
A Step Towards Software Preventive Maintenance

Yogesh Singh1, Bindu Goel2

University School of Information Technology,
Guru Gobind Singh Indraprastha University,

Kashmere gate, Delhi (INDIA)

 1ys66@rediffmail.com,
 2bindu_delus@yahoo.com

Abstract
In a world interwoven economically, increasing dependence on
critical software applications either in transaction processing
(banking, Government services etc) or manufacturing automation
(automobiles, pharmaceuticals, chemicals) has accentuated the
economic impact aging software can have. Software with in-
creased usage operating in unforeseen conditions at throughput
much higher then initial expectations can degrade fast leading to
higher altered form and dramatic drop in performance indicators.
In the current paper we have tried to analyse the issues governing
software maintenance and how preventive maintenance which is
still considered a very evolving field in the context of software
engineering can help the software product age usefully. We have
also attempted to address the above in the essence of how it is
done for hardware preventive maintenance which is a better un-
derstood and commercially accepted concept. Finally we suggest
model for the preventive maintenance integrated within software
life cycle.

Keywords: Software maintenance, maintainability, hardware pre-
ventive maintenance, documentation.

Introduction
In today’s risk sensitive business and economic environment, soft-
ware has become the single most valuable corporate asset in any
business, industrial or government organisation. Software driven
activity forms the most critical business continuity element in any
organisation’s disaster management. So it is of utmost importance
that more research effort is put in obtaining a better understanding
of software problems .And how they can be avoided through regu-
lar maintenance regime thus avoiding the avoidable software fail-
ures. With the increasing maturity in the information technology
sector, more and more software systems are entering the mainte-
nance phase thus requiring disciplined and scheduled maintenance
effort.

Software maintenance accounts for more effort than any other
software engineering activity. Although it has until very recently
been a neglected phase in the software engineering process, main-
tainability is a key goal that guides its steps. Maintainability of
software is the degree, to which it can be understood, corrected,
adapted and/or enhanced [1]. Maintenance activity can originate
from any kind of failures i.e. processing failure, performance fail-
ure or implementation failure. Four types of maintenance that are
performed on software are [2]:

a) Corrective maintenance acts to correct errors that are uncov-
ered after software is in use
b) Adaptive maintenance is applied when changes in the external
environment precipitate modifications to software
c) Perfective maintenance incorporates enhancements of existing
system functionality or improvement in computational efficiency
that are requested by customers
d) Preventive maintenance improves future maintainability and
provides a basis for future enhancements.

The costs of the maintenance processes are not distributed evenly
across all categories. Studies by Leintz and Swanson [3] show that
50% of the total maintenance efforts can be attributed to perfective
maintenance, 25% for adaptive maintenance, whereas only 21% of
the total efforts are attributed to corrective maintenance and 4%
for preventive maintenance shown in fig 1.

Perfective
Maintenance

50%
Adaptive

Maintenance
25%

Corrective
Maintenance

21%

Preventive
Maintenance

4%

Fig 1: Distribution of maintenance effort

There has always been a debate on the classification of these types
of maintenance. This is partly due to the fact that many activities
are difficult to classify, for example, some organizations separate
out software reengineering from perfective maintenance. In addi-
tion, it is not unusual that while performing adaptive maintenance
one finds a defect, or perhaps decides that some perfective rewrit-
ing is necessary to add a new feature [4]. Even when these catego-
ries are reasonably well defined, adaptive and perfective work
often overlaps corrective work. The two types, corrective and
adaptive, along with perfective get the most attention.

The focus in the current paper is on preventive maintenance in
software systems. This activity of preventive maintenance is rela-
tively rare because the pressure during the development phase
renders the preventive activity to a job of minimum importance. If
one considers the probability of a software unit needing change

ACM SIGSOFT Software Engineering Notes Page 1 July 2007 Volume 32 Number 4

mailto:1ys66@rediffmail.com
mailto:1ys66@rediffmail.com
mailto:2bindu_delus@yahoo.com
mailto:2bindu_delus@yahoo.com

and the time pressures under which the change is requested, it
makes lot of sense to anticipate change and prepare accordingly in
advance. Comparison can be drawn to human ageing where pre-
ventive measures are taken in due course as aging is assumed to be
an inevitable feature. Similarly the organization should undertake
preventive measures (preventive maintenance) during the design
phase itself without waiting for software to become ineffective.
Hence, this is the process of changing software in order to im-
prove its future maintainability or to provide a better platform for
future enhancements. Miller [5] defines Preventive maintenance as
application of today’s methodologies to yesterday’s systems to
support tomorrow’s requirements.

Preventive maintenance has also been seen as a key element of
enterprise risk management. Risks are assessed and identified and
necessary mitigating steps taken to prevent any unnecessary loss
in the future.

Current state of the field
There exists inconsistency in the way preventive maintenance is
defined. It is interpreted in different manner by different research-
ers [6, 7]. Much of this inconsistency is attributed by the current
definition of maintenance and its categories as defined by IEEE
[8-10] (fig 2).

Fig 2: IEEE definitions of maintenance categories

The latest standard [10] defines the activities and tasks of software
maintenance, and provides maintenance planning requirements. It
does not address the operation of software and the operational

functions, e.g., backup, recovery, system administration, which are
normally performed by those who operate the software.

Preventive/perfective maintenance is an anticipatory activity as it
is performed by anticipating or forecasting problems which might
occur in future. Since both of them are anticipatory and not reac-
tive to detected errors/changes/enhancements, both of them can be
grouped under preventive maintenance activities. In other words
preventive maintenance is done to modify software in order to
improve the maintainability. The primary product attributes that
contribute to software maintainability are

• Making the software less complex (modularity) or
• Easier to interpret (Clarity) or
• Good internal documentation of the source code as well

as appropriate supporting documents.

Till date preventive maintenance has been taken seriously in the
context of hardware maintenance (like lubrication of parts or rou-
tine checkups) while for software systems such concept of preven-
tive maintenance is still in an exploratory phase [11]. It is right to
state that while undertaking hardware maintenance repair or re-
placement of identified faulty component is accomplished with
ease, the same activity can’t be undertaken so easily during soft-
ware maintenance as:

IEEE 90 Std 610.12-1990[8]

Preventive
Maintenance

Perfective
Maintenance

IEEE 98. Std 1219-1998 [9] IEEE 06. Std 14764-2006[10]

Maintenance performed for
the purpose of preventing
problems before they occur

Not Defined The modification of a
software product after
delivery to detect and
correct latent faults in the
software product before
they become operational
faults.

Maintenance performed to
improve the performance,
maintainability or other
attributes of a computer
program

Modification of a software
product after delivery to
improve performance or
maintainability.

The modification of a
software product after
delivery to detect and
correct latent faults in the
software product before
they are manifested as
failures.

• The source of failure in software is design faults while

the principle source in hardware is physical deteriora-
tion. Once the design fault is fixed the life span is ex-
pected to be very high. While the same life curve cannot
be drawn for the hardware as it does not follow any pre-
dictable physical deterioration pattern.

• In hardware preventive maintenance a scheduled re-
placement of the hardware component can be done thus
preventing it to fail. To do so estimates of parameter
called mean operating time between failures (MTBF),
acceptable number of failures etc. is done.

• Non availability of Off the shelve software compo-
nents/modules like spare parts in hardware maintenance.

• Ripple impact of change in any software compo-
nent/module on other elements of the software while the
faulty component replacement does not have any ripple
effect in hardware maintenance

• In software systems the applications are highly custom-
ized thus each site implementation is unique. While in
case of hardware the machinery are more or less stan-
dardized across applications.

The maintenance in software means dealing with ageing software.
Classically, software aging has two main symptoms increased fail-
ure rate, and decreased service rate. In [12] two types have been
identified: Software product ageing and software process execu-
tion ageing. Software product ageing is degradation in software
code and documentation quality by continual maintenance. Soft-
ware process execution ageing is the degradation in performance
characteristics of a software system through continuous running.
Preventive maintenance for software systems represents a pro-
active approach to operational software fault-tolerance, and aims
at counteracting the aging effect. [13]

NOTE-Perfective
maintenance provides
enhancement for users,
improvement of pro-
gram documentation
and recoding to im-
prove software per-
formance,
maintainability or other
software attributes

ACM SIGSOFT Software Engineering Notes Page 2 July 2007 Volume 32 Number 4

Classification
Preventive maintenance is not a classification factor. However,
preventive software maintenance is an important activity that
should be defined in each organization, taking into account the
local planning and working procedures. Thus, the practical defini-
tion is: Preventive software maintenance refers to all activities that
are prepared and decided upon regularly, for example annually, in
co-operation between the client and the Maintainer organizations,
and are based on the joint analyses of the present condition as well
as the forecasted needs of the software.
In this section we have tried to identify the kind of activities which
can be done in preventive maintenance. Broadly many organiza-
tions classify maintenance into two major activities as either re-
pair or enhancement. This is true from practical point of view .In
preventive measures the future faults are avoided today. Although
the preventive maintenance is a scheduled activity but any kind of
maintenance request can be understood as an example of the fol-
lowing classification:

• Preventive corrective maintenance
• Preventive adaptive maintenance
• Preventive perfective maintenance

Preventive corrective maintenance: This activity is initiated by
any kind of defect/error in the software. Correction of a software
problem may reinitiate the development cycle in the analysis
phase, the design phase or the implementation phase. A defect can
result from design errors, coding errors or implementation or the
errors which were left undetected during testing. Repeated correc-
tive maintenance in a fixed time constraint sometimes lead to pro-
gram complexity and non consideration of ripple effects (effect on
the other part of the system due to the change in one part) which
renders the distortion in the logic of the software. Hence all the
activities which arise due to an error are grouped under this type.

Preventive adaptive maintenance: It includes modification or en-
hancement in the software in order to adapt to a new operating
system or interfaces. These changes can also be driven by the
change in economic environment. The term economic environ-
ment refers to influence on the software due to change in business
rules, government policies, and work patterns. Enhancement or
adaptation of the software reinitiates development in the analysis
phase.

Preventive perfective maintenance: This activity is done to en-
hance and improve processing efficiency or performance of the
software. This includes clearing log files, back up files, to boost
up the performance or change some non-functional features of the
software such as response time, throughput and memory size to
increase processing efficiency. It also includes modification in the
software to improve the maintainability e.g. by making the soft-
ware less complex, understandable and readable source code.

Emergency requests pertaining to any kind of upset in the soft-
ware generally does not come under preventive maintenance.
Any unscheduled modification performed to temporarily keep a
system operational is a part of corrective maintenance.

The Software maintenance like software development requires a

combination of managerial control and technical expertise. So
apart from the above classifications of different kind of problem
requests there are other economic, managerial factors to be con-
sidered before performing the preventing maintenance activity as
discussed below:

• The costs spent on emergency maintenance or corrective
approaches outweigh the cost incurred on preventive
maintenance. i.e. preventive maintenance is cheaper and
efficient approach than emergency maintenance.

• The preventive maintenance is generally scheduled for
the time when the software is available i.e. there is no
load on the system and thus typically results in lesser
downtime and cost [13].

• Management issues: The management attitude plays a
major role in setting the right pitch for the maintenance
job [14]. The management should be able to assign prior-
ity to a request on the basis of its emergency and signifi-
cance. Sufficient Training, tools and motivational
environment should be provided to maintenance team.
The team should not be discouraged by giving extrapolat-
ing development assignments as rewards and giving more
bonuses to development teams. Also the time constraint
should be realistic and achievable so that quality jobs are
delivered.

• Expertise of the maintenance team also plays a significant
role. The Technical expertise, functional knowledge of
the business domain around the software under mainte-
nance and also the programmer attitude are the key at-
tributes.

• The sync between the IT teams of the organization and
business users is important. In this the customer attitude
also plays a role like how responsive the customer to the
queries of the maintenance team.

Model of preventive maintenance
A model for the preventive maintenance is presented in the present
section. The model (fig 3) is based on the classification presented
in the paper in the preceding section. It is outlined on the basis of
the development life cycle. It should be observed that software
maintenance is a microcosm of the software development cycle.
.

Preventive corrective Preventive adaptive Preventive perfective

Analysis phase

Design and Implementation Phase

Verification and Testing phase

Scheduled preventive
maintenance

R
E
D
O
C
U
M
E
N
T
A
T
I
O
N

Program comprehension
Change impact analysis

Restructuring
Change propagation

Regression Testing

ACM SIGSOFT Software Engineering Notes Page 3 July 2007 Volume 32 Number 4

 Fig 3: Model of preventive maintenance

A major distinction between development and maintenance is the
set of constraints imposed on the maintainer by the existing im-
plementation of the system. Information about system artifacts,
relationships and dependencies can be obscure, missing, or incor-
rect as a result of continued changes to the system. This situation
makes it increasingly difficult for the maintainer to understand the
software system and the implications of a proposed change

Model outline
In this model we have outlined the life cycle of any type of main-
tenance request (MR). Maintenance request can be classified as
per the classification suggested above. The preventive corrective
maintenance can initiate either in analysis phase or the Design and
implementation phase. While either preventive adaptive or perfec-
tive initiates in the analysis phase only. The request for a change
may be a bug report or a request for additional functionality.

Analysis phase consists of two important activities: Program com-
prehension and Change impact analysis.

• Program comprehension is an important tool in the hands
of the maintainer to understand the software. Multiple
changes in the life of a software renders it a different
code altogether. So Comprehension in the form of docu-
mentation and the self descriptiveness of the program
contribute to the ease of understanding the program.

• Change impact analysis is the activity by which the pro-
grammers assess the extent of the change i.e. the other
components that will be affected. This is called the ripple
effect. Also in this the feasibility and the cost of the
change is accessed. And once this preliminary phase es-
tablishes the feasibility then it is moved to next phase.

Design and implementation phase In this the two activities of
restructuring and change propagation are undertaken.

• Restructuring includes the change in design structure to
accommodate for the given change. Sometimes the given
architecture does not support contemplated change, and
then the software should be restructured first.

• Now the change in structure triggers the change in the
neighbouring components. This process is called change
propagation. The change propagation should end with the
consistent software.

The phase again ends with the update of the program comprehen-
sion.

The software which is changed at last is verified and validated in
the testing phase. In this the modified program is tested to ensure
its reliability. Regression testing is the process of testing the modi-
fied parts of the software and ensuring that no new errors have
been introduced into the previously tested code. Again this phase
is closed by the updating of the documents.

Final remarks
In the current paper we have tried to classify different change re-

quests. We presented the domain state of software preventive
maintenance and how this suffers from the multiple interpreta-
tions. And lack the objective understanding of maintainability.
This kind of scheduled maintenance can actually lower the cost
and effort required for the phase. In nutshell preventive mainte-
nance is designing a software system that is easy to maintain and
continuously upgrading a system to enable it to cope with current
and future change.

1. Updating and issuing enhancements from time to time.
The corrected releases should be announced well in time
so that attention is given to maintainability.

2. One should periodically monitor system health and
prevent system illness by checking the system
maintainability level.

3. Significant resources could be saved at the upfront
maintenance process level through providing:

a. Ongoing user training in relevant systems and
their operations

b. Written recovery restart instructions and
notifications about known problems

c. Software rejuvenation: the software is
periodically stopped and restarted in order to
refresh its internal state. This prevents or at least
postpones the occurrences of failures. Through
software rejuvenation implies overheads; it
prevents more severe (and therefore more
costly) failures.

8. Maintain a trend analysis to account for predictable
changes. And keep historical data from the past
maintenance for future reference.

References

1. Pressman RS. Software Engineering (5th edition)
McGraw-Hill Companies: New York NY, 2001.

2. Aggarwal K.K.and Singh Y. ,Software Engineering :
Programs, documentation, operating procedures. New
Age international publishers, 2005.

3. Lientz BP, Swanson EB. Software Maintenance
Management: a Study of the Maintenance of Computer
Application Software in 487 Data Processing
Organizations. Addison-Wesley Publishing Company:
Reading MA, 1980.

4. Hatton, L. How Accurately Do Engineers Predict
Software Maintenance Tasks? Volume 40, Issue 2, Feb.
2007 Page(s): 64 – 69.

5. Miller,J.C.,1979, Techniques of Program and System
Maintenance,1981,ed. Parikh, G., Winthrop Publishers,
181-182.

6. Chapin N, Do We Know What Preventive Maintenance
Is? In Proceedings, International Conference on Software
Maintenance, IEEE, Computer Society Press in Los
Alamitos CA, 2000.

7. Bennett,K.H .,Rajlich, V.T., Software Maintenance and
evolution : a Roadmap,Proceedings of the conference on
the future of Software Engineering table of
contenets,Limerick.Ireland,2000, pp 73-87.

ACM SIGSOFT Software Engineering Notes Page 4 July 2007 Volume 32 Number 4

8. IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std 610.12-1990 (1991 Corrected
Edition). The Institute of Electrical and Electronics
Engineers, Inc., 1994.

9. IEEE Standard for Software Maintenance, IEEE Std
1219-1998. The Institute of Electrical and Electronics
Engineers, Inc. 1998.

10. IEEE Standard for Software Maintenance, IEEE Std
14764-2006. The Institute of Electrical and Electronics
Engineers, Inc. 2006.

11. Kajko-Mattsson M, Can we learn anything from
Hardware preventive maintenance? , 2001 IEEE.

12. Kajko-Mattsson M, Preventive Maintenance! Do We
Know What It Is?, International panel, In Proceedings,
International Conference on Software Maintenance, IEEE
Computer Society Press in Los Alamitos CA, 2000.

13. Garg S, Puliafito A, Telek M, Trivedi K., Analysis of
preventive maintenance in transactions based software
systems. IEEE transactions on Computers, 47(1), pp. 96-
107, 1998.

14. Bhatt Pankaj,Shroff Gautam, Misra Arun K., Dynamics
of Software Maintenance,ACM SIGSOFT Softwatre
engineering notes ,Volume 29,Number 5,September
2004.

ACM SIGSOFT Software Engineering Notes Page 5 July 2007 Volume 32 Number 4

