Rose-Hulman Institute of Technology
Department of Electrical and Computer Engineering
ECE 310 Communication Systems
Spring 2004

BAF
ECE 310 Communication Systems
Spring 2004

Lab Project 2

Digital In, Digital Out

Purpose

To construct and test a pseudorandom bit sequence generator.

To construct and test the receiver threshold comparator and timing recovery components.

Equipment
GAL22V10 programmable logic device

LM555 timer

LM311 comparator

74LS74A dual D flip-flop

Resistors

Agilent 33120A Function Generator

Agilent E3631A Power Supply

Agilent 54625 Oscilloscope

Transmitter & Receiver Breadboards

Various bypass capacitors

Background

A digital link is designed to carry an unpredictable data pattern, so it is misleading to use a square wave to represent data for testing. In reality, the unpredictable data pattern needs to possess certain randomness qualities in order for particular measures of link performance such as bit error rate (BER) to be determined. We will construct a small-scale version of the actual data sources used to test link performance in real implementations. The data generator is normally built from a digital circuit based on an N-bit shift register, where N is 16 or 32 in actual practice. For our purposes, we will use a scaled down 4-bit version of the circuit to generate seemingly random data.

Fig. 1 below shows a four-stage shift-register connected with exclusive-or gates to form a state machine.

Figure 1. Feedback Shift Register State Machine

The three branches marked with an “X” may or may not be present. (Note: If any one of these branches is not present, then the corresponding exclusive-or gate is not needed.) Imagine that the shift register is pre-loaded with any non-zero pattern of bits. As the register is clocked, the register will cycle through a sequence of states, periodically returning to the original state. (What makes me sure it will periodically revisit the same sequence of states?) If the wiring includes the proper set of “X” branches, the register will cycle through all the non-zero states before returning to the original state. A shift register that cycles through all the non-zero states is called a “maximal length sequence generator,” or a “pseudorandom sequence generator” (PSG). Pseudorandom sequence generators also play an important role in spread-spectrum communication systems and in signature analysis for automated circuit testing.

The pseudorandom sequence generator can be implemented using several TTL logic chips, or using a single programmable logic device (GAL20V10) and a few extra brain cells. The GAL implementation takes a little longer to develop, but it will save you around 50 wires and a lot of space on your breadboard!

Prelab
1.
Pseudorandom Sequence Generator.

A.
Copy the pinouts of the various chips you will use into your lab notebook for quick reference in lab (e.g at the end of your notebook). Data sheets are available on the network at http://ece.rose-hulman.edu/labs/ on the ECE intranet (Component Data Sheets).
B.
Determine a proper set of connections so that the feedback shift register shown in Fig. 1 will generate a pseudorandom sequence. Design the circuit using a “trial and error” approach. Start with one possible configuration and the run the circuit through its state sequence, assuming the flip-flops start in some non-zero initial state. If your circuit is a valid PSG, all 15 possible non-zero states will be stepped through before the sequence repeats. (This behavior must be verified!) If it is not valid, try another configuration. (There is more than one valid PSG configuration, and there is also a design approach you can use if you wish to learn about it - in another class.) Record the valid circuit in your notebook.

The data sequence read from (any) one of the D flip-flop outputs is the random data signal we will use as the information source for our system. Record the anticipated random data signal in your lab notebook (both as a bitstream and as a unipolar NRZ waveform).
C.
Add an output to your circuit that will be high whenever the shift register is in the 1111 state. This SYNC pulse will be used to synchronize the oscilloscope, so that you can view your pseudorandom sequence in the lab.

D.
If the shift register ever gets into the 0000 state, it will stay there indefinitely (why?). To ensure reliable operation, modify the circuit so that the 0000 state is followed by some nonzero state.

E.
The flip-flops in your GAL will change state on the rising clock edge. We want the pseudorandom sequence generator to be falling edge triggered to simplify the timing at the data receiver later on. Include an inverter in your GAL so that the external clock can be inverted before being applied to the GAL clock pin. (Do not try to use an inverted clock definition in the code – this doesn’t seem to work for some reason.)
F.
Create a Verilog (or ABEL) file that implements your complete pseudorandom sequence generator. Print out a copy and tape it into your lab notebook. Many of you will have practiced this in a digital course; you can refer to the ECE 333 website for that course for a plethora of information (http://www.rose-hulman.edu/class/ee/hudson/ece333/). Simulate your design and record in your notebook the proof that the design is working.
G.
Use ispLever to compile your Verilog (or ABEL) program and RomMaster2 to program your GAL. The ispLever and Rommaster2 software is available on the computers in either D115 or B200.

H. Remember that the design software will allow you to simulate your design to verify that it works correctly. Simulate your design and verify that it produces the expected sequence.

2.
Clock Generator. The pseudorandom sequence generator needs a clock. Design a 100 Hz clock using an LM555 timer. A data sheet for the timer is available as described above. The data sheet includes designs for “Astable Operation” and for a “50% Duty Cycle Oscillator.” You may use either. Be sure to choose reasonable component values (resistors in the 1 k(to 100 k(range) for your design. Draw a complete schematic diagram for your clock generator, including all components, power supply, and ground connections, in your lab notebook.

Procedure

Note: Before wiring up your receiver board, take time to look over the system block diagram and example photos to allow appropriate space for the various subsystems.

1.
Transmitter.

A.
Wire up the clock generator and verify its operation. Place the clock generator near the left end of your transmitter breadboard. (Note: The clock generator need not run at exactly 100 Hz. Close is good enough.)

Bypass Capacitors. In digital circuits it is necessary to include bypass capacitors in the design to prevent “ground bounce” effects caused by rapid switching. These capacitors help to provide the sudden bursts of current needed when circuits switch, and they prevent switching noise from affecting nearby chips. When you build your circuits, include a 0.1 (F ceramic capacitor from power to ground for each digital chip and a single 100 (F capacitor from power to ground for each bread board.

B.
Wire up the pseudorandom sequence generator GAL. Use your clock generator to clock it. In this application the clock signal is called the transmitter’s “bit clock.” Verify that the pseudorandom generator changes state on the falling edge of the bit clock. Verify that the pseudorandom generator produces the correct output sequence. (Verification in the form of a properly annotated screen capture would suitably impress a reasonable instructor.) Record the predicted sequence and the actual sequence in your notebook.

2.
Receiver.

A.
The “binary” signals produced by the receiver’s demodulator will be distorted and noisy, and the voltage levels will not be standard TTL levels. To recover standard voltage levels we can use a voltage comparator. Fig. 2 below shows an LM311 connected as a comparator. Wire up the comparator near the center of your receiver circuit board (leaving room after it for a D flip-flop and some more circuitry). The values of resistors R1 and R2 are not critical. Choose values that will produce a threshold midway between zero and five volts. (The values will have to be changed in a later lab anyway, when the input to the comparator comes from the receiver’s demodulator.)

To simulate a distorted data signal, use a sinusoidal input signal. Set the function generator to produce a 50 Hz sinusoid with a 2.5 V peak and a 2.5 V DC offset. (Note that the panel display on the function generator assumes a 50 (load. The actual voltage will be twice the panel voltage for an oscilloscope or TTL load. Why is that?) Observe the sinusoid and the comparator output on the oscilloscope. Verify that the comparator output is correct, and paste a scope screen shot of both signals into your lab notebook.

If the input to the comparator is noisy, the comparator output may change state rapidly several times as the input passes through the threshold level. Can you observe this effect? If not, try reducing the peak amplitude of the input sinusoid. Record your observations.

B.
To recover bit timing, the comparator output should be sampled once per bit period. Connect a D flip-flop following your comparator for this purpose. In a practical receiver the clock for the D flip-flop will have to be a part of the receiver. For now, clock the D flip-flop from the “SYNC” output of the function generator. See Fig. 3, above. Observe the comparator output and the flip-flop output on the oscilloscope. Can you explain what is happening?

Now replace the function generator sinusoid with the output of your pseudorandom sequence generator. Clock the D flip-flop from the clock generator on the transmitter board. The 74LS74A D flip-flop is rising-edge triggered, so it will change state later than the pseudorandom sequence generator does. This allows time for the signal to propagate through the receiver filters (to be added later). Observe the pseudorandom sequence, the comparator output, and the flip-flop output. Verify that the operation is correct.

C.
As a verification of your system’s performance, paste a screen shot of the following signals into your notebook: comparator output, D flip-flop output, PSG sequence, and clock (the order is of presentation is important). Create the plot to allow easy comparison of these signals.
Report
Your lab notebook is to be handed in at the end of the laboratory session.

exclusive-or

clock

+

+

+

(

(

(

U1

R1

+

-

U1: LM311

5 V

R2

1 k(

1

2

7

3

4

5

6

8

5 V

S

5 V

1

2

7

3

4

5

14

1D

C1

R

From Comparator

From HP8116A

“TRIG” Output

U2a

U2: 74LS74A

Figure 3. Timing Recovery Using a D Flip-Flop

Figure 2. Voltage Comparator using an LM311

Page 1 of 5

Page 5 of 5

