
Critical Success Factors in Software Maintenance
A Case Study

Harry M. Sneed & Peter Brössler
Software Data Service, Vienna, Austria

Email: Peter.Broessler@SDS.at, Harry.Sneed@SDS.at

Abstract: The objective of this paper is to identify
those factors, which are critical to the success of a
maintenance operation in general and to apply them to a
particular maintenance project. The project in question is
the maintenance and evolution of a very large and
complex banking application system for securities
processing which has been in progress since several
years. Eight factors are defined and evaluated in
accordance with the existing literature on software
maintenance and with the experience gained on several
such maintenance projects. Each of the eight factors is
scored according to a given metric scale. It is left to the
evaluator to weigh and evaluate the significance of the
individual factors. The study is based on empirical data
collected over the duration of the project and is intended
to contribute to the overall knowledge of software
maintenance management.
Keywords: Maintenance and Evolution, Software
Product Management, System Measurement and
Evaluation, Critical Success Factors, Empirical Studies.

1. Introduction

The purpose of this paper is to investigate the key factors,
which contribute to the success of a software
maintenance operation. After having defined what is
meant by software maintenance, the paper goes on to
address the question – what is success in software
maintenance. To this end, it proposes eight potential
success factors. For each of these eight factors, it presents
metrics, which can be used to measure their degree of
fulfillment. Having set up the measurement framework,
the paper then presents a study of how this framework
has been applied to an ongoing maintenance operation
involving a standard banking application. It ends with an
explanation of what conclusions can be drawn from the
study in regards to success in software maintenance.

2. Subject of the Study

The project described in this paper was started in 1992
and has been going on for more than a decade. The
product under development is a large-scale bank
application for security trade processing. It not only
handles the buying and selling of securities, it also
manages the related clearing and settlement procedures

and provides a wealth of information to the user and to
neighbor systems within the user organization. It is
designed to meet the requirements of both very large and
small financial institutions. To this end the application
has been highly parameterized so that it can be easily
adapted to differing requirements. Furthermore it is
multilingual, so that it can be localized to any country,
including countries where different languages can be used
simultaneously. The application can also be used for
internationally operating transaction- and service banks,
ensuring the proper boundaries between separate entities
on one hand and the common processing strategies for
regional banking institutions on the other.

At the technical level the product has a classical three
level client/server architecture with a PC-Windows client,
a Unix or Linux application server and a mainframe data
server, which can run either under MVS or Linux. The
data entry, checking, and data presentation is made via a
windows graphical interface. These front-end functions
are implemented in C++ with fat client components. The
backend functions for data transmission, data processing
and data access are implemented in a macro C language.
The data accesses are realized with embedded SQL. The
data is stored in a relational database, which may be
either DB2, Oracle or SQL Server. The processing of a
large number of parallel user transactions is supported by
CICS or other transaction monitors. The communication
between clients and servers is a proprietary solution
based on remote procedure calls. This is part of the
custom-made application framework, which acts as the
technical foundation for the system as a whole. It handles
not only the interactions between clients and servers, but
also the connections between the system and the
environment and the system and other systems. In this
way the application is isolated from its environment and
can be readily ported from one environment to another.
The technology used is typical of the client/server
technology of the 1990’s [1].

3. Key Questions

The key questions to be answered here in this paper are
what is success in software maintenance and what factors
have the greatest influence upon that success. The answer
to the first question is a definite prerequisite for the
second. Yet there have been many answers to the second

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

question published without dealing with the first
question. As a rule, previous answers have had a narrow
focus, most of them dealing with the product, e.g.
[2,3,4,5], some with the process, e.g. [6,7,8,9], some with
the environment, e.g. [10,11,12] and a few with the
human resource factor, e.g. [13,14]. Hardly any have
attempted to answer the first question with a few notable
exceptions [15,16]. It would appear that success in
maintenance is assumed to be obvious. However, it is no
more obvious than the term maintenance itself, which has
always been a controversial subject.

3.1 What is Software Maintenance?

Even today there is no real agreement on what software
maintenance means. As early as 1983 the U.S. General
Accounting Office defined software maintenance as
being all work done on a software product after it has
gone into production [17] It includes corrections,
changes, enhancements and optimizations. In the case of
enhancements, there has to be a limit to the rate of
enhancement to distinguish it from a new development
reusing portions of the existing system. Most company
policies would agree that the annual growth rate should
not exceed 25% to still consider the product to be in
maintenance. If it exceeds this limit, then the product is
on the verge of becoming another product and the project
should be considered a development project. Therefore,
enhancement in terms of functional growth, has to have
an upper bound.

Adaptive maintenance changes functionality to meet
another requirement in place of an existing requirement.
Functional enhancement adds additional functionality to
meet new requirements. Corrective maintenance only
serves to place the software in a state that it should have
been in, in the first place, provided that state has been
defined.

Perfective maintenance was used by Lienz and Swanson
to denote enhancement and optimization [18]. Here it is
limited to those measures taken to fulfill nonfunctional
requirements including optimization and reengineering.
Enhancement increases the value of the product whereas
with corrective and adaptive maintenance the value of the
product remains constant. Perfective maintenance may
increase the value of the software, but not necessarily the
value of the application. From an economic point of view
this is an important distinction since a value increase to
the functionality should also lead to an increase in the
price, whereas an increase in maintainability or
performance will probably have no effect on the income,
it will have an effect on costs.

Of course, getting customers or users to understand these
subtle differences is no easy task. That is why it is all the
more important to reach an agreement with the users as to
what maintenance is and what a maintenance contract
should include or not include. It has been recommended

that customers should pay for everything other than
corrective maintenance to keep the costs of the
maintenance operation from running out of control,
however in the past it has been difficult to get users to
finance perfective maintenance tasks [19]. In the case of
standard software products, the users also expect the
supplier to finance all adaptive maintenance of a general
nature such as changes to the tax laws. So in the end,
maintenance has to be defined within each particular
context.

In their stages model Rajlich and Bennett distinguish
between development, evolution and maintenance phases
[20]. The maintenance phase begins when the significant
growth of a system stops. The development phase lasts
until a system goes into production. In between, where
the system is in production but still growing, is the
evolution phase.

Belady and Lehman distinguish between p-type, s-type
and e-type systems. For p-type systems, there is no
maintenance, since these are one time throw away
products [21]. For s-type systems, the growth rate is less
than 10% per annum, which is more or less equivalent to
Rajlich and Bennett’s maintenance phase. E-type systems
have a growth rate of more than 10% per annum and are
considered to be evolving or dynamic systems.

In the case of the GEOS system, it first went into
production in 1998, the conceptual development started
1992. In 1998 GEOS had reached a total of 92,000
Function-Points. In the following two years the size
increased by two thirds, going up to 154,000 Function-
Points. In the last two years the size of the system has
only increased by an additional 32,000 Function-Points or
by 10 % per annum. Thus, by the classical definitions of
the U.S. GAO and the model of Lientz and Swanson, the
GEOS project has left development and gone into
maintenance, albeit with a dynamic rate of growth.
According to the model of Bennett and Rajlich , GEOS is
now in the evolutionary stage. In terms of the evolution
model of Belady and Lehman, GEOS is very much an e-
type system with all of the difficulties related to such
systems in that borderland between systems under
development and systems in maintenance. It is very close
to being what Basili terms as reuse oriented software
development [22].

3.2 What is Success in Software Maintenance?

In coping with critical success factors in software
maintenance, one has to define precisely what success is
within the context of a maintenance project. There is very
little in the literature to build upon here. Most previous
papers, which have dealt with this topic put forward the
simple contention that success in maintenance is to
increase user satisfaction while reducing maintenance
costs [23]. This may be a good starting point, but it is an
over simplification of a very complex issue. This paper is

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

proposing a multifactor model of measuring software
maintenance success in terms of quantifiable objectives.
This is in tune with the Goal, Question, Metric Model of
Basili, Rombach and associates [24].

The eight success factors proposed here are derived from
a maintenance assessment model presented by one of the
authors at the ICSM-1996 [25]. This paper both widens
and deepens that original model by adding and detailing
the following assessment factors:

1. Functionality: The maintenance operation should at
least preserve if not enhance the functionality of the
system under maintenance.
2. Quality: The maintenance operation should preserve if
not increase the quality of the system under maintenance.
3. Complexity: The maintenance operation should not
increase the complexity of the product relative to the
size.
4. Volatility: The maintenance operation should not lead
to an increase in the volatility of the product.
5. Costs: The relative costs per maintenance task should
not increase, provided the tasks are of similar scope.
6. Release deadlines: The agreed upon release deadlines
should be kept and delays should not increase.
7. User satisfaction: The user satisfaction rate should
remain at least at the same level, if not increase.
8. Profitability: Last but not least, the maintenance
operation should be profitable or at least cover it’s costs.

3.2.1 First Objective: Preserving Functionality

Boehm has pointed out that the first objective of any
maintenance manager is the continuity of the service [26].
A user should never have less functionality today than he
had yesterday, meaning that every new release must
contain as a minimum those functions and data contained
by the last release, as long as they are required. A
function or a data element may only be deleted if all users
agree and there are no undesired side effects. A loss of
functionality or information is referred to as functional or
informational erosion.

There are two ways of measuring this. The one way is by
regression testing. All functional test cases, which were
performed for the last release, must also pass through the
next release and their results compared. The other method
is static source and test case comparison. The source of
the last release should match the source of the new
release with the exception of added or purposely deleted
lines. The same applies to the test cases. The comparison
of source and test case deltas together with dynamic trace
paths and data results together form a fairly reliable
indicator of the functional change rate.

3.2.2 Second Objective: Preserving Quality

An important goal of any software maintenance project is
to increase the product quality by the preemptive

elimination of error causes, by tuning the system to use
fewer resources or by improving the quality of the code
and the documentation. However, one needs to be
cautious here, as costs can easily get out of hand. Users
contract to buy or lease a product as it stands, warts and
all. The overall quality of a software product is
determined in the development phase. Once the product
goes into maintenance, it is both costly and risky to try
and raise the level of quality significantly without an
explicit contract from the users to do so. This does not,
however, preclude local improvements.

It is the responsibility of the maintenance organization to
preserve the quality they started with. Quality erosion
may be measured in terms of increasing error rates, loss
of performance, decreased productivity, increasing incon-
sistency between documentation and code, and a
reduction in code quality. All of these factors can be
measured. The error rate is measured as the number of
errors relative to the size of the system – error density.
Productivity is measured in person-days per impacted
size unit. Performance is measured in terms of average
response time for online transactions and average
execution time for batch transactions relative to the
system functionality expressed here in function-points. Of
course, if inputs, outputs and accesses are added the
performance will drop, but the number of function-points
will increase proportionately.

The consistency of code and specifications can be
measured by means of static analysis, comparing the
entities and relations of the one with those of the other.
The consistency of code and user documentation is
measured by deriving test cases from the documentation
to test the system and then, comparing the actual system
behavior with the behavior prescribed in the
documentation. This is taken from the literature on
software verification [27].

A change in code quality is detectable by means of code
auditing. The maintenance phase inherits the code and the
coding standards from the development phase. If there
was never any standard to begin with it is difficult to
install a new standard after the fact. The standard should
be a compromise between the state of the code as it is and
the way the code should be in the future. As the code
improves, the standards can be raised. Thus, the
maintenance phase should not only ensure that the code
does not get worse, meaning the number of standard
violations relative to the number of statements should not
increase, but it should also work toward incrementally
improving the code while at the same time introducing
new standards. The rate of conformity to the standards is
a good indicator of quality erosion [28].

3.2.3 Third Objective: Controlling Complexity

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Just as the maintenance operation strives to preserve
functionality and quality on the one hand, it should strive
to control complexity on the other.

In software systems there are two levels of complexity –
macro complexity and micro complexity. Macro
complexity is the complexity of the system architecture
and can be measured in terms of dependencies among
architectural layers as well as between components within
the architectural layers. It can be measured by means of
the classical coupling metric. [29]

An impact analysis will indicate from which other
components a given component is dependent upon, i.e. it
invokes one of their functions, inherits from one of their
classes, includes one of their members, and so on. Each
component has such a dependency rate, which is the ratio
of the number of components it is dependent on relative
to the number of all components in the subsystem. The
same metric can be applied to subsystems. A subsystem
can be dependent upon other subsystems of a system. The
number of these dependencies relative to the number of
subsystems is it’s dependency rate.

Micro complexity is a question of the internal structure of
the components for which there are hundreds of different
metrics [30]. Based on whatever metrics one deems
appropriate, they should be normalized to a common
scale and come up with an average complexity per
component. This average complexity should not be
increased by the maintenance operation.

Thus, a large system will have different complexities at
different levels – at the component level, at the subsystem
level and at the system level. The maintenance operation
may lead to an increase in the number of components and
subsystems, but it should not lead to an increase in their
interactions. They should remain at least at the same
level, if not decrease as a result of reengineering efforts.

3.2.4 Fourth Objective: Avoiding increasing Volatility

System volatility has been defined as the propensity of an
information system to change it’s state from evolution to
revolution [31]. Revolution demands a new system
development life cycle with all of it’s accompanying
costs and risks. A steady evolution of the product is the
goal of the maintenance operation.

System volatility is measured through the volatility index
proposed by Heales [32]. This index is determined by the
number and the extend of the change requests requiring
enhancement relative to the other maintenance tasks.
Enhancement is known to cause deep structural change. It
should slowly decrease as the system ripens. If it goes up
again as is the case with the bath tub curve, this is a sign
that the system no longer meets user requirements and
needs to be totally revised.

A maintenance operation should ensure that the volatility
index decreases or remains at a constant level. A sharply
rising volatility index is the sign of extremely high risks.

3.2.5 Fifth Objective: Controlling Costs

The average costs of fulfilling a change request relative to
the size of the impact domain is another important criteria
for the success of a maintenance project. The impact
domain of a change can be defined in terms of function-
points, object-points, statements, or any other size
measure [33]. The effort in person days relative to the
size metric gives the productivity rate. The productivity
rate in maintenance will of course never match that of
development. Therefore, there has to be a separate
maintenance productivity rate based upon the size of the
impacted domain and the complexity and quality of the
software. This scale is set up at the beginning of the
evolution phase and should be monitored annually to
ensure that it does not significantly decrease. A
decreasing productivity rate usually goes hand in hand
with decreasing quality and increasing complexity [34].

3.2.6 Sixth Objective: Keeping Regular Releases

As time passes, the intervals between releases are
expected to increase. However they should not deviate
from the agreed upon intervals and deadlines. The length
of deviations from release deadlines in calendar days is a
good metric for evaluating the punctuality of the
maintenance operation. Normally the release intervals
are part of the service level agreement with the users.
They may be set to one year, six months or three months.
Whatever they are set to, they should be kept. Deviating
from the contracted release interval time is surely a sign
of service degradation. Therefore, sustaining the release
intervals is a major objective of any maintenance project.

3.2.7 Seventh Objective: Sustaining User Satisfaction

Measuring the degree of user satisfaction is not a simple
subject to deal with. It is closer to social science than to
computer science and requires a significant investment in
time and resources. Any measure of user satisfaction
must be founded on a comparison of what the customer
feels should be offered and what is ultimately delivered.
In addition, the polling needs to be repeated at regular
intervals. Questions to be put to the user of a software
product may include such criteria as

satisfaction with the system functionality
satisfaction with the system quality
satisfaction with the system performance
satisfaction with the user support
satisfaction with the maintenance service

One method recommended in the literature and practiced
in the IT service area is the SERVQUAL method of
assessing both service expectations and perceptions of
deliverables [35]. The SERVQUAL method has two

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

parts. The first part consists of 22 questions for
measuring expectations. These statements are formulated
to reveal the degree of service expected by the user. The
second part contains the same questions, but phrased to
measure perceptions of the actual service delivered.

The degree of user satisfaction is captured by a gap score
(G) indicating perceived quality of a given service where
G=P-E, whereby P is the sum of the delivered services
and E is the sum of the expected services. A positive
score shows that the user is getting more than what he or
she expects. A negative score indicates that the user is
getting less than what he or she expects. This polling of
the users should take place at least once a year [36].

For a maintenance operation to be considered successful,
the degree of user satisfaction, or gap score, should be
increasing or, at least, remaining at the same level.
Decreasing user satisfaction is one sign of service
degradation. However, it is not the only one. There is also
the degree to which the IT system contributes to the
profitability and to the competitiveness of the user
organization. This has to be measured by a reoccurring
cost/benefit analysis. A successful maintenance operation
will be satisfying the end users while at the same
contributing to the financial well being of the user
organization.

3.2.8 Final Objective: Covering Costs

The ultimate success goal is a matter for the company
accountants. The annual fees for the support and
correction of a system plus the additional annual income
for changes and enhancements should amount to at least
as much as the annual costs of the maintenance operation.
Error correction, system upgrades, and customer support
may be covered by the standard maintenance fees.
Adaptations and enhancements should be charged to the
users requesting them. In some cases, such as large scale
reengineering projects, it will be necessary to share the
costs among all users. The Euro conversion is an example
of such a project. A technical conversion to another
platform is another example. Customers must be educated
to the fact that the slightest change to an existing software
system occurs costs, both direct and indirect. Thus,
attaining this first goal is primarily a contractual
challenge and secondly a challenge for the maintenance
task estimators.

4. Rating the GEOS Software Maintenance
Operation

Having set up these eight success criteria, it is now the
purpose of this contribution to illustrate their application
to the maintenance and evolution of the GEOS standard
software package. Some might say that fulfilling the last
criteria – covering your costs – is all that matters. Others
might claim that user satisfaction or the contribution of
the software product to the profitability and

competitiveness of the user organizations is the primary
objective. All of the other criteria – functionality,
quality, complexity, volatility, productivity and
timeliness – are all related to one of the two KO criteria
– either to costs or to user satisfaction. They are included
to demonstrate the relation between hard, precisely
measurable, factors such as reliability and soft, imprecise
measurable, factors such as user satisfaction.

4.1 Rating the Functionality of the GEOS Product

In terms of function-points, the functionality of the
GEOS product has increased by 200% from 92.079 when
it first went into production at the end of 1998 to 185.830
at the end of 2002. With the exception of the year 2001
when there was a major reorganization the growth rate
has been steady as shown below:
Year Funct-Points Increase
1998 92,079 100%
1999 108,006 17%
2000 153,830 42%
2001 160,936 5%
2002 185,830 15%

Another way of viewing the functionality of a system is
in terms of the use cases, the user interfaces, the reports,
the database tables and the data interfaces. At the
beginning of 1999 GEOS had :

1855 usecases
735 user interfaces
64 reports
703 data interfaces and
400 database tables

Now it has:
3912 usecases
932 user interfaces
401 reports
2149 data interfaces and
638 database tables

The static analysis of both the specification and the code
indicates that functionality has doubled. The regression
tests, which are based on the test cases executed in the
last release ensure that no functionality has been lost. All
of the use cases with all of the user interfaces tested in the
last release are also tested in the new release. Thus, one
can assume that this criteria has been fulfilled.

4.2 Rating the Quality of the GEOS Product

Product quality is a multiple dimensional factor as has
been pointed out in the ISO-9126 standard [37]. There is
quality in terms of reliability, performance, usability,
portability, maintainability, interoperability, and
reusability. For the sake of simplification the internal
quality features such as maintainability, portability,
interoperability and reusability have been grouped
together under the rubric construction. Usability is an
issue for the last success criteria – user satisfaction. So

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

here only reliability, performance and construction are
considered.

Reliability is measured in terms of defect rates relative to
the size of the system. The GEOS project distinguishes
between three error classes – major errors, medium errors
and minor errors. Major errors cause the system to fail or
cause damage to the user in some way. Medium errors
produce wrong results, which can be handled by the users
or a system failure, which can be avoided. Minor errors
affect only the user’s view of the system.

In the first year of production GEOS had some 644
customer errors reported, of which 242 were major errors,
240 medium errors and 162 were minor errors. Given the
size at that time of 92,000 Function-Points, this amounted
to an error density of 0.007. In the year 2002 1048
customer errors were reported of which 651 were major
errors, 268 were medium errors and 129 were minor
errors. As shown below, the error rate has increased in
absolute terms, but the error density has decreased to
0.006 as the system grew to it’s current size.
Year Errors reported Size (Fkpt) Error Density
1999 644 92,079 0.007
2000 872 108,006 0.008
2001 612 153,830 0.004
2002 1048 160,936 0.006

It is obvious that the reliability of the product has not
really improved over the years, but neither has it gotten
significantly worse. The maintenance operation has
succeeded in maintaining the reliability rate despite
significant growth.

The performance of GEOS is measured according to
three criteria:

response time
throughput and
resource utilization

The response time is the time interval between the receipt
of a transaction on the server to the termination of that
transaction. Throughput is the number of transactions that
can be processed in a given time interval. Resource
utilization is the degree to which the system capacity is
occupied by the GEOS application. The baseline
environment is the IBM Z series with an OS/390
operating system.

As depicted below, the performance figures have actually
improved over the years despite the system growth of
100%. When GEOS first went into production, the
average transaction time was 41 microseconds with a
throughput of 24 transactions per second and the system
resource utilization averaged at 48%. Currently the
response time is measured at 21 microseconds for 47
transactions per second and the system resource
utilization has fallen to 42%. This improvement is of
course not only a result of system tuning, but also of the

faster machine. Independent of the reason, the system
performance has not been negatively influenced by the
system evolution.
Year Transactions Avg. Response Time
1999 28 per sec 0.036 Secs
2002 47 per sec 0.021 Secs

Year System Size System Utilization
1999 1,251,675 Stmts 55 %
2002 2,501,061 Stmts 42 %

The construction quality is the median quality coefficient
of the quality characteristics modularity, portability,
testability, reusability, flexibility, interoperability, and
conformance. These internal quality metrics have been
described in previous publications [38]. They are derived
from a static analysis of the code repeated every six
months. In it’s original state, the GEOS code had a
median construction quality rate of 0.639. Over the past
four years this rate has slightly increased to it’s current
state of 0.662.
Year Components Median Quality
1999 2038 0.639
2000 2703 0.643
2001 3265 0.647
2002 3488 0.662

These code quality metrics indicate that the GEOS
maintenance operation has managed to preserve the
original construction quality and even to increase it.
So as far as the preservation of quality is concerned, the
GEOS maintenance operation can be considered a
success in that it has fulfilled all three of the quality
rating criteria.

4.3 Rating the Complexity of the GEOS Product

GEOS product complexity is measured at both the macro
and the micro level. At the macro level it is the number of
interactions, i.e. data flows and function calls, between
subsystems relative to the number of subsystems. At the
micro level it is the median complexity rate of eighth
different complexity metrics – Chapin’s Data Q-
complexity, Dataflow complexity, Cards’s Data Access
complexity, Henry’s Interface complexity, McCabe’s
Cyclomatic complexity, McClures Decisional
complexity, Sneed’s Branching complexity and
Halstead’s language complexity. The use of these
complexity metrics has been documented in previous
publications [39].

The average micro complexity rate of all components has
been decreased over the four year period since the
beginning of 1999 from 0.622 to the current rate of 0.590.
It might be expected that the complexity of the code
would rise as supposed by Belady and Lehman on their
study of the IBM-TSO system, but in the case of GEOS
the complexity of the code has actually decreased as a
result of clean-up operations.

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Year Components Median Complexity
1999 2038 0.622
2000 2703 0.633
2001 3265 0.582
2002 3488 0.590

The average macro complexity, or coupling rate, for all
subsystems has risen from only 0.250 in 1999 when there
were only six subsystems – three frontends and three
backends – with 8 interactions to 0.482 in 2002 where
there are 29 subsystems – 12 frontends and 17 backends.-
with 56 interactions. This increasing global complexity is
due in the most part to the continual reorganization of the
system to meet new requirements. It is a certainly a
matter of concern, but it also typical of a rapidly evolving
system. In summary it can be said that although
complexity is being reduced at the micro level, it
continues to grow at the macro level.

4.4 Rating the Volatility of the GEOS Product

Product volatility is measured in terms of the effort going
in to enhancing the product. It is expected to be high at
the beginning of the evolution phase as missing
requirements are added, but to decrease over time as the
system slowly covers the application at hand until it
levels off at a flat rate of growth. This bath tub curve may
hold true for well defined back office applications, but
not for such dynamic front office applications like stock
trading. Here the software system is trying to ride a tiger.
.
GEOS is a good example of a highly volatile system. In
absolute terms, the number of change requests has
increased threefold since 1999.

Year CRs
1999 568
2000 703
2001 1159
2002 1802

The amount of effort for enhancing the system relative to
the effort for changing and correcting GEOS has
remained relative constant over the past four years. In
1999 16,005 person days were booked against further
development as opposed to 10,121 for maintenance. In
2002 it was 12,464 person days for further development
and 15,321 days for maintenance. This indicates that the
product is a long way from satisfying all user
requirements and in covering the application area. Thus
the volatility rate remains high.
Year Maintenance Enhancement Volatility
1999 10121 PDs 16005 PDs 0.612
2000 16519 PDs 15810 PDs 0.489
2001 17528 PDs 14332 PDs 0.449
2002 15321 PDs 13464 PDs 0.467

This high volatility rate can not be attributed to the
maintenance operation as such. It is not so much a sign
that the product has not been built right, but more a sign

that the right product has yet to be built. Nevertheless, it
does have an effect on the costs of the maintenance
operation and should be included to round out the
definition of success. Maintaining and developing a
product at the same time is a challenging task which has
to be very well managed if it is to succeed.

Thus, as far as volatility is concerned, GEOS can not be
considered a success. The rate of expansion is far more
than it should be if the right product had been built from
the beginning. The constant adding of new functionality
makes it difficult to stabilize the system and adds to the
increasing entropy.

4.5 Rating the Productivity of the GEOS Maintenance
Operation

Productivity is measured by taking a given size
measurement such as code lines, statements, function-
points or object-points and then dividing it by the number
of person days worked on that specific project.

Size-Metric / Effort
In the case of maintenance, this is not so easy since one is
often only changing an existing component. In this case
one must adjust the size of the component by the change
rate. If a given component has 50 function-points and the
code is changed by 10%, i.e. 10% of the code lines are
deleted, overwritten or added, then the change amounts to
5 function-points. If six person days were required to
perform the task, the productivity is 0.83 function-points
per person day.

Previous maintenance studies by Vessey and others have
demonstrated how productivity sinks as complexity
increases and quality decreases [40]. In the case of GEOS
code complexity has actually decreased and code quality
increased over time. In comparison, productivity has
remained constant. In 1999 the GEOS developers were
performing at an average rate of 0.72 function-points or
8 statements per person day. In 2002 the productivity had
decreased slightly in function-points per day to 0.69, but
it increased to 8.6 statements per day. Considering the
fact that productivity can not be measured precisely,
especially not in maintenance, the conclusion is that
productivity has remained fairly constant as shown in the
following extract from the GEOS maintenance
productivity table:
Year FP’s per PD Stmts per PD
1999 0.72 8.2
2000 0.68 8.8
2001 0.67 8.5
2002 0.69 8.6

The conclusion to be drawn here is that contrary to the
popular assumption that productivity sinks as software
products age, it is possible to sustain productivity in
maintenance by constantly improving the quality of the
code and documentation as well as the quality of the
process.

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

4.6 Rating the Punctuality of the GEOS Releases

After going into production in 1998 GEOS had a release
cycle of every six weeks with an average delay of 2-5
days. At that time at most 15% of the components were
affected by the release. As the system has matured, the
release intervals have been prolonged to every 3 months
with no delay at all although now up to 50% of all
components are changed in a release. Thus, punctuality
has actually increased over the past four years, due to the
rigid release schedule.

4.7 Rating the Satisfaction of the GEOS Users

The SDS is now planning to conduct a user survey based
on the SERVQUAL method described above. Some of
the questions will be deleted which are not relevant to
the sale and support of a product. Others will be added to
solicit the opinion of the users on the quality of the
product and the maintenance process. The goal is to have
a service-oriented maintenance organization as described
by Niessink and van Vliet using the IT service capability
maturity model as a guideline [41].

4.8 Rating the Profitability of the GEOS Maintenance
Operation

Profitability is determined by subtracting the costs of the
maintenance operation from the income obtained through
maintenance fees plus charges for enhancements and
changes to the existing software product. Income from
the sale of a core product is not included since this should
be booked against the original development costs. Income
for the development of add on systems is also not
included, as this goes under the rubric of further
development. To assess the profitability of the
maintenance operation, accounting must somehow
separate maintenance from development costs.

Since first going into operation at the end of 1998 the
GEOS product has been maintained at a slight loss,
primarily due to the lack of distinction between true
maintenance tasks and development tasks brought about
by new requirements. Many concessions have been made
to current users with the perspective of adding
functionality to the product so that it is more attractive to
potential users. This strategy works, if the demand for
such a product is large enough. However, it should not be
carried too far. A risk analysis should accompany all
major enhancements and should be supported by current
users to avoid evolution of the product from going off the
deep end. In any case, one should clearly distinguish
between maintenance and further development for the
sake of accurate accounting and sharing costs with users.

5. Summary of Critical Success Factors

This paper attempts to define the most critical success
factors for a software maintenance operation based on the
existing literature and on the experience gained in the
case study. Eight factors have been identified and
described in terms of the ongoing maintenance operation.
The jury is still out on the last two decisive factors – user
satisfaction and profitability. However in accordance with
the other six factors – preservation of the existing
functionality, quality, complexity, volatility, productivity
and punctuality – the GEOS maintenance project can be
considered to be relatively successful.

We have argued that the quality of an evolving software
system will not necessarily decrease while the complexity
increases. With GEOS this is only partially true. Inner
modular complexity has actually decreased whereas
global complexity has gone up. Through continual
rework, it has been possible to keep quality at
approximately the same level as it was from the
beginning. The same applies to productivity and release
punctuality, which have remained constant. Also refuted
is the claim that the volatility rate of a product under
maintenance will necessarily decrease after the first few
years of production. This applies only to static systems.
Dynamic systems keep growing until they reach some
upper bound of complexity or until they have fulfilled all
the requirements of all users. GEOS has yet to reach
either limit. In this respect there is a very fuzzy line
between evolutionary software development and e-type
system maintenance. The growth rate of GEOS is
definitely too high for a system that old.

An additional factor to be considered is, of course, the
technological basis upon which the system was built.
GEOS was built as a client/server application. In the
meantime, the client/server technology has been
superseded by web-based technology. This puts GEOS in
the category of an outdated system, which makes it less
attractive for potential users. This is not a maintenance
problem as such, but it does decrease the value of the
system as a whole.

6. Further Research Directions

There is a great need to have measures of success in
software maintenance. Without them, we are not able to
assess the effect of processes, methods, tools or
techniques upon success. Therefore, the first step is to
reach a consensus on what the success factors are and
how they can be measured. This paper was intended to
further that discussion.

The next step will be to survey all of the organizational,
procedural and technical attributes, which could relate to

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

the success factors and to perform a correlation analysis
upon them. The goal of that work will be to find which
current practices and which potential innovations
correlate most with the success factors presented here.
This will allow the GEOS management to preserve
successful practices and to promote only those
innovations, which promise to contribute to the success
factors.

References:

[1] Sadiq, W., Cummins, F.: Developing Business Systems with
CORBA, Cambridge University Press, Cambridge, 1999, p. 23-
42
[2] Grady, R. B: “Measuring and Managing Software
Maintenance”, IEEE Software, Sept. 1987, p.35-49
[3] Gibson, V., Senn, J.: “System Structure and Software
Maintenance Performance“, Comm. of ACM, Vol. 32, No. 3,
March 1989, p. 347-358
[4] Rombach, D.: “A controlled Experiment on the Impact of
Software Structure on Maintainability”, IEEE Trans. on S.E.,
Vol. 13, No. 3, March, 1987, p. 344-361
[5] Briand, L., Bunse, C., Daly, J.: “A controlled Experiment on
the Maintainability of Object-Oriented Systems”, IEEE Trans.
on S.E., Vol. 27, No. 6, June 2001, p. 513-530
[6] Prechelt, L.,Unger, B. ,Tichy, W., Broessler, P., Votta,L.:
“A controlled Experiment in Maintenance comparing Design
Patterns to Simple Solutions”, IEEE trans. on S.E., Vol. 27, No.
12, Dec. 2001, p. 1134-1144
[7] Kemerer, C., Slaughter, S.: “An Empirical Approach to
studying Software Evolution”, IEEE Trans. on S.E., Vol. 25,
No. 4, July 1999, p. 493-508
[8] Sherer, S.: “Using Risk Analysis to manage Software
Maintenance”, Journal of Software Maint.”, Vol. 9, No. 6, Dec.
1997, p. 345-264
[9] Kajko-Mattsson, M., Forsander, Andersson, G.: “Software
Problem Reporting and Resolution Process at ABB”, Journal of
Software Maint.”, Vol. 12, No. 5, Oct. 2000, P. 255-286
[10] Poole, H., Huisman, J.: “Using Extreme Programming in a
Maintenance Environment”, IEEE Software, Dec. 2001, p. 42-
50
[11] Swanson, E.B., Beath, C.: “Department-alization in
Software Development and Maintenance”, Comm. of ACM,
Vol. 33, No. 6, June, 1990, p. 658-667
[12] Rajlich, V., Wilde, N., Page, H.: “Software Cultures and
Evolution”, IEEE Computer, Sept. 2001, p. 24-28
[13] Ramaswamy, R.: “How to staff business critical
Maintenance Projects”, IEEE Software, June, 2000, p. 90-94
[14] Jörgensen, M., Sjöberg, D.: “Impact of Experience on
Maintenance Skills”, Journal of Software Maint., Vol. 14, No.
2, April, 2002, p. 123-146
[15] O’Neill, D.: “Software Maintenance and Global
Competitiveness”, Journal of Software Maint., Vol. 9, No. 6,
Dec. 1997, p.379-400
[16] Sahin, I., Zahedi, F.: “Policy Analysis for Warranty,
Maintenance and Upgrade of Software Systems”, Journal of
Software Maint., Vol. 13, No. 6, Dec., 2001, p. 469-495
[17] Martin, R.J., Osborne, W.: “Guidance of Software
Maintenance”, U.S. Nat. Bureau of Standards, NBS Pub. 500-
129, Dec. 1983
[18] Lientz, B., Swanson, E.B.: Software Maintenance
Management, Addison-Wesley, Reading, 1980, p. 105
[19] Sneed, H.: “The Economics of Software Reengineering”,
Journal of Software Maint., Vol. 3, No. 3, Sept., 1991, p. 163-
182

[20] Bennett, K., Rajlich, V.: “Software Main
tenance and Evolution – A Staged Model” Proc. of the Future of
Software Eng., ICSE-2000, IEEE Press, Limerick, 2001, p. 73-
89
[21] Lehman, M., Belady, B.: “Program Evolution, Academic
Press, London, 1985, p. 29
[22] Basili, V.: “Viewing Maintenance as reuse-oriented
Software Development”, IEEE Software, Jan. 1990, p. 19-25
[23] Guimares, T.: “Managing Application Program
Maintenance Expenditures” Comm. of ACM, Vol. 26, No. 10,
Oct. 1993, p. 739-746
[24] Basili, V., Caldiera, C., Rombach, H.-D.: “Goal, Question
Metric Paradigm”, Encylopedia of S.E., Vol. 1, John Wiley &
Sons, 1994, p. 528-532
[25] Sneed, H.: “Evaluating the Maintenance Process at the
Zurich Life Insurance”, proc. of Int. Conf. on Software
Maintenance, IEEE Computer Society Press, Monterey, 1996, p.
217-227
[26] Boehm, B. “The Economics of Software Maintenance”, in
Proc. of Int. Conf. on Software Maint., IEEE Computer Society
Press, Monterey, Dec. 1983, p. 9-36
[27] Chechik, M., Gannon, J.: “Automatic Analysis of
Consistency between Requirements and Designs”, IEEE Trans.
on S.E., Vol.27, No. 7, July 2001, p. 651-672
[28] Coleman, D., Lowther, B., Oman, P.: “Using Metrics to
evaluate Software System Maintainability”, IEEE Computer,
August 1994, p. 42-57
[29] Banker, R., Datar, S., Kemerer, C.: “Software Complexity
and Maintenance Costs”, Comm. of ACM, Vol. 36, No. 11,
Nov. 1993, p. 81-94
[30] Harrison,W, Magel, K., Kluczy, R., DeKock, A.:“Applying
Software Complexity Metrics to Program Maintenance”, IEEE
Computer, Sept., 1982, p. 65-79
[31] Truex, D., Baskerville, R., Klein, H.: “Growing Systems in
Emergent Organizations”, Comm. of ACM, Vol. 42, No. 8,
August, 1999, p. 117-129
[32] Heales, J.: “A model of factors affecting an information
system’s change in state”, Journal of Software Maint., Vol. 14,
No. 6, Dec. 2002, p. 409-428
[33] Sneed, H.: “Estimating the Costs of Software Maintenance
Tasks”, Proc. of Int. Conf. on Software Maint., IEEE Computer
Society Press, Opio, France, Oct. 1995, p. 168-181
[34] Abran, A., Silva, I., Primera, L.: “Field Studies using
functional size Measurement in building estimation models for
Software Maintenance”, Journal of Software Maint., Vol. 14,
No. 1, Feb. 2002, p. 31-64
[35] Jiang, J., Klein, G., Tesch, D., Chen, H-G.: “Closing the
User and Provider Service Quality Gap”, Comm. of ACM, Vol.
46, No. 2, Feb. 2003, p. 72-76
[36] Ferguson, J., Zawacki, R.: “Service Quality – A critical
success factor for IS Organizations”, Information Strategy, Vol.
9, No. 2, Dec. 1993
[37] Dromey, D.: “A Model for evaluating Software Product
Quality”, IEEE Trans. on S.E., Vol. 21, No. 2, Feb., 1995, p.
146-152
[38] Sneed, H., Merey, A.: “Automated Software Quality
Assurance”, IEEE Trans. on S.E., Vol. 11, No. 9, p. 909-916
[39] Sneed, H.: “Understanding Software through Numbers”,
Journal of Software Maint., Vol. 7, No. 6, Dec. 1995, p. 405-
420
[40] Vessey, I., Weber, R.: “Factors affecting Program Repair
Maintenance”, Comm. of ACM, Vol. 26, No. 2, Feb. 1983, p.
128- 133
[41] Niessink, F., van Vliet, H., “Software Maintenance
from a Service Perspective”, Journal of Software Maint.,
Vol. 12, No. 2, April, 2000, p. 103-120.

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

