
Assessment of Software System Evolvability

Bente Anda
Simula Research Laboratory and University of Oslo

P.O. Box 134, NO-1325 Lysaker
Norway

+47 67828306

bentea@simula.no

ABSTRACT
The evolvability, the ease of further development, of a software
systems is difficult to assess, but may have large economic
consequences. Many studies have investigated the relations
between particular software metrics and effort on evolving
individual classes, but little attention has been given to methods
for assessing and measuring evolvability of complete software
systems. This paper discusses such methods, and motivates that
they should use a combination of structural code measures and
expert assessments. This is exemplified in a case study assessing
the evolvability of four functionally equivalent systems. The
paper also gives with directions for future work on evolvability
assessments.

1. INTRODUCTION
Evolvability is an important quality attribute of a software system
as it indicates its future potential, including costs of ownership.
The evolvability of a system may be particularly important for a
software client in the process of acquiring the system, but a
software client usually has few means of assessing evolvability.
Such assessments are difficult as what constitutes an evolvable
software system is not well established. To the author’s
knowledge there are very few studies on methods for assessing
the evolvability of complete software systems, most research in
the area of software evolution has focused on how to improve
software evolvability [15]

Our interest in assessing the evolvability of complete software
systems arose as a consequence of a project conducted by the
Software Engineering Department at Simula Research Laboratory
where four functionally equivalent systems were developed by
four different software development companies. This presented us
with the challenge of assessing the evolvability of the four
systems as part of the process of deciding which system we would
use and possibly evolve in the future.

There are many factors affecting evolvability, for example the
technology used, the customer and development organizations
and their relationship, as well as the software code. Methods for
assessing evolvability must therefore be adapted to specific

contexts [13]. In this paper the focus is on evolvable software
code.

Assessing the evolvability of a software system is equivalent to
making a prediction about future effort on evolving it based on
information about the existing system. Studies in the field of
software estimation have shown that a combination of expert
assessments and formal methods usually provides the best results
[11]. Consequently, the four case systems were assessed using
structural code measures and expert assessments and these
assessments were used to rank the systems according to assumed
evolvability. The details of the assessment are described in [1].
The two assessment strategies resulted in different rankings of the
systems according to overall evolvability, and they revealed a gap
between the aspects of evolvability that may be identified based
on structural code measures and those that require expert opinion.
The results therefore support the claim that evolvability
assessments should combine the use of structural assessments and
expert opinion. The assessments also showed that there are many
challenges with assessing evolvability of complete software
systems

The remainder of this paper is organized as follows. Section 2
describes methods for assessing evolvability. Section 3 presents
the evolvability assessments of the four case system. Section 4
concludes and suggests directions for future work.

2. EVOLVABILITY
Evolvability of software can only be indirectly measured, and
such indirect measurement is only meaningful if an empirical
connection between the directly and the indirectly measured
characteristics is established. In order to establish meaningful
evolvability measures for particular project contexts there should
be a common understanding of the relations “equal evolvability
as” and “better evolvability than”. However, as long as our
understanding of software evolvability is at an intuitive level and
not explicitly formulated, we will not be able to establish a
complete empirical connection between individual characteristics
of the code and evolvability [12]. Therefore, when assessing
evolvability, we typically have to choose between a vague
definition of evolvability, and use for example expert
assessments, and well-defined measures, which may not
correspond to our intuitive understanding of evolvability, and use
for example structural code measures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWPSE'07, September 3-4, 2007, Dubrovnik, Croatia Copyright 2007
ACM ISBN 978-1-59593-722-3/07/09...$5.00

The ISO/IEC 9126 standard measures maintainability, which for
these purposes can be considered an equivalent concept to
evolvability, by dividing it into a set of measures for effort needed
to analyze, change and re-test the system [10]. The measures have

71

not been thoroughly empirically validated. We did not use this
standard in our assessment because the measures require
knowledge of the developers who are involved in evolving the
systems, and of the changes that will be made to the system.
Hence, the standard can not be used in an assessment only based
on the software code.

In the related field of software usability, a method for measuring
quality has been proposed and used that combines quantitative
measures and expert opinion [18]. The result is one usability
score, and the method makes it possible to measure and compare
the usability of several systems. Methods combining quantitative
and qualitative measures may, however, be problematic from a
measurement perspective.

2.1 Structural Measures
A large amount of empirical research has been conducted in the
area of measurement of structural properties of software, but this
research has mostly focused on relations between such measures
and evolvability of individual classes or clusters of classes.
Briand and Wuest provide an overview of empirical work on
structural measures and conclude that measures of size, coupling
and cohesion of classes are generally correlated to their
evolvability [4]. The set of structural measures by Chidamber &
Kemerer, denoted CK-metrics, is probably the most used
structural measures and have been empirically validated to be
related to evolvability of individual classes [6,7]. One of the
measures included in the CK-metrics, Depth of inheritance, has
been investigated with respect to evolvability of complete systems
[17]. The results of that study showed that the measure itself did
not directly affect evolvability. The effects of specialisation
classes has also been investigated in [5] where it was found that
much use of specialisation classes may be negative [5]. The
MOOD set of metrics is another set of metrics intended, but not
validated, to provide an overall assessment of a software system
[9].

2.2 Expert Assessments
The most commonly used strategies in practice for assessing
evolvability are guided and unguided expert assessments [16].
One example of a guided strategy is The Air Force operation Test
and Evaluation Center (AFOTEC) pamphlet which provides a
very comprehensive set of instructions for evaluating software
maintainability [2]. The instructions are, however, not specifically
adapted to object-oriented software. Another guided strategy is to
search the code for so called code smells. According to Fowler
and Beck a defined set of code smells can indicate bad
maintainability and a need for refactoring [8]. These code smells
have not been validated regarding their impact on maintainability,
and in an experiment experts judged the code differently with
respect to presence of code smells [16].

A challenge with expert assessments is their reliability which
varies in different studies; Schneiderman found little agreement in
expert evaluation of code quality where experts had not developed
the code [19], but Shepperd, found high reliability within
development teams [20]. Another main challenge with relying on
expert assessments is that such assessments are dependent on
having people who are qualified to do such assessments and who
are representative of, or understands the qualifications of, those
who will perform maintenance on the products. Experts may also

be biased in their opinions, for example by considering designs
that they are not familiar with as problematic

There are few studies on the correspondence between
measurement-based assessments and expert assessments or on
how to combine measurement strategies. Mayrand and Coallier
describe an approach for software product assessment used as part
of an acquisition [14] which combines structural measures with
expert assessments.

Results from the field of software estimation show that expert
assessments mostly outperform the estimation methods based on
attributes of the system to be developed. The reasons for this are
suggested to be that the important variables influencing
development effort are not well established, and that only limited
empirical data is available to calibrate and validate the methods
[11]. The situation is believed to be similar in the area of software
evolution.

3. EVOLVABILITY ASSESSMENT
The state-of-the-art of evolvability of complete software systems
led us to assess the four case systems, hereafter called A, B, C and
D, using a set of structural code measures that had been validated
to correlate with evolvability, and expert assessments. The
assessments are described in more detail in [1].

3.1 Assessment using Structural Measures
Table 1 shows values for LOC (Lines of code) and NOC (Number
of classes) for the four systems, as well as mean values and
standard deviation for the metrics WMC (Weighted methods per
class), OMMIC (Call to methods in unrelated class), and TCC
(Tight class cohesion). Depth of inheritance is not included in as
inheritance was relatively little used in the systems; C did not use
inheritance, while the other systems mostly used only one level of
inheritance The format in the table is mean value/std.

Table 1. Summary statistics for all systems
 A B C D

LOC 7937 14549 7208 8293

NOC 63 162 24 96

WMC 6.9/11.2 7.8/10.3 11.4/12.5 4.9/4.5

OMMIC 7.7/15.8 5.3/11.8 8.6/25 4.7/14.1

TCC 0.26/0.37 0.17/0.31 0.20/0.23 0.11/10.22

The code of the four systems was measured using the complete
set of CK-metrics as well as additional metrics. The measurement
procedure and all the resulting values are described in [3].

The values in Table 1 show that the systems differ a lot with
respect to size, number of classes and how functionality is
distributed over the classes, as can be seen from the large
differences in the values for WMC. Furthermore, the values for
OMMIC and TCC show that the developers of the systems have
chosen to implement different trade-offs with respect to focus on
good coupling values or good cohesion values. There are very few
empirical studies on the effects of these trade-offs in object-
oriented design, and therefore it is difficult to combine the values
of Table 1 into one overall measure of evolvability for each

72

system classes. If we assume that the system with the best class-
level measures is also the most evolvable we get the following
ranking:
• D is assessed as easiest to evolve due to low values and small

standard deviation for size of classes and coupling. However,
the system is the second largest, and has a relatively high
number of classes as well as a low cohesion value.

• A and B are assessed as approximately equally evolvable.
The WMC measure does not separate the systems, as A has
slightly smaller classes than B, but also has a larger standard
deviation indicating a less even design. B has better coupling
values, while A has classes with higher cohesion. B may be
easier to evolve than A due to lower coupling values, but on
the other hand system B is a much larger system.

• C is assessed as the most difficult to evolve due to high
values and large standard deviations for size of classes and
coupling of classes, something that indicates large and
complex classes and an uneven design. The cohesion value is
high, but this is probably much due to the size of the classes.
The fact that it is the smallest system may, however, mean
that it is easier to understand than the other systems.

3.2 Assessments by Experts
The expert assessments were conducted individually by two very
experienced Java consultants. They assessed the code from the
perspective of experienced java-programmers, who are not in
detail familiar with the system. Due to few previous studies on
experts assessment of Java software and few empirical studies on
the effects of object-oriented design principles on evolvability, it
was decided to let the experts chose their own evaluation criteria
based on their experience. Although the two experts did not
communicate in any way, their criteria and conclusions were very
similar. Due to the simplicity of the four systems, the experts
were also asked to attempt to see the consequences of design
decisions in a larger and more long term perspective.

The characteristics of the code that they considered important
with respect to evolvability, and the assessment of the four
systems according to these characteristics are shown in Table 2.
For each of the characteristics the experts commented on whether
it was handled satisfactorily in the system. In Table 2 a
satisfactory solution is indicated by 1 and an unsatisfactory
solution by 0.

Table 2 show that the experts assessed the evolvability of both A
and D to be good. A was assessed as better than D and is
consequently ranked in first place. The experts commented,
however, that the developers of D had implemented a larger
system much because they presumably had started the project
with high ambitions for making a system that would be easy to
extend and evolve. The ambitions had not been fulfilled, resulting
in a low score on some of the characteristics, but D is still likely
to be more evolvable than A if the system is to undergo vary large
changes.

Table 2 also showed that the experts assessed the evolvability of
both B and C as low and much worse than that of systems A and
D. B was assessed as better than C and is consequently ranked in
third place. Again the experts commented that evolvability is
likely to depend on the types of changes that will be required to
the system.

Table 2. Experts’ characteristics and assessments
 A B C D

Choice of classes 1 0 0 1

Design adapted to system 1 0 0 1

Three-layer architecture 1 0 0 1

Good use of components 1 0.5 0 1

Encapsulation 1 0 0 1

Inheritance 1 0.5 0 1

Good use of class libraries 1 0 1 0

Simplicity 1 0 0 0

Naming 1 0 0 0

Comments 1 1 0 1

Appropriate technical platform 1 0 0 1

The design of system B was too complex and comprehensive for
this system, and it may have been more appropriate on a larger
product. The developers of C had not emphasized a good design,
but since the system is small, it may be easy to perform small
change tasks on the system, but larger extensions are not realistic.

Most of the characteristics considered important for the
evolvability of the systems by the experts can not easily be
measured automatically, especially since many of them include
trade-offs that must be made depending on, in particular, the
complexity of the system and the competencies of the developers.

4. CONCLUSION AND FUTURE WORK
The ideal method for assessing the evolvability of a software
system would provide as result a score of evolvability on at least
an ordinal scale ranging for example from very low evolvability
to very high evolvability. The ultimate goal, although probably
not a very realistic one, is a method which also gives an
indication of the economic consequences of the evolvability
score.

This paper has given an overview of existing methods for
evolvability assessments and has presented an empirical study on
the assessment of four functionally equivalent systems. The
results support claims that evolvability assessments should
combine structural measures of the code with expert opinion, but
also that many questions regarding how to assess the evolvability
of software systems remain to be investigated. In particular, more
empirical studies are needed to investigate
• How different characteristics of Java code impact the effort

on evolving the system, including to what extent relations
between structural code measures and evolvability for
individual classes scale to the system level.

• Which characteristics of software systems are considered
important for evolvability by experienced software
developers, including to what extent there is agreement
among experienced developers on the characteristics and on
how they should be assessed for different systems.

• Which qualifications are required to conduct expert
assessments

73

• How can structural measures and expert assessments best be
combined.

The evolvability of a software system depends on much more
than the software code. Consequently, a method for assessing
evolvability will only be applicable to a specific type of systems.
Hence, the results of the empirical studies suggested above must
all be described with details about for what type of system in
terms of programming language and development tools used,
organizational context and developer qualifications etc. they are
valid. The results of the study described in this paper are expected
to be applicable to relatively Java systems and experienced Java
developers who are not familiar with the code.

5. ACKNOWLEDGMENTS
I thank Hans Christian Benestad and Erik Arisholm for assessing
the code using structural code measures. Per Einar Arnstad and
Sindre Mehus are acknowledged for their expert assessments. Dag
Sjøberg is acknowledged for obtaining funding for, and for
organizing, the project in which the four software systems were
developed.

6. REFERENCES
[1] Anda, B. Assessing Software System Maintainability using

Structural Measures and Expert Assesments. Accepted for
publication at the 23rd International Conference on Software
Maintenance, 2007.

[2] AFOTEC Software maintainability evaluation guide.
Department of the Air Force, HQ Air Force Operational Test
and Evaluation Center, 1996.

[3] Benestad, H.C., Anda, B. and Arisholm, E. Assessing
Software Product Maintainability Based on Class-Level
Structural Measures. In Proceedings of the 7th International
Conference on Product-focused Software Process
Improvement (PROFES), edited by Jürgen Münch. Springer-
Verlag, pp. 94-111, 2006.

[4] Briand, L. and Wuest, J. Empirical Studies of Quality
Models in Object-Oriented Systems, Advances in Computers,
Vol. 56, pp. 97-166, 2002.

[5] Briand et al. An Experimental Comparison of the
Maintainability of Object-Oriented and Structured Design
Documents. Empirical Software Engineering, 2(3):291-312,
1997.

[6] Chidamber, S.R. and Kemerer, C.F. A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software
Engineering, 20(6): 476-493, 1994.

[7] Darcy, D. and Kemerer, C.F. OO Metrics in Practice. IEEE
Software, 22(6): 17-19, 2005.

[8] Fowler, M. and Beck, K. Bad smells in code. In:
Refactoring: Improving the design of existing code, 1st ed.,
Addison-Wesley, Boston, pp.75-88, 2000.

[9] Harrison, R., Counsell, S.J., and Nithi, R.V. An Evaluation
of the MOOD Set of Object-Oriented Software Metrics.
IEEE Transactions on Software Engineering, 24(6): 491-
496, 1998.

[10] ISO/IEC. ISO/IEC 9126 Software engineering – Product
quality, 2001.

[11] Jørgensen, M. Estimation of Software Development Work
Effort: Evidence on Expert Judgement and Formal Models.
Accepted for publication in the International Journal of
Forecasting, 2007.

[12] Jørgensen, M. Software quality measurement. Advances in
Engineering Software, 30(12):907-912, 1999.

[13] Kitchenham, B.A. et al. Towards an Ontology of Software
Maintenance. Journal of Software Maintenance: Research
and Practice. Vol. 11, pp. 365-389, 1999.

[14] Mayrand, J. and Coallier, F. System Acquisition Based on
Software Product Assessment. In Proceedings of the 18th
International Conference on Software Engineering
(ICSE’96), pp.210-219, 1996.

[15] Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S.,
Hirschfeld, R. and Jazayeru, M. Challenges in Software
Evolution. In Proceedings of the Eighth International
Workshop on Principles of Software Evolution (IWPSE’05),
pp. 13-22, 2005.

[16] Mäntylä, M.V. and Lassenius, C. Subjective evaluation of
software evolvability using code smells: An empirical study.
Empirical Software Engineering, 11(3):395-431, 2006.

[17] Prechelt, L., Unger, B., Philippsen, M. and Tichy, W. A
controlled experiment on inheritance depth as a cost factor
for software maintenance. The Journal of Systems and
Software, Vol. 65, pp. 115-126, 2003.

[18] Sauro, J. and Kindlund, E. A method to standardize usability
metrics into a single score. In Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM
Press, pp. 401-409, 2005.

[19] Schneiderman, B. Software psychology: human factors in
computer and information systems. Winthrop, Cambridge,
Massachusetts, 1980.

[20] Shepperd, M.J. System architecture metrics for controlling
software maintainability. In Proceedings of the IEE
Colloqium on Software Metrics, April 1-3, 1990.

74

	1. INTRODUCTION
	2. EVOLVABILITY
	3. EVOLVABILITY ASSESSMENT
	The state-of-the-art of evolvability of complete software systems led us to assess the four case systems, hereafter called A, B, C and D, using a set of structural code measures that had been validated to correlate with evolvability, and expert assessments. The assessments are described in more detail in [1].
	3.1 Assessment using Structural Measures

	Table 1 shows values for LOC (Lines of code) and NOC (Number of classes) for the four systems, as well as mean values and standard deviation for the metrics WMC (Weighted methods per class), OMMIC (Call to methods in unrelated class), and TCC (Tight class cohesion). Depth of inheritance is not included in as inheritance was relatively little used in the systems; C did not use inheritance, while the other systems mostly used only one level of inheritance The format in the table is mean value/std.
	3.2 Assessments by Experts

	4. CONCLUSION AND FUTURE WORK
	The ideal method for assessing the evolvability of a software system would provide as result a score of evolvability on at least an ordinal scale ranging for example from very low evolvability to very high evolvability. The ultimate goal, although probably not a very realistic one, is a method which also gives an indication of the economic consequences of the evolvability score.
	5. ACKNOWLEDGMENTS
	6. REFERENCES

