotential surfaces (to allow a potential difference to be defined). 
 
Example: curvilinear squares 
Assuming a thickness t, use curvilinear squares to graphically estimate the resistance of 
the 2D resistor shown. 
 

 
 

Symmetry can be used to reduce the work to two identical resistance in parallel, 
it can be seen that the resistance of the 2D resistance is 

( )-1-1 -1 -11 1 0.744R =  5  + 4.5  + 4  = 
2 t tσ σ

 

 
This result seems reasonable since the resistor is a bit wider than it is long. 
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Resistance of inhomogeneous materials 
What are the options when the material’s conductivity varies with position? 
 
Case one:  Sides parallel to current flux lines and ends on equipotential surfaces. 
 
If two materials are separated by surfaces parallel to current flux lines and if they share 
common potential differences, then the two resistances have common potentials, 
respective currents add, and the resistances can be treated as in parallel. 

 

 

In this case, find the resistance of each resistor 
separately and then treat them as in parallel to find 
the resistance of the combination. 

 
Case two: ends on equipotential surfaces and common currents passing through the two 
materials.  In this case the resistances have common currents, potential differences add, 
and the resistances can be treated as in series.   
 
 Consider a case with two different materials. 
 

In this case, find the resistance of each resistor 
separately and then treat them as in series to find 
the resistance of the combination. 
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General case of non-homogeneous conductivity 
Case three: Boundaries neither parallel nor perpendicular to current density flux lines.   
 
Consider two-dimensional resistors in (xyz).  The general cell is shown below. 

 

  
The basic relation used is conservation of charge under the condition that one would not 
expect the interior of a resistive body to be capable of storing charge.  That is, for a 
resistor, each region must satisfy Iout = 0. 
 
Use the formula.  

I  =    area =  E (area)σJ i  
 
Looking at the right surface. 

( )

O R
1 4

O R
1 4

out (right)

out (right)

V   -  V  t     =     +  
2 2

V   -  V  =   t   + 
2

I

I

σ σ

σ σ

Δ Δ⎧ ⎫⎛ ⎞ ⎛
⎨ ⎬⎜ ⎟ ⎜Δ ⎝ ⎠ ⎝⎩ ⎭

t ⎞
⎟
⎠

 

Performing similar calculations at the upper, the left, and the bottom surfaces, we would 
obtain. 

( ) ( )

( ) ( )

O R O U
1 4 1 2

O L O D
2 3 3 4

out     +    +  

  +  

V   -  V V   -  V
  =  t   +  t   + 

2 2
V   -  V V   -  V

 t   +  t   +   =  0
2 2

I σ σ σ σ

σ σ σ σ
 

 
Rearranging, one obtains, 

( ) ( ) ( ) ( ) O 1 2 3 4 R 1 4 U 1 2 L 2 3 D 3 4 2 V (  +  +   + )  -  V  +   -  V +   - V  +   -  V  +   =  0σ σ σ σ σ σ σ σ σ σ σ σ
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Solving for Vo, 
( ) ( ) ( ) ( )U 1 2 L 2 3 D 3 4 R 1 4

O
1 2 3 4

  V  +   +  V  +   +  V  +   +  V  + 
  =  

2 (  +  +   + )
V σ σ σ σ σ σ σ

σ σ σ σ
σ

 

 
This is the equation that can be used to find the potentials in a two-dimensional 
inhomogeneous resistor.   The 2D resistor is of extreme importance.  Most of the 
resistors on the planet are 2D resistors in integrated circuits.    
 
Beyond this, this technique can readily be generalized to the general inhomogeneous 3D 
resistor.  
 
Consider the two dimensional resistor below. 
 

 
 
 
 
The solution will involve writing 23 node equations.  Begin with N1. 
 

 

1 54V  = 1 V + V  + 2V2  
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The other 22 node voltage equations, 
 

2 1 6

2 3

n2:  8V  = 2(1V) + 2V  + 2V  + 2V
n3:
n4:  4V  = 1V + 2V + V
and so on

8

3

 



To find resistance, divide applied voltage by total current.    
 
In order to do this, one must find the current density from the conductivity and the 
electric field.  In this method a linear approximation for the electric field is found from the 
node potentials. 
 

 
 
The total current can be calculated as a sum of cell currents over an area that encloses 
all the current. For example, to find the current that flows between N13, N18, and N23 
and the 0 V electrode. 
 

( ) ( ) ( )

1 2 3 1 1 2 2 3 3 1 1 1 2 2 2 3 3 3

13 18 23

I   =  I  I  I

V   -  0 V   -  0 V   -  0
I   =  t   +   t   +   t

2 2

 +  +  = J A  +  J A  +  J A  = E A  +  E A  +  E A  

σ σ σ

σ σ σ

Δ Δ
Δ

Δ Δ Δ

 

 
Note:  Cells 13 and 23 have half their widths in material with zero conductivity. 
  
 
For V13 = 0.218 V, V18 = 0.198 V, and V23 = 0.189 V 

 
I  =  0.4015 σt  so that R  =  1 V/ I = 2.49/σt 
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The total current could also be found at the 1V electrode. 
 

( ) ( )2 3

1 2 3

1 4

I   =  I  I  I  I

1 - V 1 - V
I   = t   +  t 1 - V   +  t 1 - V + t

2 2

 +  +  +

  

4

σ σ σ σ

 

 
V1 = 0.875 V 

V2 = 0.871 V 

V3 = 0.862 V 

V4 = 0.855 V 
 
  

I = 0.402σt, so that R = 2.49/σt. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Electromagnetic Fields 70



Permittivity  ☼  
The ultimate source of the electric field, E, is charge.  In free space, the ratio of D to E is 
εo = 8.854(10-12) F/m.  In matter, their ratio is affected by the ease by which the 
material’s bound charges are polarized.   In matter, bound charge can polarize which 
produces a component of the D due to polarization.   

r o o r o =  =  =  + (  - 1)ε ε ε ε ε εD E E E E  

o
o o

 =  +  =  - ε
ε ε

→
D PD E P E  

In a material with bound charge, permittivity is a measure of how easily bound charge is 
separated – whether by the orientation of dipoles, by distortion of permanent dipoles, or 
by displacement of electrons – by an external electric field.   The permittivity of a 
material is a measure of the ease in which the bound charge can be polarized, of how 
easily bound charge is separated under the influence of an external field.  The easier the 
charge is separated, the larger εr.   

http://www.rose-hulman.edu/class/ee/HTML/ECE340/340-es-permittivity/340-es-permittivity.html


Ionic Polarization 
The electronic bonding in many materials has an ionic component due to differences in 
electron affinities of the material’s constituents.  For example, when sodium (Na) and 
chlorine (Cl) form sodium chloride (NaCl) or common table salt, the chloride ion attracts 
the bond electrons more strongly than do the sodium ions, the result being that NaCl is 
an ionic solid with the Na ion being positively charged and the chloride ion being 
negatively charged, Na+Cl-.   When ionic solids are subjected to a rapidly time-varying 
electric field, these two ions are displaced in opposite directions due to the Coulomb 
force.  The mass associated with this process includes some relatively small portion of 
the ions’ mass, which is much higher than that associated with electronic polarization. 
 
Orientational Polarization 
This mechanism is associated with the movement and rotation of permanent dipoles, the 
outstanding example of which is the water molecule.  Orientation 
polarization in this case refers to the movement and rotation of the 
dipole, not just distortion as is the case in ionic polarization.  The 
result is that a much greater mass is typically associates with 
orientational polarization than is with either electronic or with ionic 
polarization. 
 
Variation of polarization with frequency 
The three polarization mechanisms involve different characteristic inertias and so have 
different time constants. The result is that all materials have a frequency dependent 
permittivity It is important to know at what frequencies these polarization mechanisms 
begin to vary. 
 
Think of bound charge in terms of a mass-spring-damper system.  The spring constant 
represents the coulomb force, the mass represents the mass associated with the bound 
charge, and the damper represents loss mechanisms. 
 

 

2

time domain eom:   mx + bx + kx = f(t)

s-domain eom:  X (ms  + bs + k) = 
 

 
 
 

 
 
 
 
 

These results agree with intuition.  The system acts as a “low-pass” filter with the break 
frequency growing smaller as the mass increases.   

F

2

2 2
2 n n

X 1
  =  

F ms  + bs + k

1/m 1/m
=  = 

b k s  + 2 s + s  + s + 
m m

H(s) =

ςω ω
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The mass associated with electronic polarization is that associated with electrons.  Electrons 
are light—much lighter than nucleons.  The mass associated with an electron is 9.11(10-31) kg.  
The mass of a protons and neutrons are approximately 1.67(10-27) kg.    Electronic polarization 
is a mechanism that survives into the ultraviolet regions and does not begin dropping until the 
visible spectrum, which starts at 4(1014) Hz.  
  
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 
 

*EM Spectrum from NASA 
 
i)  electronic polarization refers to the relative movement of a molecule’s electron cloud 
 with respect to its nuclei. 
 

This is the mechanism behind rainbows and is what allows prisms to 
separate white light into a spectrum of colors.   This is why focusing and 
other “optical processes become difficult for x-rays.  At x-ray frequencies, 
all polarization mechanisms are long gone, which creates challenges for 
focusing, magnifying etc.   

 
ii)  ionic polarization refers to the relative movement of negative and positive ions in 
 an ionic solid.   
 

The mass associate with this mechanism is on the order of nuclei ~ typically around 
104 or a few 104 times the mass of a single electron.  This implies a break frequency 
two or three decades lower than that for electronic polarization.   
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This is just what is typically seen—ionic polarization begins leaving in the vicinity of 
infrared (IR) frequencies ~ beginning around 1012 to 1013 Hz. 

 
iii)  orientational polarization—associated with the movement of the permanent 
 electric dipole of a polar molecule.  This mechanism begins leaving in the 
 microwave regions (a few GHz). 

 
Water is a good example of the frequency dependence of orientational 
polarization and its subsequent affect on permittivity as frequency 
varies.  At DC, water has a relative permittivity of 80 and at 100 GHz, 
its relative permittivity is around 10. 
 

 
 

Dielectric strength and dielectric breakdown  ☼ 
A related property is the material's dielectric strength.  A material’s dielectric strength is the 
maximum electric field that the material can withstand without damage.  At sufficiently strong 
electric fields, electrons break their bonds, become free, and then accelerate due to the 
applied field.   At this point the material no longer is an effective insulator.   
 
Moreover, these electrons can, in turn, collide with other bound electrons, breaking their 
bonds.  Once their bonds are broken, these newly free electrons accelerate under the strong 
electric field and, when they collide with a neighboring molecule, other electrons become 
free.  This chain reaction can very quickly create large numbers of free electrons.   
 
The process is referred to as dielectric breakdown. The heat generated by these energetic 
scattering events usually results in catastrophic damage to the dielectric. 
 

material    dielectric strength, K  (V/m) 

air       3(106) 

glass      30(106) 

quartz      40(106) 

polystyrene     50(106) 

mica      200(106) 
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Capacitance 
A capacitance exists between any two conductors separated by an insulator.  The term 
capacitor comes from its “capacity” to store electric charge. 
 
The capacitance of a capacitor is depends on the geometry of the conductors and the 
physical properties of the insulator, in particular its permittivity.  The capacitance of a 
capacitor is equal to the ratio of the charge on the plates to the voltage across its plates. 
 
Below is a parallel plate capacitor with air or vacuum as the insulator. 
 

 

qC = 
V

 

 
In circuits, the capacitor is thought of in terms of its current-voltage relation,  

( )dq d dV dV = CV  = C i = C
dt dt dt dt

→  

where C is assumed to be independent of time. 
 
What happens when some material other than air or vacuum is placed between 
capacitance plates?  The material will polarize in response to the electric field, which will 
act to reduce the total electric field. 
 

 
 
Since the voltage between the plates is the line integral of the total electric field, V will be 
reduced for a given charge, q, stored on the plates.  The presence of a dielectric 
increases the capacitor’s capacitance compared to that when air or vacuum is the 
insulator. 
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Calculation of capacitance 
For the calculation of capacitance, Gauss’ law (ψ = q) is used to express the 
capacitance in terms of electric flux rather than charge. 
 

ψstored from conductor
on conductor conductor surface

between between
conductors conductors between

conductors

 d
q

C =  =  = 
V V  d

∫∫

∫

D s

E l

i

i  

 
Example-parallel plate capacitor  ☼ 
The assumption in the parallel plate model is 
that the plate separation is considered 
sufficiently small to be negligible compared to 
plate area.   
 
The plate area is very large so that the fields in the interior can be assumed to be those that 
would be obtained from infinite planes of charge.  Then, if the plate area is large compared to 
the plate separation, the region in which these approximations do not hold (which would be 
along the edges, where the plates do not appear as approximately infinite) is small compared 
to the total plate area.  These small effects, the “fringing fields” or “edge effects”, are neglected 
in the parallel plate model.   
 
This assumption allows one to consider the charge to be evenly distributed on the plates and 
to consider the field lines to run straight between the plates. 
 
Solution outline   
The surface charge density on the upper plate can be calculated. 

ρs
q = 
A

 

 
Assuming the plates to be PECs, the electric flux density vector and the electric field vector 
can be calculated between the plates using Gauss’ law or using results obtained when 
discussing boundary conditions. 

( ) ( ) ( )ρ
εs z z z

q q =  -a  = -a                         = -a  
A A

→D E  

 
Knowing the electric field, the potential difference, V, can be found from a line integral. 

 

( ) ( )
0 0

z z d
z = d z = d

qdq qV =   d  = -   dz  =  - z  = 
A A

0

Aε ε ε∫ ∫E l a ai i  

 
q qC =  =  = 
V qd A d

Aε
ε
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Example—cylindrical capacitor ☼ 
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Incremental capacitor  ☼ 
The element relationship for the 
incremental capacitor is the ratio of the 
charge (using Gauss, equivalent to electric 
flux)  to potential difference. 
 

D A E AC =  =  = 
V E E
AC = 

l l

l

Δ ε ΔΔψ
Δ

Δ Δ Δ
ε Δ

Δ
Δ

 

 
 
The incremental capacitor provides an excellent means by which to explore the reasons 
behind the differences in how resistances and capacitances combine in series and in 
parallel. 
 
Let’s start with the incremental capacitor.  Suppose 
two are in parallel with their ends on the same 
equipotential surfaces.  How do they combine?  
Individually, we have, 
 

1 2
1 2

1 2

2A1 AC  = and C  = 
l l

ε Δ ε Δ
Δ Δ

Δ Δ
 

what is their combined capacitance? 
 

1 1 2 1 1 2

1 1 2
1 2

D A  + D A E A  + E AC =  =  = 
V E E

A  + AC =  = C  + C

2 2

2

l l

l

Δ Δ ε Δ ε ΔΔψ
Δ

Δ Δ Δ

ε Δ ε Δ
Δ Δ Δ

Δ
 
Capacitance in parallel add, just as we knew they did.    
 
Now, how about capacitors in series? 
 

1 1 2 2
1 2

1 1

1

-1 -1 -11 2 1 2
1 2

1 2

D A D AC =  =  = D DV E  + E  + 

 + 
C  =  =  +  = C  + C

A A A

2

l l l l

l l
l l

Δ ΔΔψ
Δ

Δ Δ Δ Δ Δ
ε ε

Δ Δ
ε ε Δ Δ

Δ Δ Δ
Δ ε Δ ε Δ

 

 

Capacitors in parallel 

 
Capacitors in series 
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Compare these rules for combining capacitances to those for combining resistances?     
 

Capacitance Resistance 

Equivalent capacitance for parallel 
capacitances is the sum of the individual 
capacitances. 
 
Equivalent capacitance for series 
capacitances is the reciprocal of the sum 
of the reciprocals. 
 

Equivalent resistance for parallel 
resistances is the reciprocal of the sum of 
the reciprocals. 
 
Equivalent resistance for series 
resistances is the sum of the individual 
resistances. 
 

 
What are the reasons behind these differences.  The reasons are in the definitions of 
resistance and capacitance.   Resistance is potential difference over flux (current) while 
capacitance is flux (electric flux) over potential difference. 
 

potential difference flux (electric flux)R = C = 
flux (current) potential difference

 

 
The flux for elements in parallel add and the potential difference is common.  For 
capacitance, the flux is in the numerator and the potential difference is in the numerator.  
Therefore, capacitances in parallel add.  For resistance, the flux (current) is in the 
denominator and the potential difference is in the numerator.  Therefore, the reciprocal 
of the individual resistances add, their sum being the reciprocal of the equivalent 
resistance. 
 
The potential for elements in series add and their flux is common.  For resistance, the 
potential is in the numerator and the flux is in the numerator.  Therefore, resistances in 
series add.  For capacitance, the potential is in the denominator and the flux is in the 
numerator.  Therefore, the reciprocal of the individual capacitances can be added, their 
sum being the reciprocal of the equivalent capacitance. 
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Per-square capacitance 
Suppose the incremental capacitance is two-
dimensional in character with a thickness t. 

In this case, A tC =  = 
l l

εΔ ε Δ
Δ

Δ Δ
w

 

 
Suppose further, that Δl = Δw, in which case 

C  = C = t Δ ε  

 

Example: curvilinear squares for irregular 2D capacitors 
As for resistances, this approach can be generalized for capacitances with general 
cross-sections.  For irregular shapes perfect squares are not possible, and “curvilinear 
squares” having an average width equal to an average height are used.    
 
The boundaries of these “curvilinear squares” are chosen so that their sides are parallel 
to the flux and their ends are equipotential surfaces. 
 
Assuming a thickness t, use curvilinear squares to graphically estimate the capacitance 
of the 2D capacitance shown. 
 

 
 

Symmetry can be used to reduce the work to two identical capacitances in parallel.  It 
can be seen that the resistance of the 2D resistance is 
 

( )-1 -1 -1C = 2 t 5  + 4.5  + 4   1.34 tε ≅ ε  

 
 
 
 
 
General case of non-homogeneous permittivity  
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Case three: Boundaries neither parallel nor perpendicular to electric flux lines.   
 
Consider two-dimensional capacitors in (xyz).  The general cell is shown below. 

 

  
The basic relation used is Gauss’ law assuming an uncharged dielectric.  Consequently, 
each region must satisfy ψout = 0. 
 
Use the formula.  

  =    area = E (area) ψ εD i  
 
Looking at the right surface. 

( )

O R
1 4

O R
1 4

out (right)

out (right)

V   -  V  t    =     +  
2 2

V   -  V  =   t   + 
2

Δ Δ⎧ ⎫⎛ ⎞ ⎛ε ε⎨ ⎬⎜ ⎟ ⎜Δ ⎝ ⎠ ⎝⎩ ⎭

ε ε

ψ

ψ

 t ⎞
⎟
⎠

 

Performing similar calculations at the upper, the left, and the bottom surfaces, we would 
obtain. 

( ) ( )

( ) ( )

O R O U
1 4 1 2

O L O B
2 3 3 4

out     +    +  

  +  

V   -  V V   -  V
  =  t   +  t   + 

2 2
V   -  V V   -  V

 t   +  t   +   =  0
2 2

ε ε ε ε

ε ε ε ε

ψ
 

 
Rearranging, one obtains, 

( ) ( ) ( ) ( ) O 1 2 3 4 R 1 4 U 1 2 L 2 3 B 3 4 2 V (  +  +   + )  -  V  +   -  V +   - V  +  -  V  +   =  0ε ε ε ε ε ε ε ε ε ε ε ε
 
 
Solving for Vo, 

( ) ( ) ( ) ( )
ε ε ε ε

ε ε ε ε ε ε ε εU 1 2 L 2 3 B 3 4 R 1 4
O

1 2 3 4

  V  +   +  V  +   +  V  +   +  V  + 
  =  

2 ( ) +  +   + 
V  
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This is the equation that can be used to find the potentials in a two-dimensional 
inhomogeneous capacitor.   The 2D case is importance since the majority of capacitors 
are in integrated circuits, the vast majority of which are 2D capacitors fabricated with 
planar deposition processes.    
 
As with the resistive case, this technique can readily be generalized to the general 
inhomogeneous 3D capacitor.  
 
Consider the two dimensional capacitor below.  The permittivity of the shaded regions is 
4ε and that of the unshaded regions is ε. 
 

 
 
The solution will involve writing 8 node equations.  Begin with N1. 

1 54V  = 1 V + V  + 2V2

3

4

 
 

The other 7 node voltage equations, 

2 1 6

3 2 7

2 3

5 6

n2:  14V  = 2(1V) + 2V  + 5V  + 5V
n3:  14V  = 2(1V) + 5V  + 5V  + 2V
n4:  4V  = 1V + 2V + V
n5:  4V  = 1 V + 2V
n6:
n7:
n8:

8

 

 
To find capacitance, divide total electric flux by the applied voltage.    

( ) ( ) ( ) ( )1 4
2 3

5 8
6 7

1 - V 1 - V
C =  = t  + 1 - V  + 1 - V  +     @ b1

1 V 2 2
OR

V VC =  = t  + 2.5 V  + 2.5 V  + @ b2
1 V 2 2

⎡ ⎤ψ
ε ⎢ ⎥

⎣ ⎦

ψ ⎛ ⎞ε ⎜ ⎟
⎝ ⎠
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Mutual capacitance (may be omitted without loss of continuity)* 
Given N bodies with qn charge, superposition leads one to conclude that the potential 
function is a linear combination of the qn charges.  This section can be useful when using EM 
solvers since many use this approach; knowing the notation involved can avoid confusion. 
 

i

i

q'

N

i = 1

dq' distribution
4 R

V( ) =   
q discrete charges

4 R
 

πε

πε

⎧
⎪
⎪
⎨
⎪
⎪⎩

∫

∑
r  

The potentials of the N bodies can likewise be expressed as linear combinations of the qn. 

1 11 12 1N-1 1N

2 21 22

N-1 N-11 N-1

N N1 NN

V p p p p q
V p p q

 = 
V p q
V p p q

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

1

2

N

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

1

2

N

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

 

 
This relation can be inverted. 

1 11 12 1N-1 1N

2 21 22

N-1 N-11 N-1

N N1 NN

q c c c c V
q c c V

 = 
q c V
q c c V

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

 

 
Note, from physical grounds, that the diagonal elements, the cii, must be positive and 
that the off-diagonal elements, the cij, must be negative.   This relation can be used to 
form expressions for our familiar capacitances.  For example: 
 

( ) ( ) ( )1 11 12 1N 1 12 12 1N 1Nq  = c  + c  +  + c V  + -c V  +  + -c V  

 
Using capital letters to denote the the conventional capacitances, expressions can be 
obtained for the charge on a body in terms of body's potential and the potential 
difference between it and the other N-1 bodies.  Note all the capital C's are positive. 
 

1 11 1 12 12 1N 1Nq  = C V  + C V  +  + C V  
 
*from Plonsey and Collins, "Principles and Applications of Electromagnetic Fields." 
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Energy density 
Coulomb’s law has been used to show the electrostatic potential energy in the 
interaction between two charges is 

e
 q q'W  = 

4  Rπε
 

Where R is the distance between the charges.  For multiple charges, the energy can be 
expressed as 

i j i j
e

i  j i  jij ij<

 q  q  q  q1W  =  = 
4  R 2 4  Rπε πε≠

∑ ∑  

 
In terms of distributions,  

( ) ( )
e

'

'1W  = dvdv'
2 4 R

ρ ρ
π ε∫∫∫ ∫∫∫

r r

r r
 

( ) ( )e
1 1W  = V( ) dv =    V( ) dv
2 2

ρ ∇∫∫∫ ∫∫∫
r r

r r D ri  

 
using the vector identity ( ) ( ) ( )  V  = V    +  V∇ ∇D D D i i i ∇  

( ) ( ) ( )e
1 1 1W  =    V( ) dv =   V  dv -   V  dv
2 2 2

∇ ∇∫∫∫ ∫∫∫ ∫∫∫
r r r

D r D Di i i ∇  

 
using the divergence theorem for the first integral, 

( )e
surface

1 1W  =  V   d  -   V  dv
2 2

∇∫∫ ∫∫∫
r

D s Di i  

for   0ρ ≠  only within a finite region, then 1V  0 at least as  and
r

→ 2

1D  0 at least as 
r

→  

which results in the first integral going to zero as  r  .→ ∞

( )e
1 1W  =  -   V  dv =    dv
2 2

∇∫∫∫ ∫∫∫
r r

D Di i E  

( )e
e

dW 1w  =  =   
dv 2

 D Ei  

 
where we is the electrostatic energy density. 

( )e
1w  =   
2

 D Ei  

 
Other forms given that D = εE, 

2 2
e

1 1w  = E  = D
2 2

ε
ε
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Example: calculation of capacitance using energy   ☼ 
Energy storage provides another path by which capacitance can be calculated.   From 
electrical circuits,  

2 e
e 2

2 W1W  =  CV C = 
2 V

→  

 
In terms of fields,  

( ) ( )
volume volume

2 2

between between
plates plates

12   dv   dv
2

C =  = 

  d   
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫∫∫ ∫∫∫

∫ ∫

D E D E

E l E l

i i

i i d

 

 
Taking the parallel-plate capacitor as an 
example where the fields have already 
been calculated using the parallel plate 
model assumptions and Gauss’ law. 
  
 

( ) ( )
εz z

q q = -a   and    = -a   
A A

D E  

( ) ( ) ( )

( )

2

z z 2
volume

2 20

z z
z = d

between
plates

q q q-   -  Ad   dv

2

Ad
A A AC =   =  = 

qq d-a   dz 
A  d A

AC = 
d

⎡ ⎤
⎢ ⎥ε ε⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜ εε ⎝ ⎠⎝ ⎠⎜ ⎟
⎜ ⎟
⎝ ⎠

ε

∫∫∫

∫∫

a aD E

a
E l

ii

i
i

⎞
⎟  
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Energy and force ☼ 
If W is the total system potential energy and is a function of some dimension l. 

dW = -   dF li  

The force can be seen as a change in potential energy per unit length.  The direction of 
the force is determined from whether energy increases or decreases with the direction of 
movement.  The force exerted by the field is in the direction of energy decrease.  As 
discussed in lecture, .  = - W∇F
 
Consider the parallel plate capacitance.  Since the plates are oppositely charged, it is 
evident that there will be an electrostatic attraction between the plates—after all opposite 
charges attract. 
 
Two cases will be considered.  The first is the case of constant stored charge during 
movement.  The second is the case of the charge stored on the plates re  We can find it 
by using this idea of energy.   

2 2
2

e   
1 1 qW =  C V   =  C  =  
2 2 C

⎛ ⎞
⎜ ⎟
⎝ ⎠

q
2C

 

 
Case one is the case where the charge stored does not change.  The electrical energy 
stored changes as the plates move. 

 

2
2

e
q 1 yW  =   =  q
2C 2 Aε

 
2

e   
1 qdW =   dy
2 Aε

 

The electrical force exerted by the electrodes is, 

( )
2 2

e e x y z
q q  =  - W   = -   +    +  y  = -

x y z 2 A 2 Aε ε
⎛ ⎞∂ ∂ ∂

∇ ⎜ ⎟∂ ∂ ∂⎝ ⎠
F a a a ya  

 
Another look:  Consider this same problem, this time from the viewpoint of energy 
conservation.  Consider the capacitor to be a system.  With constant charge on the plates, 
energy energy can enter the system via the mechanical force, where the mechanical force 
(Fm) must just balance the electrical force (Fe = -Fm) between the plates.  

  

2
e m

2

m

2

e m y

1 1 1dW  = q dV = q  d   = F dy
2 2 C

q  dy  = F  dy
2 A

q = -  = -
2 A

ε

ε

⎛ ⎞
⎜ ⎟
⎝ ⎠

F F a

 

 
, 
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Case two is when the capacitor is connected to an independent voltage source.  In this 
case, since the voltage remains constant, the best relation to use for the energy stored 
by the capacitance is  

e source cap  dW =  dW  + dW  

Also, the system includes a voltage source as well as the capacitor, so that the potential 
energy is the potential energy expression should include the charge supplied by the 
source.   

( )

e

2
e

2

e 2

2
e

y y2

  

  

  

1 1dW =  -V dq + V dq =  - V dq
2 2

A1 1dW =  - V d CV  = - V  d
2 2

A V1dW =   dy
2 y

A VdW = -  = -
dy 2y

ε

ε

ε

⎛ ⎞
⎜ ⎟
⎝ ⎠

F a a

y

                              

Another look:  Consider this same problem, this time from the viewpoint of energy 
conservation.  Consider the capacitor to be a system.  Energy can enter the system in two 
ways—from the voltage source and from the mechanical force, where the mechanical force 
(Fm) must just balance the electrical force (Fe = -Fm) between the plates.  
 

cap source mechl  dW =  dW  + dW  

( )

m

m

2
m

2 2

m e m y2 2

  
1 V dq =  V dq + F  dy
2
1- V dq = F  dy
2

A1 1 1- V dq = - V d CV  = - V  d  = F  dy
2 2 2 y

A V A V1 1 dy = F  dy   = -  =  -
2 y 2 y

ε

ε ε

⎛ ⎞
⎜ ⎟
⎝ ⎠

⇒ F F a

    

The same reasoning can be used to analyze the pressures at interfaces.  
 

Interface normal to field lines.  Assuming that the 
interface is uncharged, 

DN1 = DN2 

Therefore, as the interface is moved the flux density 
and total flux remain unchanged which implies the 
charge q is constant. 
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( )22 2 2

e
1 2 1

2 2 2

e e y y y
1 2

q h-yq q q yW  =  +  =  + 
2C 2C 2 A 2 A

q q q 1 = - W  = -  +  =  - 
2 A 2 A 2A

2

2

ε ε

1

1
ε ε ε

⎛ ⎞
∇ ⎜ ⎟

⎝ ⎠
F a a a

ε

 

 
In terms of energy densities, 

2 2 2 2

e y y2 2
2 1 2

q q D D = A  -  = A  -  
2 A 2 A 2 2ε ε ε ε

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

F a a
1

⎞
⎟
⎠

 

2 2
e

e y
2 1

D D =  =   -  
A 2 2ε ε

⎛ ⎞
⎜
⎝ ⎠

FP a ⎟   force is always directed from large to smaller ε. 

 

 

Interface tangential to field lines.  In this 
case, the electric field doesn’t change and, 
since the plate separation is also constant, 
the voltage is constant. 
 

( ) ( )

( ) ( )

2

e 1 2 1 2 1

2 2

e 1 2 1

1 1 VdW  = - V dq  + dq  + V dq  + V dq  = - dC  + dC
2 2 2

L - x dV xd V ddW  = - d  + d  = -  - dx
2 h h 2h

ε ε ε ε
⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
2

2

 

( )
2

e
e x x 1 2

dW V d = -a  =   - 
dx 2h

ε εF a  

 
In terms of energy densities, 

( ) ( )

( )

22

e x 1 2 x 1 22

2e
e x 1 2

V hd 1 V =   -  =   -  hd
2h 2 h

F 1 =  =   - E
hd 2

ε ε ε ε

ε ε

⎛ ⎞
⎜ ⎟
⎝ ⎠

F a a

P a
 

 
Physics of forces involving dielectrics 

1. Electric pressure is directed from higher permittivity to lower permittivity.  (The 
material with the higher permittivity tends to expand at the expense of the 
material with lower permittivity,) 

 
2. The boundary pressure at the interface is equal to the difference in energy 
 densities. 
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Other applications and to look further 
Link to ES applications such as electrostatic separation, xerography, laser printing, lightning rods, ion 
thruster, and electrophoresis.  http://www.electrostatic.com    Link to simulations of electrostatic 
applications using CST.  http://www.cst.com/Content/Applications/Index/All+Electrostatic+Applications 
 
Electrostatic actuation and sensing 
The above discussion provides some background for electric actuation.  How is this put 
to use?   Comb drives use electrostatic actuation, coupled with spring elements to 
produce linear motion by varying a voltage. 
 

 
COMB DRIVE 

Comb drives, with gears, can produce rotary motion, a micro-engine. 

 
Why are two comb drives necessary in the micro-engine? 
 
Sandia’s website shows devices giving out-of-plane motion. 
http://www.sandia.gov/mstc/technologies/micromachines/movies/index.html 

 

 
PHOTOGRAPHS FROM SANDIA NATIONAL LABORATORIES 
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Exercise:  Pull-in 
A well-known phenomenon of electrostatic actuators is pull-in, in which the 
two plates suddenly come together.  Consider the static case and explore 
pull-in.  Work with your neighbors to develop and discuss a physical 
explanation (y0 is equilibrium point for V = 0).  (about 5 minutes) 
 

 

 
 

2
e y 2

1 A  =  - V
2 y



TI mirror array  
The technology behind DLP projection TVs are electrostatically driven micromirrors.  
Over a million of these micromirrors, each tilting over 5000 times per second enable 
applications in digital light processing (DLP).    
 
 

 

 

 

 

 
 
 
 
 
 
      TEXAS INSTRUMENTS MICRO-MIRROR  http://www.dlp.com/ 
 
RF MEMS Switches 

At high-frequencies (10-100 GHz), MEMS switches can achieve a more ideal open 
state that can solid state switches. 

 
RF MEMS: THEORY, DESIGN, AND TECHNOLOGY (BY GABRIEL M. REBEIZ, PUBL. WILEY) 

 
Corona Motor 

 
           CORONA MOTOR (FROM SENSORS AND ACTUATORS A118, 226-332, 2005) 
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Energy Scavenging 

ELECTROLET ENERGY SCAVENGING (PEANO AND TAMBOSSO, IEEE J. OF MEMS 14, 429-435 (2005) 

Sen
ges in geometry (plate 

n, plate area) or/and due to changes in permittivity.   

TABLE OF CAPACITIVE SENSORS 

e Principle of Operation Measurement Uses 

 

 
sors 
Capacitive sensors change their capacitance due to either chan
separatio
  

Capacitiv
Sensors 

Pressure  aries with 
pressure   y 

e varies the plate separation 

Geometry v Capacitive pressure sensors are typically formed by forming 
closed cavities which contain capacitor conductors—typicall
one located on a membrane exposed to pressure to be 
measured.  Varying the pressur
and so varies the capacitance. 

Displacement  s with 
displacement  ors are made which have 

Accelerometer es with 
acceleration  

lerometers are widely used to 
deploy automobile air bags. 

Geometry varie One plate is usually fixed with the other movable.  
Capacitance displacement sens
resolutions of less than 10 pm 

Geometry vari Vibration control in hard-disk drives. 

Vibration detection in various consumer products. 

MEMS-based capacitive acce
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Fruit Fly Sensor 
 
 

 
 

FRUIT FLY ELECTROSTATIC COMB SENSOR (SUN ET AL., IEEE J. OF MEMS 14, 4-11 (2005) 
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