
FeBrUAry 2011 | voL. 54 | No. 2 | communicAtions of tHe Acm 35

V
viewpoints

 Article development led by
 queue.acm.org

get to do via the excellent, and often
slow, find(1) command. Hopefully
they remembered the name of the file
or you’ll get to do multiple searches,
which is never fun. The only thing that
makes this kind of sloppiness worse is
when it is done completely in public, in
open source projects.

Most, if not all, open source projects
allow you to follow them by using one

Kode Vicious
Forest for the Trees
Keeping your source trees in order.

DOI:10.1145/1897816.1897833 George V. Neville-Neil

Dear KV,
I’ve noticed that you comment a great
deal on the cleanliness of people’s
code, comments, version numbers,
and other coding habits, but you’ve
never mentioned one of my pet peeves:
people who can’t seem to name their
source trees correctly. Don’t people
who tell you, “Oh, that file is in ~my-
name/project-foobar” annoy you? I
can’t imagine that they don’t.

frustrated by the trees

Dear frustrated,
There are so many things that frustrate
me—as these columns have pretty
clearly indicated—and so, yes, you are
correct. People who don’t store their
checkouts neatly and in some reason-
able fashion annoy me.

I often think that many program-
mers see their checkouts as they saw
their rooms as children: a private do-
main in which they could do as they
pleased until a parent told them to
clean things up. With the amount of
disk space available to the modern pro-
grammer, and the lack of parental su-
pervision in most workplaces, the time
to “clean your room!” never comes.
Thus, their checkouts grow and accrete
files they call temporary but that really
should have been given a good home,
or removed, long ago.

What happens next is that you’re
in a meeting or talking with said pro-
grammer and you ask, “Hey, where’s
the source data that you made that
graph from?” or “Did you check in that

useful script you wrote last month?”
These people will invariably say, “Oh, I
meant to, but it’s just not that impor-
tant. You can just go copy it from my
tree. It’s somewhere in my home direc-
tory under my-latest-work-17.” “17” is
their attempt at a version number, but
don’t expect them to have any directo-
ries labeled 1 to 16—really, just don’t.
Now you have to find the file, which you G

E
N

E
R

A
T

I
V

E
 I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 L

E
A

N
D

E
R

 H
E

R
Z

O
G

36 communicAtions of tHe Acm | FeBrUAry 2011 | voL. 54 | No. 2

viewpoints

of the current plethora of source-code
control systems to check out their soft-
ware to your local machine. While pro-
viding such a service is a great thing,
providing it poorly is much like set-
ting up a library in the middle of town,
throwing all the books up in the air,
letting them fall where they may, and
then labeling some of them with Post-
it Notes. Though most projects are not
this horrific, I have noticed a tendency
toward several sloppy, and therefore
maddening, practices. I blame this
trend on the recent introduction of dis-
tributed version-control systems, such
as Mercurial and Git.

KV’s first rule of public source-tree
maintenance is to label everything
clearly. Even if you don’t think a tree
will last very long, label it: give it a
meaning that those who are new to
your project can easily understand so
they can figure out if that tree is, in-
deed, of interest to them.

My second rule is to not mix person-
al developer trees with release trees. A
Web page with 100 different possible
checkout targets—and you may laugh,
but I see this on a regular basis—is
not a good way to present your project
to users; nor is it a good way to make
code available. Keeping developer pri-
vate source trees separate from trees
you intend as real releases is a good
way to increase sanity and reduce clut-
ter. If people really need to check out
a developer’s private tree, they’ll likely
find it, though you might help them
along by setting up a page labeled “De-
veloper Trees.”

And lastly, don’t use developer trees
as release trees. If the code in the devel-
oper’s tree is good enough to make a re-
lease, then have the developer check it
in, make a branch, and release it. A de-
veloper who is too lazy to do this should
not be part of a project. No developer is
important or brilliant enough for his or
her tree to be the release tree.

KV

Dear KV,
In my spare time at work I’ve been add-
ing an embedded language to some of
our tools so that other people on my
team could more easily script parts of
their work. After spending a few weeks
doing this, I showed what I had done
to my team, and instead of them all

being happy and welcoming the extra
work, their reactions ran from indif-
ferent to hostile. I even used a popular,
open source, embeddable language,
not something I cooked up on my own.
I made their jobs easier. Why wouldn’t
they be happy?

underappreciated

Dear under,
Are you sure you made their jobs
easier? Are you sure you understand
their jobs? It is a common belief by
engineers that every piece of code they
write is somehow a boon to mankind
and is helping to drive the entire hu-
man race forward, propelling us all
into a brave new world. Another thing
to consider is that most people do not
like surprises, even good ones. Try
this experiment. Take a $20 bill—or if
you’re in Europe a 10-euro note—and
leap into a coworker’s cubicle scream-
ing, “Good morning!!!” at the top of
your lungs and then loudly slap the
bill on the desk. You’ve just given your
coworker money, so surely that co-
worker will be happy to see you. Please
report back your results.

What is more likely is that you found
a need that you, yourself, wished to fill
and you spent some enjoyable time
filling that need. There is nothing
wrong with working to scratch a tech-
nical itch; some of the best innovations
come from engineers doing that. There
is something wrong with believing that
a group of people, who have no idea
what you’ve been doing late at night
for the past month, are suddenly going

to look at whatever you’ve created and
say, “Oh, joy! It’s just what I wanted!”
All but the most obvious of creations
need to be socialized. (Yes, I used so-
cialized in a technical column.)

If you want your idea to be accepted,
you first have to understand whether it
is needed by anyone except yourself.
Doing this by secretly watching your
coworkers and taking notes is a great
way to get yourself put on some sort
of psych watch list with HR, so I sug-
gest you go about it a bit less subtly
than that: by asking them. Ask one or
two people you think would want to
use your new software if they are actu-
ally interested in what you’re thinking
about building. If they say, “No,” that’s
not a reason to stop; it just tells you
that when you’re done, you’ll have to
do a lot more work to get them to see
how great your creation is. Just for the
record, yelling at them in a meeting
and telling them how stupid they are
not to see how clever you are is also a
losing strategy.

Your best bet is to think about a sim-
ple part of your new system that is so
useful, and so incontrovertibly a boon
to their daily lives, that they will im-
mediately find a use for it. Concentrate
on making that useful piece available
to them, and you will likely win them
over. Or, you could just become man-
agement and force them all to do your
bidding. Either way.

KV

 Related articles
 on queue.acm.org

Purpose-Built Languages
Mike Shapiro
http://queue.acm.org/detail.cfm?id=1508217

Broken Builds
Kode Vicious
http://queue.acm.org/detail.cfm?id=1740550

George V. neville-neil (kv@acm.org) is the proprietor of
Neville-Neil Consulting and a member of the ACM Queue
editorial board. He works on networking and operating
systems code for fun and profit, teaches courses on
various programming-related subjects, and encourages
your comments, quips, and code snips pertaining to his
Communications column.

Copyright held by author.

if the code in
the developer’s tree
is good enough
to make a release,
then have the
developer check
it in, make a branch,
and release it.

