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Abstract.  The complexity of tomorrows problems will be far greater then problems we face 
today. This complexity will only increase the importance of systems engineering and systems 
architecture activities. As the value of the activities rise, the cost of the activities must fall. 
Neither a Multi-year analysis and development schedule nor a short term schedule with a high 
risk of failure will be acceptable solutions. The solution for solving these complex problems 
will be to move systems engineering and architecture artifacts from the Non-Recurring 
Engineering cost over head to reusable company assets. A Polymorphic System Architecture 
(PSA) is one way of achieving this goal. 

Run-Time polymorphism (RTP) has been used in the software community for over 20 years to 
satisfy dynamic reconfiguration, plug-n-play, extensibility, and system redundancy 
requirements. RTP is also used to construct software Systems of Systems. Systems engineers 
now have the same requirements applied to system architecture. A PSA utilizes the same 
software technology but applies it to the system architecture (Bryson 2009). The goals of using 
a PSA are: 

• Reduce the complexity of the system architecture 
• Satisfy functional requirements within the system architecture 
• Define an architecture that has the potential to mature over time 
• Move the system architecture from cost overhead artifacts to company assets 

o Create an architecture library of reusable artifacts that can be reused to solve 
new problems 

Introduction 

Polymorphic technology is a key component of advanced Object-Oriented software. The 

purpose of this paper is to provide guidance on applying this technology to both software and 

non-software systems. A PSA does not require software to be implemented. All that is really 

required are formally defined abstract interfaces, objects (or components) that are developed 

based on the abstract interface, and a good understanding of how to apply this technology to 

produce a reusable and adaptable architecture. 

Polymorphic from ancient Greek means ‘many forms’ (AtomicObject 2010). The phrase 

Polymorphism is used in both Computer and Biological science. In the context of a PSA 

polymorphism means ‘many types’. Within the PSA the system components (software, 

hardware or other) can appear to be a different ‘Type’ of component at any point in time. It is 

this ability of components to change types that allows the architect to create a system that can 

dynamically change behavior and satisfy specific types of requirements.  

Within a system design, functional requirements are allocated to decomposed elements of the 

design. Within a PSA, specific types of requirements allocated directly to the architecture. The 

design will often dictate an implementation, where a PSA will at most only imply an 

implementation. This definition of architecture extends the definition provided within the 

INCOSE SE Handbook v3.2 (INCOSE 2010). The ability to dynamically change components 



  

also allows systems to plug-n-play new services. The key activity of the architecture team is to 

identify and define these ‘Types’ and link them together with the relationships and patterns 

presented in this paper. The results of this activity should allow the components created or 

instantiated from the architecture to be assembled (dynamically) in multiple ways to solve 

multiple, dynamic, and complex problems. In UML and SysML these ‘Types’ are defined as 

‘Classes’, ‘Objects’ are instantiated from these ‘Classes’. This ability of the system to 

reassemble itself and dynamically change behavior during execution creates ‘Run-Time 

Polymorphism’. 

The relationships between the design attributes (or architectural component types) are the 

primary artifacts of the architecture (Bryson 2009). The relationships of ‘Shared 

Aggregation’, ‘Inheritance’, and ‘Abstraction’ are specifically used to create a polymorphic 

architecture. The system architect must understand these technologies, not only to create the 

system architecture, but to explain how the system architect can directly satisfy specific 

functional requirements. “When specific types of relationships between classes are identified, 

the ‘whole’ of the ‘design’ (or architecture) becomes much more powerful than the sum of the 

parts” (Bryson, 2008). Reference Appendix A for a detailed definition of these and other 

concepts the System Architect must understand. 

Abstract interfaces are used to create RTP in computer science. This same technology is now 

being applied to software and non-software components within the system of Service Oriented 

Architectures (SOA) and System of System solutions. The application of this technology at the 

system level enables the creation of a ‘less’ complex system architecture that can solve one or 

more complex problems.  

Shared Aggregation allows the system to dynamically find and use (or reuse) a service 

instance (or component) when required. Once the service instance is no longer needed it should 

be released for use by other parts of the system. Composition defines one component as 

permanently dependent on another component. Abstraction means that the system is going to 

reuse the ‘control’ behavior within a system. Inheritance allows one defined 

type/class/architecture to reuse behavior, functional requirements, interface requirements, 

analysis, and testing associated with a previously defined type/class/architecture. This reuse of 

systems engineering artifacts requires a formal linkage between the architecture elements and 

the requirements, analysis, and testing (Bryson, 2009). These polymorphic concepts are 

illustrated in the design pattern known as the ‘Strategy’ pattern (Gamma 1995). The Strategy 

pattern is a common pattern for implementing SOA systems and is illustrated in the UML 

diagram in Figure 1. 

 
Figure 1 Gang of Four (GoF) Strategy Design Pattern 

Figure 2 is a UML diagram that shows both the classes/types and objects/components of a 



 

  

specific implementation of the strategy design pattern. By presenting both the Class/Object or 

Type/Component relationships in the diagram the value of this pattern can be seen. Not only 

are the Object/Components in the diagram reusable but the architecture (classes/types + 

relationships) is reusable. The ‘controller’ does not care that ‘Component2’ is instantiated from 

the ‘StrategyA’ class or that ‘Component6’ is instantiated from the ‘StrategyC’ class. The 

‘controller’ can invoke the ‘initialize’ or ‘doSomething’ operation on any strategy 

implementation. The shared aggregation, abstraction, and inheritance relationship in the 

pattern creates common control of components behavior that may be implemented in different 

ways. 

 
Figure 2 GoF Strategy Design Pattern Implementation 

The architect, designer, and developers must understand that the “Abstract” interface does not 

exist to make the job easier for the developers of abstract components (Strategies A, B, and 

C’s). The development of the strategy classes (StrategyA, StrategyB, and StrategyC) becomes 

more constrained. The ‘Abstraction’ exists to allow the “StrageyUser” (or the strategy 

controller) the ability to dynamically reconfigure system behavior and allow for the dynamic 

plug and play of new implementations of the abstract interface. The components created based 

on the strategy classes (“StrategyA”, “StrategyB”, and “StrategyC”) become dynamic building 

blocks of the system that become reusable assets. This ability of the system to dynamically 

reconfigure how the components of the system work together allows the architecture to change 

(and be reused) to solve different problems. The strategy pattern also provides extensibility by 

allowing new instances of the existing behavior classes to be dynamically created. This 

‘maturing’ ability is described in more detail later. 

The strategy pattern does have a drawback. It defines a single point of control. This can create 

a single point of failure in the system. An even more powerful polymorphic architecture that 

removes this drawback is based on the ‘Composite’ design pattern (Gamma 1995) illustrated in 

Figure 3. 

 
Figure 3 GoF Composite Design Pattern 



  

The Strategy pattern can be extended to become the Composite pattern by defining the 

“StrategyUser” (Controller) as one of the strategy behaviors (see the ‘CompositeClass’ above). 

This is an excellent pattern for developing a ‘System of System’ This dual relationship (shared 

aggregation and inheritance in the controller) allows the architect to build a system of abstract 

controllers that can control other controllers. The controllers become building blocks of the 

system just like the other components of the system. The components of these patterns or 

architectures are not required to be software components. There is a requirement for a formal 

definition of the abstract interface. The connections between the components of this type of 

system are reconfigurable and provide the ability to dynamically alter system behavior. 

The ability to dynamically reconfigure these building blocks allows the PSA to satisfy 

functional requirements. The encapsulation of the complete set of elements associated with the 

architecture provides reusability of the architecture. (Bryson 2008) 

Polymorphic Functional Requirements 

The PSA allows system developers to satisfy the following types of requirements at a higher 

level of abstraction. 

• Dynamic reconfiguration of system functionality 

• Plug-N-Play functionality 

• Extendibility 

• System Redundancy 

• System Reuse 

A PSA allows the architect to define a system of components that can be reconfigured to solve 

new types of problems. These components are building blocks that can be used and reused. If 

one component becomes unavailable another one can be dynamically connected to replace it. 

New types of components can be added to the system easily as long as they adhere to the 

defined abstract interfaces. A PSA can reduce the complexity, development and maintenance 

effort of the system and provides a framework for the components to be used and reused as 

building blocks of the system. 

Polymorphic Mediators 

A polymorphic architecture requires a ‘Polymorphic Mediator’ within the system. The 

mediator allows the controller components to connect dynamically with the service 

components regardless of location. 

A standardized middleware application is generally used in software. In the Common Object 

Request Broker Architecture (CORBA) an Object Request Broker (ORB) application executes 

on each processor. The ORB is the polymorphic mediator which allows a polymorphic server 

to register its service. The ORB also allows a polymorphic client to request and connect to a 

specific server. In Web Services, the Universal Description Discovery and Integration (UDDI) 

service provides the same functionality.  

In system architecture, the software components should use a standardized middleware 

product. However, non-software portions of the system require different types of polymorphic 

mediators. This mediator could be as simple as a call center that links the client with an 

available server or as complicated as an airborne, space borne, or sea based communications 

network. A well defined and managed abstract interface is required to provide a reliable 

linkage between clients and servers in the system architecture. The abstractions within the 

architecture should be independent of any specific middleware implementation. 



 

  

A Maturing Architecture 

Even if there is little or no software associated to the architecture, a PSA is an Object-Oriented 

product. “OO” technology and (good) refactoring allows the product developer to create a 

product (or product line) that can mature over time. A PSA by itself does not guarantee a 

system that matures. Refactoring (reinvestment) activities must occur over the entire life cycle 

of the product line. This activity implies that the architecture and related engineering artifacts 

are evolving and maturing over the system life cycle. The architecture(s) become an evolving 

and maturing asset for multiple products. 

How does this maturing behavior occur? Some examples show us this process. Figure 4 and 

Figure 5 shows how the Strategy pattern is matured to create the composite pattern. 

 

Figure 4 Strategy Design Patterns 

 

Figure 5 Maturing Strategy pattern to Composite pattern 



  

The ‘Strategy’ pattern matures into the ‘Composite’ pattern by adding an inheritance 

relationship between the ‘ControllerStrategy’ and the abstract interface. All controllers in the 

new architecture become reconfigurable building blocks. Because controllers can manage any 

kind of strategy, and controllers are a strategy, controllers can now mange controllers. With the 

polymorphic relationships the Composite design pattern gains the ability to create architectures 

of architectures or systems of systems. If existing ‘Strategy’ based architecture systems were 

updated with this new architecture, only objects 1 & 2 above would need to be rebuilt. The 

change should only occur because there is a need (requirement) for controllers to control 

controller. In this case, any changes to the system will only be associated to instances of the 

controller class. 

Figure 6 shows us how to mature the system with extensions or by adding new instances of 

objects. 

 
Figure 6 Extensions with New Objects 

In this example Objects 7 and 8 are new implementations of Strategies 1 & 2. There is no need 

to update any part of the existing system as long as there are adequate resources within the 

system to manage the addition of the new objects.  

A third method of maturing the architecture is to add a new strategy. Figure 7 illustrates how 

this is done. 



 

  

 
Figure 7 Extensions with new Strategy 

The final example is more complicated and illustrates refactoring of the system architecture 

artifacts. The effects of change are more costly, but the architecture is truly maturing and 

improving over time. If operations ‘strategy1operationXYZ()’ and ‘stratgy2operationXYZ()’ 

are identified as common to only strategies 1 & 2 (see Figure 8), then the architecture should 

mature and combine the operations as a single common service. 

 
Figure 8 Discovery of Common Behavior 

In order to reuse the behavior of the operation and create a single definition to document, 

maintain and test, an additional layer of abstraction between Strategies 1 and 2 and the original 

abstract interface is created. This behavior is illustrated in Figure 9. 



  

 
Figure 9 New Abstraction Layer 

The common behavior is promoted to the new layer of inheritance. The ability to promote and 

demote behaviors within the architecture is required to allow the architecture to mature.  This 

ability is illustrated in Figure 10. 

 
Figure 10 Promoted Behavior 

This type of change does not come with zero cost. While the functionality of Objects 3-6 do not 

change, all instances of the Strategy1 and Strategy 2 classes will need to be rebuilt. There may 



 

  

be a need for an updated the logic within the controller with each level of abstraction added to 

the architecture. These types of changes should not be made lightly as there will be impacts to 

portions of the system as each change occurs. Many existing products become obsolete over 

time while these types of updates within a PSA improve the architecture and create reusable 

artifacts that mature over time and last indefinitely. 

A Polymorphic System Architecture encapsulates all of the systems engineering artifacts and 

can mature over time. This ability implies that the System Architecture (or Architecture 

library) is a living entity. Both encapsulation and refactoring allow system engineering and 

system architecture activities to move from Non-Recurring Engineering (NRE) activity and 

cost to the corporate reusable asset list. 

Applying Polymorphic System Architecture 

It is not difficult for the non software Object-Oriented experienced engineer to understand how 

and where to apply this style of engineering. If the logic in the system under development 

requires nested “IF” conditions or “Case” logic (regardless if the logic is software driven or 

driven by other means) it is easy to translate this functional logic to a (run-time) polymorphic 

logic.  Figure 11 illustrates how nested “IF” conditions can be translated to ‘Case” logic and 

then how the case logic can be translated to polymorphic logic. The specific rules are: 

• The ‘value’ translates to the abstract interface reference 

• Each enumerated value (red, blue, and green) becomes a child class derived from the abstract 

interface. 

• There is a single (common) behavior/operation added to the abstract interface 

The decision on which behavior to invoke is determined dynamically by which object the 

abstract reference addresses.  

 

 

If (value = red) 
  doSomething(); 

elseif(value=blue) 

  doSomethingElse() 

elseif(value=green) 
  doAnotherThing(); 

endif; 

 

Case value is 

 when red => 
    doSomething(); 

when blue => 

    doSomethingElse(); 

when green => 
    doAnotherthing(); 

end case;  

 

 

 Figure 11 PSA Translation  

There are two key activities for the system architect to focus on. First, identify system 

requirements that match the requirements identified within this paper. These types of 

requirements should be allocated to the. Second, the complexity of the solution should be 

reduced by identifying common service and control behavior within the system and using 

inheritance and abstraction to create single entities within the architecture to provide solutions 

for multiple problems. Common Service behavior is defined using ‘inheritance’. Common 

control behavior is defined using ‘abstraction’ and ‘shared aggregation’. 

Although Model Based Systems Engineering (MBSE) is not required to create a PSA, proper 

semantics within modeling tools provide the needed assistance in encapsulating and linking the 

architecture artifacts. The potential also exists with a MBSE environment to create an 



  

executable (logical) architecture that can be used to verify the architecture prior to component 

development. Executable architectures can be used to “perform dynamic analysis on the 

architecture” (Friendenthal 2007) to reduce risk during the maturing activities of a PSA. 

Functional Design Solutions 

All the above capabilities can be implemented using standard structure design methods. 

However, linear growth of these functional designs is very expensive and can quickly create an 

uncontrollable environment. Satisfying these types of requirements in a functional architecture 

has the ability to easily migrate to the ‘Highly Coupled’ anti-pattern. Patterns capture expert 

knowledge about “best practices”, antipatterns because their use (or misuse) produces negative 

consequences (Smith 2000). This anti-pattern can create a ‘Stove Pipe’ architecture. A Stove 

Pipe is “A system procured and developed to solve a specific problem characterized by a 

limited focus and functionality; a system that contains data that cannot be easily shared with 

other systems”(DOE 1999). A stovepipe system has problems with extensibility because each 

component is statically bound directly to other components require to complete a task. 

Defining interfaces should be part of the requirements analysis and system architecture effort. 

Each interface requirement should be linked to the functional behavior (requirement) that 

triggers the interface and the functional behavior (requirement) that is triggered by the 

interface. (Bryson 2009) 

Where can the System Architect use PSA’s? 

A PSA satisfies the requirements of a Service Oriented Architecture (SOA) but not all SOA’s 

will satisfy the definition of a PSA. A PSA requires the use of abstraction and inheritance 

where a SOA does not. The services or Service Level Agreements (SLA) within the SOA are 

the abstract interfaces within the PSA environment. Service providers publish their servers 

which are dynamically accessed by service consumers as needed. New services can be added to 

the system to allow the system to be extended. “Services provide the incremental building 

blocks (within an SOA) around which business flexibility revolves, but services need a 

supporting architecture for their deployment, delivery, and management”.(IBM 2007)  

In a System of System (SoS) design, a PSA allows a polymorphic client to access a 

polymorphic server (regardless of the servers location) and creates a system that exists in a 

virtual multi-core environment. Depending on the performance requirements, a polymorphic 

SoS could execute on a single processor or 100,000 processors. As long as subsystems are 

designed to execute in parallel, the SoS can expand and shrink as performance requirements 

change. Using architectures that are no longer dependent on where logic behavior is executing 

the migration to new technologies (multi-core processors [100+], shared cache) becomes much 

less costly and the benefits of a PSA can be fully realized. 

The engineering process should have one or more levels of abstraction defined for each activity 

(Management, Analysis, Architecture/Design, Development, Implementation, Test, and 

Maintenance). There may be different types of these for H/W, S/W, Product Support, and 

Manufacturing that can be reused depending on the requirements of a specific contract. 

The Military command language is a process that conforms to the PSA idea. The command to 

Advance, Engage, and Withdraw have the same basic meaning for a fighter pilot, ground 

soldier, Navy Task force, and Marine Platoon. Each one of these entities could carry out each 

command differently. 

Our Education system could benefit from a PSA. The goal of every class should be to teach 

each student how to solve problems. The basic process for solving any kind of problem is the 



 

  

same.  

• Define what the problem is 

• Define what you know 

• Define what you need but don’t know  

• Define a solution 

The implementation of these activities to Mathematics, Science, Social Science, Grammar, 

Sports, and Art will all be different. How the process is applied to problems of varying 

complexity may also be different and may require students and teachers to change the specifics 

of how they solve problems. In a complex problem you may also define what is and what is not 

in scope. Variables that are within your control and which ones are not man also need to be 

defined. 

Additional Work to be Completed 

Measuring the ‘Abstractions’, ‘Inheritance’, and ‘Shared Aggregation’ relationships in the 

system architecture can identify if the architecture is polymorphic or not. Identifying the 

specific requirements that are directly allocated to the architecture can also provide a valuable 

metric. However these measurements do not identify the quality of the architecture. Work still 

needs to be done to identify the specific relationships and patterns (metrics) within the system 

architectures to provide guidance as to the quality of the system architecture. 

A Case Study that spans the use of a common PSA across at least 3 systems in a single product 

line needs to be completed. Cost, Schedule, Quality, and customer satisfaction metrics need to 

be gathered to provide justification for this engineering style. 

Conclusion 

As projects become more complex, there is a growing need to reuse software, hardware, and 

system engineering artifacts. Polymorphism exists specifically to create reuse of control and 

service behavior. A Polymorphic System Architecture adds value by creating extendable and 

reusable systems engineering artifacts. The abilities of a Polymorphic System Architecture that 

matures over time and moves systems engineering artifacts from Non Recurring Engineering 

cost to corporate assets can make the system architecture invaluable. When the system 

architecture satisfies requirements, the complexity of the system can be reduced. Polymorphic 

technology applied to software and non-software systems provides a means to achieve these 

goals. This depends on the ability of the architects, customers, and program managers to 

identify and understand the specific types of ‘Relationships’ used to create a Polymorphic 

System Architecture. The end goal of applying polymorphic technology to systems 

architecture is to be able to start solving a new problem with an 80% proven solution. 

 



  

Appendix A PSA Terms and Technology 

To define these relationships the system architect needs to understand the following specific 

Object-Oriented terms and technology. 

Containment Object Composition 

Encapsulation Polymorphism Inheritance 

Type Object Reference Abstraction 

Class Aggregation Composite & Shared Polymorphic Servers 

Polymorphic Clients Polymorphic Mediator  

Containment – A primitive pattern in which one construct (structure) contains a collection of 

other constructs.  

Encapsulation – A primitive pattern where data and behavior are grouped (or tied) together in 

a single construct. “Encapsulation simply says that there should be a way to associate the two 

(data and behavior) closely together and treat them as a single unit of organization”. (Linden 

1999) Encapsulation extends the pattern of containment and creates a new construct where 

specific Data and Behavior related to that Data are grouped together as a single entity. Figure 

12 illustrates a UML class that binds together Data (attributes) and Behavior (operations). In 

Object-Oriented environments encapsulation provides one form of code reuse. The construct 

that provides this grouping is the class. 

 
Figure 12 Encapsulation Primitive Pattern 

Within the context of a PSA the concept of encapsulation must be extended to a higher level of 

abstraction. ‘Architecture’ needs to be the encapsulating entity when using the PSA style of 

engineering. The parts of the encapsulated architecture will include the ‘Classes’ and specific 

relationships between the classes. Also encapsulated within this architecture will be the 

requirements, requirements analysis, and testing associated with the requirements satisfied by 

the architecture. 

Type –The Gang of Four defines a ‘Type’ as “identifying a specific interface to data”. (Gamma 

1995) In a PSA, ‘Types’ are used to define formal (externally visible) specification used to 

interact with components. The components can be as simple as an integer ‘type’ allocated in 

software or a complete system architecture. By ‘typing’ the object or component, the architect 

places specific constraints on how the object or component is used.  

Class – “An object class describes a group of objects with similar properties, common 

behavior, common relationships to other objects, and common semantics” (Rumbaugh 1987). 

The class is the construct in Object-Oriented Programming that encapsulates behavior and 

data. When reviewing a polymorphic architecture, it is important, to understand that a class 

defines a ‘Type’ of construct. In a PSA the classes are the specifications for the building blocks 

of the system. An ‘integer’ is a type for representing numbers. A class is a user defined type for 

encapsulating data and behavior. The class is used to create objects or instances of the class. 

The objects reuse the behavior and data definition within the class but the value of the data is 



 

  

unique for each object.  

Using ‘Types’ and ‘Classes’ are one way of encapsulating data and behavior. 

Object – An instance of a class type. Rumbaugh defines an object as “a 

concept/abstraction/thing with a well defined boundary and is relative to the problem at hand”. 

(Rumbaugh 1987)  Object are dynamically created instances of the class type. The objects are 

the building blocks of a PSA. The classes are the specification for those building blocks. Figure 

2 illustrates this relationship.  

Object Reference – An object reference is a construct that allows an object user to hold onto 

the object. In C++ the object reference is literally a pointer to where the object is located in 

memory. In Figure 2 the attribute ‘theStrategies’ is an array of object references of the type 

‘’StrategyInterface’. 

It should be noted that a ‘GOTO’ statement (memory pointer), ‘Pointer’ to an operation, and a 

‘Reference’ to an abstract interface are NOT the same things. Using memory pointers and 

operation pointers are no different than using the ‘GOTO’ statement. An interface reference to 

a component/object uses the ‘Type’ specification of the class to ensure that a request for service 

is associated to an appropriate server implementation. This relationship is verified in strongly 

typed programming languages by the compiler. This relationship can also be ensured in system 

architecture with non-software components by using a strongly ‘typed’ Model-Based System 

Engineering (MBSE) tool. 

Aggregation Shared and Composite – Identify specific ways that objects or components are 

related to each other. Aggregation indicates that one construct has is part of to a second 

construct. Shared and Composite aggregations are specific types of aggregations (OMG 2009). 

Composite aggregation occurs when one construct is contained within another. When the first 

construct is created the second construct is also created. When the first construct is deleted then 

the second construct is also deleted. With the composition relationship the second construct 

will live and die with the first. Shared aggregation is when one construct references another. In 

shared aggregation the second construct can be referenced and shared by multiple constructs 

(OMG 2009). Shared aggregation is shown with the non-shaded diamond and composite 

aggregation is shown with the shaded diamond in UML/SysML. The diamond is connected to 

the class that uses the referenced class as illustrated in Figure 13.  

 
Figure 13 Aggregation and Composition Primitive Pattern UML Diagram 

Inheritance – A relationship between two or more classes (also known as generalization in 

UML/SysML)(OMG 2009). “This relationship allows one class (or type) to refine (or extend) 

another class (or type)”. (Linden 1999) One class is the parent class (or superclass) and the 



  

other class is the child class (or subclass). The arrow head points to the parent class in 

UML/SysML (Figure 14). The child class will contain the data definition and behavior defined 

in the parent class. Inheritance is not a copy of the data structure and behavior. If the parent 

class is updated, the child class will receive the same updates. The parent provides a single 

definition that is shared by all the children. 

 
Figure 14 Inheritance Primitive Pattern UML Class Diagram 

Polymorphism – The GoF (Gamma 1995) defined polymorphism as the ability to substitute 

objects with matching interfaces at run-time. Polymorphism allows the system to have multiple 

implementations of behavior and then select the appropriate behavior depending on the 

circumstance. Polymorphism allows an architect to define an interface to behavior that is 

independent to how the behavior is implemented. There are two basic types of polymorphism. 

Static polymorphism (or overloading) occurs when the selected behavior is defined at software 

compile time or system instantiation. Overloading is generally created by defining multiple 

operations with the same name. Each operation has the same name, but the input parameters are 

of different types. Once the system is instantiated the behavior logic will not change.  

Run-Time Polymorphism (RTP) occurs dynamically. The behavior logic changes within the 

system as it executes. RTP requires the definition of an abstract class or interface. RTP allows 

architects to define systems that have functional requirements to dynamically change behavior. 

The strong typing of the abstract interface allows the reliable dynamic changing of behavior. 

Abstraction – Dictionary.com’s definition states “an abstract or general idea or term” 

(Dictionary.com 2010).  This definition is NOT the way abstraction is being used in a PSA 

process. The GoF defines an abstract class as “a specialized class that defines an interface and 

defers the implementation to subclasses”. (Gamma 1995)  Abstraction in this context is 

defining specific constraints that users of the abstract interface must adhere to. It is the 

behavior behind the interface that is abstract. 

A Software or System architect can create a PSA by defining an abstract interface, having a 

polymorphic client use (or reference) the interface, and having objects instantiated from 

subclasses of the abstract interface. RTP is created by combining the relationships of 

aggregation, and inheritance with abstraction.  

In some software languages, abstraction is also referred to as an ‘Interface’ (i.e. JAVA). The 

use of the word ‘Interface’ differs from what is commonly used in ‘Structured Design’. In 

structured design an interface commonly represents a ‘Pipe’ that connects two hardware or 

software components. This pipe is viewed as a cable or wire between two connected points. An 

abstraction defines the connectivity between two points differently. In a structured design if the 

interface between two components is seen as a wire, then in a polymorphic design, the 

connector on the component and the connector on the wire are combined to create the (abstract) 

interface. The polymorphic system has the ability to dynamically plug different wires to a 



 

  

single connection as long at the connection (abstraction) on the wire matches the connection on 

the component. It is the ability to dynamically change these connections that allows a 

polymorphic architecture to alter system behavior and satisfy functional requirements. The 

Abstract interface creates the weakest form of coupling possible between two components. This 

weak coupling allows for an architecture that is much less impacted by changes in the system. 

(Unknown 2009)  

This Abstraction is an ‘Aggregate’ relationship. The child construct inherits the interface from 

the abstract construct. There is never an instance (object) of the abstraction (class). Constructs 

that inherit from the abstraction are required to implement the defined behavior (operations) in 

the abstract class. This concept creates a strongly ‘typed’ and highly reliable ‘GOTO’ 

statement. A controlling object will have a reference to the Abstract Construct type (class). 

This reference can only point to instances of children of the abstract construct. Each child type 

is required to implement its own version of the behavior while still adhering to the defined 

abstraction (interface). When the controller changes the reference from one child construct 

instance to a different child construct instance the behavior will change dynamically (i.e. 

during Run-Time).  Figure 15 illustrates how abstraction is represented in UML/SysML. 

 
Figure 15 Abstraction Primitive Pattern UML Class Diagram 

Architecture – The decomposition of a system where the synthesis of the decomposition 

satisfies specific requirements that have been allocated to the architecture. The architecture 

should also reduce the complexity of the solution. Architecture provides the definition and 

justification of the building blocks of the system. The definition of specific types of 

relationships allows the system architect to create a PSA and satisfy specific functional 

requirements with the architecture. In a polymorphic architecture the architect is focused on 

defining the types of components in the system and the relationships between these types.  

Polymorphic Mediators - allows the polymorphic clients to find polymorphic servers that 

provide the services defined in a specified abstraction. There may be multiple mediators within 

a system. The mediators must work together to allow clients and servers to connect 

dynamically. 

Polymorphic Servers – Classes/Types that inherit from the defined abstract interface. 

Components/Objects will be instantiated from these classes.  

Polymorphic Clients – Classes/types that reference or have an aggregation to the 

abstract class. Each client will and should have server load limits. PSA load balancing 

can be accomplished by a client easily handing servers to another client. During critical 

system activities clients can also balance and share critical behavior of the system.  
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