CSSE 576 – Software Quality Assurance
RHIT
Due 11:55 PM – Thurs, May 29, 2014

Take-home exam 2.

A. Instructions

Please take 3-4 hours for this exam – honor system. It’s open book. (And you can look things up on the Internet, etc., if you like!) I’m looking for maybe 3 pages typed, single spaced, in addition to the length of the questions and probably a bit more for the figures in the second part! Add your answer by typing under each question.

On each question, put some depth. I hope to see a representation of your own thinking, like applications of the ideas, beyond what’s in the book.

B. Questions - Short Answer (typically 2 - 3 sentences) – 4 points each:

1. Being quasi-scientific about quality improvements requires getting a baseline before you start. This is true for managing quality generally (Kan Ch 9) as well as for actions like implementing CMM (Ch 17). Describe two scenarios (situations) in which getting the go-ahead for making improvements, and then gathering that data as a start, could lead to misleading results:

2. Kan’s management recommendations for small organizations (Ch 9) include:

· Rayleigh model proposed
· Front end – use inspection scoring checklist
· Middle – use code integration pattern
· Back end – use a testing defect-related metric

If you could add one more item to this list, what would it be, and why?

3. Most commonly people track “defect arrivals” during testing (Ch 10). What do you need to do, to “normalize” this data, so that you can compare it with historical data?

4. What are two good reasons why you don’t worry about system crashes until you are close to release?

5. In engineering generally, Failure Mode and Effects Analysis (FMEA – See http://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis) is used to engineer quality into products. The general idea is to list all the bad things that could happen, along with their probability, severity, and “detection”. The latter is a rating of how hard it is to know if the problem exists. For a known possible problem, each variable is given a numerical rating, like 1 – 5. E.g., an failure expected to be “frequent” for a design might be a 5, if it caused a loss of primary function that’d be another 5, and if our odds of knowing it was failing are low – another 5. You multiply these three ratings together to get an overall “risk” – in this case, 5 * 5 * 5 = 125, very high. You then go after reducing or eliminating the high risks during the rest of development. Describe how this process could be employed with software, and how inspections and testing might play a role in that process:

6. Which is better to count for testing progress, if you can only get good data on one – defect arrival rate or defect density? And why?

7. How in the world can larger code modules have a lower defect density than smaller code modules? Do you think this is true of the code you work on?

8. I claim that counting lines of code is as good as counting cyclomatic complexity. Show that I am right:

9. For “old code” that you are still changing, you have a better idea of what to test. Describe the key indicators you would look at as a guide for this “informed testing”:

10. Lorenz believed that it was actually good for a class to have a lot of dependencies, so long as these were within the same subsystem. And bad if it did not have a lot. How come?

11. In the old Soviet Union, factories were rewarded based on how many parts they produced, regardless of the size of these parts. If your organization adopted a software coding productivity standard, like IBM’s 1 to 3 person-months for a key business class, would this have the same result? Why or why not?

12. Which is more a productive strategy (for you): Start with skilled OO developers and teach them your business? Or, start with business domain experts and teach them to develop good OO software? Why?

13. Explain why it takes twice as long, on average, for you to get through a lunch line that’s at 50% of maximum capacity, versus one 0% (you are the only customer):

14. In software performance engineering, and in reliability engineering, targets turn into budgets, which turn into estimates, which are compared to real measurements. What’s the magic here, that beats waiting to fix things when the system is in the lab?

15. Argue that “availability is the closest quality attribute to having a low product defect rate”:

16. Why is the customer’s availability experience different from what you see during testing?

17. When a major feature stops working for a customer, they try to analyze its cause on their own as well as calling for your advice. What are key issues that may cloud their judgment in arriving at their own conclusions?

18. How do backhoes figure into an operational profile?

19. Explain how “disconfirmation” plays a double-edged role in determining customer satisfaction:

20. What are the differences between quality process and project assessments that Kan believes a development organization can do themselves, versus those he believes need to be done by outsiders?

21. Kan favors checklists for managing software quality improvement. What kind of analysis would be particularly difficult to do with a checklist, and why?

22. The 14 “general system characteristics,” used as a multiplier to get function points, are supposed to account for additional difficulties you might experience in writing code. Rank the top 3 of these, for the code you write, and explain why they make coding especially hard to get right:

C. Questions - Problem Solving – 8 points each:

23. You have 200 customers for your new product, and you want to sample their satisfaction level with a margin of error is less than 10%. You predict they will be 80% satisfied. How many of the 200 have to provide survey data in order for you to conclude this with 95% confidence? (Please show your work!)

24. I have two application servers operating in parallel, only one of which has to be up for the whole system to provide service. Because of limits to the software quality of the initial release that runs on them, each of these has only 99% availability. Sitting in front of this pair is a single machine serving as the application web server, which is running tried-and-true software, and which has 99.99% availability. For all three machines, this is unplanned downtime. The planned downtime is an additional 4 hours per machine, to do upgrades. On the application server pair, these upgrades can be done on one machine while leaving the other up. What’s the overall availability of the whole business? (Please show your work!)

Put your .doc file in the Moodle drop box provided by 11:55 PM, Thurs, May 29. (I may use Word’s change mode to comment and grade it.)

[bookmark: _GoBack]
