
Building Empirical Support for
Automated Code Smell Detection

Jan Schumacher1, Nico Zazworka2, Forrest Shull2,
 Carolyn Seaman2,3, Michele Shaw2

1University of

Applied Sciences
Mannheim
Germany

+49 621 2926224

jan@schuma.eu

2Fraunhofer Center

College Park
MD, USA

+1 240 487 2904

{nzazworka, fshull, mshaw}@fc-
md.umd.edu

3UMBC

Baltimore
MD, USA

+1 410 455 3937

cseaman@umbc.edu

ABSTRACT
Identifying refactoring opportunities in software systems is an
important activity in today’s agile development environments.
The concept of code smells has been proposed to characterize
different types of design shortcomings in code. Additionally,
metric-based detection algorithms claim to identify the “smelly”
components automatically. This paper presents results for an
empirical study performed in a commercial environment. The
study investigates the way professional software developers detect
god class code smells, then compares these results to automatic
classification. The results show that, even though the subjects
perceive detecting god classes as an easy task, the agreement for
the classification is low. Misplaced methods are a strong driver
for letting subjects identify god classes as such. Earlier proposed
metric-based detection approaches performed well compared to
the human classification. These results lead to the conclusion that
an automated metric-based pre-selection decreases the effort spent
on manual code inspections. Automatic detection accompanied by
a manual review increases the overall confidence in the results of
metric-based classifiers.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

General Terms
Measurement, Design, Empirical Study, Verification.

Keywords
Code Smells, God Class, Code Inspection, Maintainability

1. INTRODUCTION
Code smells (first introduced by Fowler and Beck [3]) are an
established concept to classify shortcomings in software that
follows object-oriented design. Each “smell” is an indicator that
points to the violation of object-oriented design principles such as

data abstraction, encapsulation, modularity, and hierarchy.

One of the code smells introduced by Fowler and Beck is the large
class or god class smell. God classes do too much, often have
more than one responsibility, and only delegate minor tasks to
other classes [3] [6]. To ensure that object-oriented software
remains easy to understand and maintainable over time, Fowler
and Beck argued that these classes should therefore be split up
into multiple classes, or else sub-classes should be extracted from
the god class.

Our study aims to improve the understanding how humans utilize
the concept ofcode smells in improving software quality. We
investigate how expert developers detectgod classes and whether
it is a repeatable process (e.g., whether there is agreement among
multiple judges). Based on observations of real developers and
real systems, we can begin to formulate the symptoms that let
humans identify agod class as such.

We use these results to investigate the feasibility of tools for
supporting this process. Fowler's and Beck's intention was that the
detection ofcode smells would be based on human judgment and
intuition. However, researchers (e.g., Marinescu[11]) have also
proposed a metric-based approach for the detection of code
smells.

Furthermore, we investigate whether there are measurable effects
(e.g., greater change frequency) ofgod classes in the software
system that would corroborate Fowler and Beck’s contention that
correcting these symptoms will lead to improvements in software
maintainability.

2. CONTEXT AND RELATED WORK
The term Code Smell was first introduced by Kent Beck and
gained popularity through Fowler's and Beck's book on
refactoring [3]. They describe refactoring as "Improving the
design (of software) after it has been written". This can become
necessary since deadline pressure, strong focus on functionality,
and inexperienced developers can have a negative influence on
the design of a software system.
Ward Cunningham notes that these factors, often present in hasty
software development, may lead to the build-up of what he refers
to as technical-debt [1]. On the one hand it can be tolerable to
build up such debt in order to progress more rapidly in the
development of a product. On the other hand, the debt may reach
a level where the interest paid in the form of code that becomes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’10, September 16-17, 2010, Bolzano-Bozen, Italy.
Copyright 2010 ACM 978-1-4503-0039-01/10/09…$10.00.

hard to understand, and deviations from the design, will outweigh
these short-term benefits. Refactoring can be used to transition the
design of a system that suffers fromtechnical debt into a more
favorable one.
However, there are situations, when it is less obvious where and
what kind of refactoring would improve a certain part of a
software system. Fowler and Beck use the concept of code smells
to help developers identify design flaws in their software [3].
Each code smell has a set of refactoring techniques associated
with it. Strategies for using and evaluating Code Smells can be
grouped into automated, and manual approaches.

2.1 Automatic Detection of Code Smells
The detection of code smells has been described by Fowler and
Beck as a human discipline based on intuition and experience [3].
Lanza and Marinescu argue [6] that the manual detection of code
smells is time consuming, non-repeatable and does not scale. In
conclusion, they propose detection strategies; a metric-based
approach to detectcode smells automatically. In [11]Marinescu
conducts a case study to assess the performance of detection
strategies. He tries to find 10 differentcode smells in a medium
size business application. The suspects that were found using
detection strategies are examined again by humans. Based on their
opinion, the precision of the automatic detection is reported to be
70%. Recall is not calculated. Recent work by Olbrich et al. [14]
also useMarinescu's detection strategies to investigate the
relationship between certaincode smells and an increased
maintainability effort. They report increased maintainability effort
forgod classes.
Munro et al. [13] refine Marinescu's method by suggesting a more
systematic approach. This includes providing empirical evidence
for choosing the software metrics used for the automatic
detection. They also propose new metrics based on the
characteristics and design heuristics associated with thecode
smell. By automatically detecting the lazy class and temporary
field smell in two academic applications (1500LOC and 16000
LOC) Munro et al. determine the performance of their model. For
the smaller of the two software systemscode smells were also
detected manually. Due to the low number of false-positives (high
precision) they conclude their model performed effectively.
Other work by van Emden [2] uses the extracted meta-model of a
software system to detect code smells. She automatically
detectscode smells in software that does automatic facial
recognition as part of a case study. She reports the developers'
feedback to be “generally positive”. The developers also found
the additional visualizations the tool provided “were useful for
conformance checking and refactoring support.”
Mohaet. al[12] designed a comprehensive framework for the
automatic detection ofcode smells. It includes a component for
formally describing acode smell using adomain specific language.
This description is not limited to metrics and is later on used to
automatically generate detection algorithms for thecode smell.
The authors validate their model using the Java framework
Xerces. In addition, to automatic detection, the system was
evaluated by three students on graduate level and two independent
software engineers for the existence of certaincode smells. Based
on these two assessments, Moha et al. report 100% recall and an
average precision above 40%.
In addition, to metric-based detection, Kreimer [4] proposes an
adaptive detection technique that uses manual classification by

developers to train automatic detection algorithms through
machine learning. By doing this he tries to “overcome problems
caused by different perceptions of CS (code smells) by different
developers.” Using a relatively small training set (20 instances),
the accuracy of the model is reported to be between 95% and
100% for the long method and large class smell. Running the
same detection algorithm on 20 sample program locations that
were also evaluated by a human for the existence of the two
smells, Kreimer reports precision to be between 80% and 90%.

2.2 Human Detection of Code Smells
Compared to the approaches for the automatic detection of code
smells, the way they are detected by humans has not been
thoroughly explored. To date, Mäntylä et al. have done the most
comprehensive investigation on human performance of the
classification of code smells. In two publications [9][10], they
investigate the subjective evaluation of code smells using an
empirical study. The study is run in a small software development
company. Mäntylä et al. analyze the effect of demographic
factors, such as experience and capabilities, on the manual
detection ofcode smells. They conclude that demographics, to
some extent, may be used to explain fluctuations in the smell
evaluation. In addition, they investigate if there is agreement on
the existence of code smells in the reviewed software modules
among the judges. Here they report that the conflicting perception
ofcode smells among the developers caused a lack of uniformity
in the smell evaluations. Lastly they try to find correlations
between code smells identified by the subjects and software
metrics. However, no significant correlations were found.
Mäntylä ran two more studies [7][8]using students to review a
purposely poorly programmed small application (1000 NLOC1)
In the first publication [8], Mäntylä et al. examined the inter-rater
agreement for the existence of three method level code smells and
the question if subjects would refactor the method. Agreement
was high for simple code smells like Long Method and Long
Parameter List. For the more complicated Feature Envy code
smell and the refactoring decision, there was significantly lower
agreement. In addition, they tried to find explaining factors for the
above results using a metric-based regression model and
demographic information on the subjects of the study. The
regression model explained about 70% of the code smell
detections. Only 40% of the refactoring decisions could be
explained based on the model.
Mäntylä et al. concluded that metrics and demographics are not
ideal predictors for refactoring decisions. In the second study [7],
they investigated the human rationale behind the refactoring
decisions. They accomplished this by coding the answers they
received and assigning them to different categories. Again, a
regression model was used to determine how well these drivers
explain the refactoring decision. The inter-rater agreement for the
different categories was reported as poor. So the subjects did not
have a uniform opinion as to what kind of issues existed in the
examined methods. The regression model showed that qualitative
data was a valuable explaining factor for the refactoring decision.
Method Length in particular turned out to be the best predictor for
the subjects refactoring decision.

1 Non-commented lines of code

2.3 Summary of Related Work
The work presented above shows that automatic code smell
detection yields reasonable results. Yet, except for Moha, none of
the publications present numbers for the recall rate of their
approach when compared to manual detection. This means that
true-positives, so classes that a human might have considered god
classes, might be missed by the automatic detection. In the
publications covered so far, manual detection ofcode smells plays
a secondary role and was used to assess the performance of an
automatic detection technique. The information on how the
detection was performed by humans is relatively sparse. Only one
author (Mäntylä) reports on this topic.

3. RESEARCH QUESTIONS
We believe the work done by Mäntylä et al., especially their
evaluation of drivers behind refactoring decisions, yields
interesting results. Consequently, we decided to conduct a similar
study where the refactoring decisions made by humans were not
directly evaluated but one of the most prominent reasons for
refactoring identified by Fowler and Beck:large classes orgod
classes. The authors describegod classes as “prime breeding
ground for duplicate code, chaos, and death” [3]. According to
Lanza and Marinescu, a god class is “an aggregation of different
abstractions and (mis)use other classes (often mere data holders)
to perform its functionality” [6].
This leads to the common belief that god classes have a negative
effect on the understandability and evolvability of a software
system. Due to their expansive impact on a software system, god
classes represent a code smell worth examining. Tool supported
detection of god classes has been covered in some of the
publications presented above ([11][13]), there has been no
research on the human perception and performance of detecting
god classes.
Our study builds on and extends Mäntylä's work. It is run in a
professional environment, and the subjects are the actual
developers of the software under review. This is an important
component to the work, since the subjects are familiar with the
software they are reviewing. They know the design decisions that
were made for the software and are aware of the constraints that
existed during the development phase.

3.1 Evaluation of Human Performance
Our research questions focus on evaluating the human
performance and perception of the process of detecting classes
infected by thegod classcode smell in a professional environment.
Answering these questions will help to understand how much
effort is required when using a code review to identify such
smells. Also, it will be shown how high agreement between the
human evaluators can be expected using reviews. In addition, the
characteristics and code issues (expressed by the reviewers) in a
class that are associated with a specific code smell are collected.
R1: How difficult is it for humans to identify god classes and how
much effort does it take?
R2: How well do humans agree on identifying god classes?
R3: What issues in code make humans identify a god class as
such?

3.2 Evaluation of Automated Classifiers
In addition, we evaluate if any of the issues that were used by the
subjects to identify god classes can be linked to metrics used by
automated classifiers. We investigate if we can optimize the

metrics and thresholds used by automatic classifiers based on the
findings from the first set of research questions.
R4: How well do the previously proposed metric based classifiers
perform in terms of precision and recall when compared to human
classification?
R5: How are the identified code issues related to the metric based
classification approach?
R6: Is it possible to improve existing metric based approaches?

3.3 Effects of God Classes on Maintainability
The last research question aims at finding evidence that classes
identified with thegod class smell demand an increased level of
maintainability effort. Such findings would corroborate Fowler
and Beck’s contention that correcting these symptoms can lead to
improvements in the software's maintainability.
R7: Do god classes require a higher maintainability effort than
non-god classes?

4. STUDY DESIGN
4.1 Setting
The study was conducted in a professional environment at a
midsized software development company located in Washington
D.C. Most of the company’s projects are web applications written
in the C# programming language and are based on Microsoft's
ASP.NET framework. Two of the company’songoing projects
(project A and B) were selected as candidates for the study. The
two projects are database-driven web applications that enable the
user to manipulate data through a browser. Both projects are
based on a common architecture that is developed across all the
projects in the company. Moreover, the projects have undergone a
full product lifecycle (elicitation, design, implementation) and
have booth been maintained by the company for more than a year.
Additional characteristics of projects A and B can be found in
Table 1.

4.2 Evaluation of Human Performance
The design of the study was done in an iterative fashion. Three
pilot studies were conducted with computer science students at
graduate (1 student) and undergraduate level (2 students). These
studies helped to identify flaws in the procedure and allowed for a
step-wise refinement of the inspection process used.
A total time of 90 minutes was allotted for the study for each
participant, where the inspection of classes should not take longer
than 75 minutes. The second class and third class were inspected
for project A and project B respectively. This selection
strategywas chosen to assure a widespread of classes over all

Table 1: Project characteristics of the two systems

 Project A Project B

Classes 154 105

Lines of Code* 11264 5676

Avg. LOC / Class 73 55

Developers 2 2

Project History in
SVN

10 months:
1268 revisions

4 months:
645 revisions

* based on the total size of methods in a class, including
blank lines and comments [6].

namespaces of the software system. Additionally, this strategy
ensured an un-biased selection of classes. This means, large
classes were not given preference in order to not automatically
exclude small god classes that might have been detected by the
human subjects.

4.2.1 Description of Subjects
Subject A1 from study A has the role of a programmer and has
been programming using object-oriented languages for more than
three years. Subject A2 is the technical lead of the project and has
been programming for more than 7 years using object-oriented
languages. Both subjects had never heard the termscode smell
orgod class before. Their current refactoring practice included an
ad-hoc process (whenever it becomes necessary) discussed as a
team.
Subject B1 from study B is the technical lead of the project and
has been programming for more than three years in an object-
oriented language. The subject had heard aboutgod classes before.
Subject B2 has been programming in object-oriented languages
for less than a year. The terms code smells and god classes were
new to her. The subjects describe their refactoring approach to be
ad-hoc as well as planned. They decide on refactoring using
software reviews either done by one person or in a team.

4.2.2 Study Procedure
During the study, subjects were first asked to fill out a pre-study
questionnaire. The questionnaire helped to collect background
information such as their role within the company, their
programming experience, their familiarity with code smells and
god classes and their current refactoring approach. Next, the
subjects were introduced to the god classcode smell using a short
presentation2.This was done in such a way that any mention of
software metrics was strictly avoided (e.g., concepts such as

2 The presentation slides can be found in the online lab package.

complexity, cohesion, coupling, etc.). Instead, the introduction
focused on the refactoring techniques used to eliminate such a
problem. A list of questions was compiled to help the subjects
identify god classes:

• Does the class have more than one responsibility?
• Does the class have functionality that would fit better

into other classes?
o By looking at the methods, one could ask: “Is

this the class’ job?”
• Do you have problems summarizing the class’

responsibility in one sentence?
• Would splitting up the class improve the overall design?

For the inspection of classes, a mini-process was designed. This
ensures that all subjects perform the inspection of classes in a
similar fashion.The process consists of the following steps for
each class:

1) Subjects confirm they are familiar with the class. The
pilot studies showed, that subjects have problems
identifying God Classes whenever they had not seen the
code before (when it was written by a different
developer for example). One pilot study subject
indicated that, "I might have tended to classify it as a
God Class when somebody else wrote it, because I
could not fully understand all the design decisions."

2) Classes are opened in an editor for examination. In one
of the pilot studies a subject did not review each class
by looking at the code (because we did not explicitly
instruct them to do so). In that case the classification
was solely based on memory. This step was added to
avoid such a scenario.

3) Classes are reviewed with the questions presented above
in mind.

4) Subjects rate the class on the following scale:
(1) It is not a God Class

Figure 1: Classes (made anonymous) in project B in the Core.Controllers name space visualized by CodeVizard. The life lines of
each class (starting at creation and ending at deletion time) are plotted over time (x-axis). Light coloring indicates that a class is not

a GodClass, dark red that it is a God Class. Grey bars in the lifeline show when the class was modified.The bars in the time ruler
on top show the commit activity by visualizing how many classes were changed per commit (weekly work intervals are visible).

(2) It might be a God Class
(3) It is a God Class

The scale is based on the findings from the pilot studies where
Likert scales with four and five different values were used. It was
hard for subjects to decide on values that were not on the extreme
ends of the scale.
During the entire process, subjects were encouraged to "think-
aloud", thus sharing their thoughts and rationales with the
facilitators of the study. This was also recorded as audio. In
addition, the subjects were asked if the concept of god classes
made sense to them and if they would consider such classes
harmful.

4.2.3 Evaluation of Qualitative Data
Coding was used to categorize the comments collected during the
think-aloud phase from the subjects. To do this, first the audio
recordings were transcribed. For each class that was examined,
the subject's comments were collected in a spreadsheet. Next, the
researchers reviewed the transcripts and created a number of
codes that reflect the issues that were expressed by the subjects
during the study using the methodology described in [16]:

• Class is not used anymore
• Class is highly complex
• Class is misplaced
• Class is special (e.g. a necessary framework class)
• Method is wrongly named
• Method is highly complex
• Method is misplaced
• Attribute is not used
• Method/Class lacks comments

In a second step two researchers assigned the codes independently
to the transcribed data on a class-by-class basis. For each class,
each researcher decided which of the above issues, if any, were
mentioned by a subject during thethink-aloud review of that
particular class. Inter-rater agreement between the two researchers
was calculated using Cohen's Kappa. Kappa is a chance corrected
measure of agreement that is used when two raters judge items on
a binary scale. For the first round of coding Kappa was calculated
to be 85%. According to Landis and Koch [5] this indicates
almost perfect agreement between the judges. Those items the
researchers could not agree on (a total of 12 out of 1664 ratings)
were discussed. This resulted in an agreement of 100%.

4.3 Instrumentation for Evaluation of
Automated Classifiers
We used the results of our human subjects as a way to evaluate a
metrics based approach to god class detection. We encoded this
approach into a software tool (CodeVizard – see Figure 1)
developed by our research group.The tool can automatically mine
data from source code repositories (i.e. Subversion) and visualize
it in various ways. The tool also includes a component that
calculates software metrics for Java programs that was used in

earlier studies [14].The capabilities of this component were
extended to parse C# programs and calculate code metrics for
them. The metrics are based on the definitions presented by Lanza
andMarinescuin [6]. In addition the tool implements Marinescu's
detection strategies [11]for the automatic detection of code smells
(including god classes).

4.3.1 The God Class Detection Strategy
A detection strategy is a logical composition of appropriate code
metrics and corresponding thresholds that automatically detects
design flaws in an application. Lanza and Marinescudefine them
as "the quantifiable expression of a rule by which design
fragments that conform to that rule can be detected in the source
code"[6].
Marinescudefined god classes exhibiting the following
characteristics: (1) high complexity, (2) low cohesion and (3)
extensive access to the data of foreign classes. In conclusion he
uses the following code metrics to capture theses characteristics:
(1) weighted method count (WMC), (2) tight class cohesion
(TCC),and (3) access to foreign data (ATFD). Figure 2illustrates
the structure of the detection strategy for god classes. More details
on the metrics and thresholds can be found in Lanza’s
andMarinescu'sbook on object oriented metrics [6].

4.4 Effects of God Classes on Maintainability
To evaluate if god classes require an increased maintenance effort
and to answer RQ 7, an analysis of the change likelihood for god
classes and non-god classes from the two studies was conducted.
For this, CodeVizard identifies god classes not only for the latest
revision of a class in a repository but also over the complete
history (e.g., all revisions) of that class. It is important to take a
class’ history into account in this context. It would be wrong to
conclude that if a class is a god class in the latest revision it has
been one for all its existence. Figure 1 (a screenshot from
CodeVizard) illustrates the evolution of god classes in project B.
A second issue that needs to be considered for this analysis is the
fact that god classes are usually among the larger classes in a
software system. This is due to their nature of accumulating large
parts of the software's functionality. From a statistical point of
view, a change to the software will more likely manifest itself in a
large class instead of a small class, assuming that changes are
uniformly distributed over all lines of code in the software. To
account for this circumstance one should normalize the change
likelihood by the lines of code (LOC) of a class. In earlier work
by Olbrich et al. [14], it was shown that, without normalizing by
LOC, god classes are changed four to five times as often as non-
god classes.
The change likelihood is computed as follows. For each revision
the number of changed god and non-god classes is determined.
Then, both numbers are divided by the total number of god and
non-god classes existing in the system. Table 2 shows an extract
of the revisions from project A. For example, in revision 1415 one

Table 2: Example change Likelihood for God Classes and
non-God Classes

Revision 1407 1415 1416 1421 1424 Likeli-
hood

GC 0/6 1/6 2/6 0/6 0/6 0.100

N-GC 2/218 2/220 9/219 2/219 2/218 0.015
Figure 2: Detection Strategy for God Classes

out of six (16.6%) god classes was changed and two out of 220
(0.9\%) non god classes were changed.
The change likelihood is then calculated as the average of the
change ratios over all revisions forgod and non-god classes. In
other words, this is the likelihood of one particular god or non-god
class to be changed during one revision. The hypothesis is thatgod
classes have significant higher change likelihood than non-god
classes. Two things need to be taken into consideration: (1) if a
revision does not have any changes to source files (e.g. only
documentation stored in the repository was changed) then the
revision is ignored, and (2) if a system at a revision does not
contain any god classes (e.g. in the beginning of the project) then
this revision is ignored in the average for the god classes.
Normalization by lines of code is done by dividing the values in
Table 2 by the average lines of code of all changed God/non-God
Classes for that revision.

5. RESULTS
In the following section the collected and observed results for the
research questions stated above are presented.

5.1 Evaluation of Human Performance
R1:How difficult is it for humans to identify God Classes and how
much effortdoes it take?
All subjects were able to identify classes they felt weregod
classes. In the follow-up interview to the study, subjects were
directly asked if it was hard for them to detect god classes.
Subject A1 from project A said that, due to her familiarity with
the project under investigation, it was easy. The same subject said
that the classification process became easier after a while. She
explained that the mini-process and its accompanying set of

questions “help you to organize your mind.” Also the fact that she
could follow a plan and the repetitive nature of the classification
process made the review easier after a while.
Subject B2 from project B said that, based on the introduction, she
had no problem understanding what makes a class agod class. The
subject also agreed that classification became easier after a while
and said that “most of the times when I was unsure, was when it
was a class I was unfamiliar with.”
Subject B1 of project B also said that detecting god classes did not
present a difficult task for him. He said in the post-study interview
that, “Going through the classes method by method … there is not
really a way somebody could not do it.”
Concerning the effort required to review a number of classes for
the existence of God Classes we made the findings presented in
Table 3.
R2:How well do humans agree on identifying God Classes?
Table 4and Table 5show the identified god classes for the two
projects. In addition to the subject's classification, the table
contains a column that indicates which namespace the class
belongs to and a classification based on Marinescu's detection
strategy. Classes that were identified as god classes by either the
subjects or the detection strategy are highlighted in the tables.
For the analysis and presentation of results, the two cases, “might
be a god class” and “is a god class”, from the classification scale
were combined into “evidence for god class found”. This is
necessary due to the sparseness of the “is a god class” case.
The first observation that can be drawn from the data is that god
classes were rather rare in the set of inspected classes. In project
A each of the subjects identified only one class as “maybe a god
class” out of 52 inspected classes. Both subjects identified a
different class. Using Cohen's Kappa, an agreement of -2% was
calculated between the two subjects. Based on Landis's and
Koch's[5] interpretation of Kappa, this indicates no agreement
between the two judges. In project B, one subject (subject C)
identified one class as “is a god class” and the second subject
(subject D) identified the same class as “maybe a god class”.

Table 3: Classification Performance of Subjects

subject # classes time taken classes / hour

Subject A 34 73 min ca. 28

Subject B 52 85 min ca. 37

Subject C 53 78 min ca. 40

Subject D 49 65 min ca. 45

Table 4: God Class results for investigated classes from
Project A. God Classes are highlighted

Class Namespace Subj. A Subj. B Mar.

A1, …, A5 Core.Controller no no no

A6 Core.Controller no maybe yes

A7, …, A9 Core.Controller no no no

A10 Core.Controller maybe no yes

A11, ..., A19 Core.Models no no no

A20, ..., A30 Web no no no

A31 Web no no yes

A32, …, A33 Web no no no

A35 Web no no yes

A36, …, A52 Web skipped no no

Table 5: God Class results for investigated classes from
Project B. God Classes are highlighted

Class Namespace Subj. C Subj. D Mar.

B1, ..., B4 Core.Controllers no no no

B5 Core.Controllers yes maybe yes

B6, …, B18 Core.Controllers no no no

B19, …, B35 Core.Models no no no

B36 Core.Properties no skipped no

B37, B38 Core.Utils no no no

B39, B40 Web no no no

B41 Web maybe no yes

B42 Web no maybe yes

B43, …, B45 Web no no no

B46, B47 Web no skipped no

B48, …, B51 Web no no no

Further, each of the subjects marked an additional class as “maybe
a god class”. As in the first project these two classes did not
match. The calculated Kappa is 48% in this case. This number
suggests moderate agreement between the two judges. Due to the
apparent low agreement between the subjects, it is important to
identify the reasoning behind the subjects' classification of god
classes.
R3:What issues in code makes humans identify a God Class as
such?
To answer this question the data obtained through the think-aloud
transcripts from the two studies was used. Table 6 shows the
combined coding results of both studies. The column headings
represent the issues identified through the coding process. In the
rows a distinction is made between god classes and non-god
classes identified by the subjects and by Marinescu's detection
strategy. The numbers in the cells are to be interpreted as follows.
The “special/framework” category includes classes that are
required by the underlying architecture or frameworks that were
used.
For god classes, “X/Y” means out of Y times that someone
identified a god class, X subjects indicated the issue in the same
column to be present. The same applies for non-god classes. For
example, out of six reviews where subjects classified a class as
god class, twice they indicated the class had high complexity.
The row with totals shows that misplaced methods and classes
that are not used anymore are among the most prominent issues
identified by the subjects.
Those classes that were identified as god classes by the subjects
are only linked to a limited number of issues. These are methods
that are misplaced, have the wrong name, or exhibit a high level
of complexity. Among these issues, misplaced method is the most
prominent one. Every time a subject identified agod class, the
subject also indicated that the class contained a misplaced method.
For the remaining 182 times, the subjects classified a class as a
non-god class, they only determined in two cases that the class
contained a misplaced method.
In addition, the agreement on the identified issues between the
subjects for the two studies was calculated using Cohen's Kappa.
Kappa for project A is 37% and 39% for project B. This indicates
”fair agreement” between the subjects [5]. The agreement for
individual issues was calculated as well. For misplaced methods,
the agreement is 46% for project A and 47% for project B. This
results in ``moderate agreement'' between the subjects for the
misplaced method issue.

5.2 Evaluation of Automated Classifiers
R4:How well do the previously proposed metric based classifiers
do compared to human classification?
Table 4 and Table 5 show that all classes that were identified as
god classes by the human subjects, were also detected by
Marinescu's detection strategy. Assuming the classification done
by the human subjects to be the ground-truth, this results in a
recall of 100% for the automatic detection (all god classes were
found). The precision of the detection strategy for god classes is
also successful - Only two additional classes were detected that
were not identified by the humans. This results in a precision
of71%.
R5:How are the identified code issues related to the metric based
classification approach?
In section 4.3.1 it was shown how Marinescu's detection strategy
uses metrics to detect high complexity, low cohesion and
extensive access to the data of foreign classes to automatically
determine whether or not a class is a god class. Only ”methods
that do not belong into a class” could be identified as a strong
driver that let humans classify a class as a god class. This finding
will be further investigated in the discussion section for this
research question.
R6:Is it possible to improve existing metric based approaches
based on the previous findings?
Marinescu's detection strategy detects two additional classes as
god classes that were not identified by the subjects as such. An
improvement in the context of the two studies would be if the
detection strategy would not detect those extra two classes.
When comparing the values for ATFD, TCC and WMC of these
two classes to those of the other god classes the values for ATFD
are relatively low (8, 9) and close to the Detection Strategy’s
minimum threshold for ATFD of 5. For allother god classes the
values for ATFD are higher (14, 55, 29, 38, 28). Increasing the
god class detection strategy's threshold for ATFD to 10 would
result in a precision of 100% for automatic detection.

5.3 Effects of God Classes on Maintainability
R7:Do God Classes require a higher maintainability effort than
non-God Classes?
Table 7 and Table 8 show the results of the change likelihood
analysis, once without and once with normalizing by lines of
code. In Table 7 one can see that in project A there were 421
changes to the software where god classes were present at that

Table 6: Coding for all classes."X/Y" means that out of Y decisions (review of one class by one subject) X times subjects indicated
that the issue in the same column was present.

Class Method Attribute Method/Class

not
used

high
complexity

misplaced special/
framework

wrong
name

high
complexity

misplaced not used lack of
comments

God Classes 0/6 2/6 0/6 0/6 2/6 1/6 6/6 0/6 0/6

Non-God Classes 6/182 4/182 1/182 9/182 1/182 2/182 2/182 1/182 1/182

Total 6/188 6/188 1/188 9/188 3/188 3/188 8/188 1/188 1/188

time. The likelihood of a god class being part of a change was
about 9%. In other words, if a class is a god class then it is
changed in almost every 10th revision.
On the contrary, the chance of a non-god class being part of a
change is only 1.7%. For project B the likelihood is about 19% for
god classes and 2% for non-god classes. To test the results for
statistical significance a Shapiro-Francia test for normality [17]
was first performed (p<0.001) on all datasets. Afterwards a two
tailed, two sample t-test was applied similar to Olbrich's approach
in [14]. Both results are significant when tested with the t-test
(p<0.05). The p-values are given in the last row of the table.
In Table 8 the same numbers are presented after normalizing by
lines of code. One can see that the difference between the
likelihood for project A is small (0.029% for god classes vs.
0.022% for non-god classes}. For project B the likelihood of a
line of code being changed in a god class is almost twice as high
as in a non-god class (0.042% vs. 0.027%). However, both results
are not significant when tested with a two sample t-test (p<0.05).
Therefore, the hypothesis that the likelihood of a change of a line
of code in agod class is significantly higher than in a non-god
class has to be rejected.

6. DISCUSSION
In this section we present answers to our research questions and
compare our findings to the related work mentioned earlier.

6.1 Evaluation of Human Performance
R1:How difficult is it for humans to identify God Classes and how
much effortdoes it take?
The results show that the subjects in the two studies did not find
the task of identifying god classes to be challenging. We believe
that this is in large part due to the way subjects were introduced to
god classes. The introduction, itself, and the identification process
were purposely designed in a way related to the decisions
developers would typically make on their code. For example, the
subjects were not told how god classes violate the paradigm of
high cohesion and loose coupling. Instead, the set of questions
that accompanies the process was designed to relate to their
refactoring activities.
One subject told us after the study that he really liked the
problem-oriented nature of the experiment that focused on a
certain flaw. He said, "I have never done an exercise like this,
where I looked at the [B5] classwith god classes in mind I could
see, how this could definitely be broken up. And I see the benefit
of splitting that up into multiple classes. I have never really
thought about that before, but it is easy to see, once you look at it
in that way."
Another subject told us that he could definitely see how god

classes are harmful. He considered our introduction and the
focused review approach to be very helpful. He said, “It was
good. I think it was a good learning experience.”
R2:How well do humans agree on identifying God Classes?
The results show that the agreement on the identification of god
classes was low among the subjects in the studies. The low
agreement may be due to differing perception of code issues by
different developers. This will be investigated in the discussion of
research question RQ3.
Mäntylä et al. [8] state similar results. They report high agreement
among the subjects for simple code smells like Long Method and
Long Parameter List. For more complicated ones like Feature
Envy they observed low agreement among the judges. When
comparing god classes to these three code smells they clearly fall
into the category with the more complicated ones. Unlike long
method and long parameter list, god classes cannot be identified
by simply counting certain size characteristics.
R3:What issues in code makes humans identify a God Class as
such?
Thesubjects linked the following issues to god classes they
identified: misplaced methods, methods with the wrong name,
methods with high complexity, and classes with high complexity.
Misplaced methods can clearly be identified as the strongest
driver for letting the subjects classify a class as a god class.
Based on this observation it is worthwhile to investigate what
effects a misplaced method can have on a class. If a method is
misplaced, there has to be another class that would serve as a
better container for that method. The most obvious reason for why
a method would better fit into another class is when the method
actually processes data from foreign classes rather than the class
that contains it. The transcripts from the study show examples
where subjects identified such behavior:
"It would make more sense for me to define [this method] in the
ABC class so I am not sure why it is in here. ... I think it would
make more sense for that to go in with the rest of the retrieving
ABC information." Another subject identified the exact same
issue: "In here we have retrievedABC, now this actually should
not be here, this should be in the ABC"
The combination of these observations indicates that the presence
of methods in a class that do not belong there are an indicator for
a lack of cohesion.Mäntylä et al.report in [7]poor inter-rater
agreement for the refactoring drivers that were identified by their
subjects. Based on[5] we determined "fair agreement" between the
subjects. These results might not be directly comparable, since
Mäntylä does not give details on how the agreement was
calculated.

Table 7: Change likelihood for God and non-God Classes
in both projects. N represents the number of changes

 Project A Project B
 God

Classes
Non‐God
Classes

God
Classes

Non‐God
Classes

N 421 534 121 167
mean 0.090 0.017 0.197 0.020
s 0.201 0.041 0.333 0.023
 p‐value: 1.1E‐15 p‐value: 5.0E‐11

Table 8: LOC Normalized change likelihood for God and
non-God Classes for both projects N is the # of changes

 Project A Project B
 God

Classes
Non‐God
Classes

God
Classes

Non‐God
Classes

N 421 534 121 167
mean 0.00029 0.00022 0.00042 0.00027
s 0.00090 0.00068 0.00074 0.00064
 p‐value: 0.192 p‐value: 0.060

6.2 Evaluation of Automated Classifier
R4:How well do the previously proposed metric based classifiers
do compared to human classification?
The results show that Marinescu's detection strategy is effective at
detecting god classes in this case. Using the classification of the
subjects as a reference, recall was 100% and precision 71%.
Related work from Marinescu [11] (70% precision), Moha[12],
(40% precision, 100% recall) and Kreimer[4], (90% precision)
show similar results. A reason for Moha's relatively low precision
might be the fact that her’s is actually the only publication, except
for this study, that also reports recall. The other two studies may
have easily missed some of the code smells that would have been
identified by humans.
Table 4 shows the two classes (A31, A35) that were identified by
the detection strategy but not by the subjects both reside in the
Web namespace of the application. These classes contain the logic
behind the web pages in the application. Each class is directly
associated with one page of the web interface. Usually the
developers placed all the logic that is required by a web page in its
accompanying class.
As a consequence, several of the classes in the Web namespace
have multiple responsibilities and contain a collection of
functionality required by the web page. However, a subject
explained that all functionality for a given web page must go in
the same class. He identified this as a disadvantage of the
underlying architecture used by both applications examined in the
studies. In conclusion, he suggests that the applications “would
definitely benefit from having another layer to go in between
these models and the controllers that handles your business
objects and does preprocessing before you display data on the
pages.” This example shows how the underlying architecture
influences the design in a negative way.
R5:How are the identified code issues related to the metric based
classification approach?
The results show how a lack of cohesion and complexity are
identified as issues that let the human subjects identify a class as a
god class. This corresponds with the use of the weighted method
count metric (WMC) and tight class cohesion metric (TCC) used
by Marinescu to express complexity and cohesion in his detection
strategy for god classes.
In addition to these two metrics, the detection strategy also uses
the access to foreign data metric (ATFD) to express the classes'
degree of coupling to other classes in terms of data usage.
Nevertheless, no issues could be identified during the coding
process that can be associated with this metric or coupling
directly. This might be due to the fact that coupling is difficult to
evaluate in a software review that inspects classes in a file-by-file
fashion. Without a diagram (e.g., a UML class diagram) that
reveals the connections between the components of the software,
the degree of coupling might be hard to assess by human
reviewers.
R6:Is it possible to improve existing metric based approaches?
The results show how increasing the detection strategy's threshold
for the metric access to foreign data (ATFD) to 10 results in a
precision of 100% for the automatic detection of god classes.
Nevertheless, one has to keep in mind that such an adjustment
may result in over-fitting the model to these particular software
systems.

Another finding in this context is the fact that the detection
strategy could be reduced to an evaluation of the class' complexity
(WMC) only. As a reaction to the previous findings ATFD was
removed from the detection strategy. For the remaining metrics
the thresholds were kept the same. For both software projects, the
same god classes were detected. The detection strategy was
further simplified by leaving out the TCC metric. It was still
possible to detect the exact same god classes as before by only
marking the classes with a WMC higher than 47.

6.3 Effects of God Classes on Maintainability
R7:Are God Classes correlated with higher maintainability
effort?
God Classes are indeed, in both systems, changed five to ten times
more often than their counterparts. However, after taking the
increased size of a God Class into account no significant
difference can be found.

7. THREATS TO VALIDITY
The most obvious threats to external validity are the sample size
and scope. The experiment was only run in one company and with
two projects. For each project, only two developers participated
(both projects were 2-person projects). Therefore, it cannot be
concluded that the results will hold in general. Additionally, only
six god classes were found using automatic detection and human
judgment combined. Consequently, this may affect the validity of
the conclusions drawn.
As a threat to internal validity, the instructional material and the
god class classification process might contain potential for biasing
the subjects. However, this thread was minimized by avoiding the
mention of metrics, focusing on concrete refactoring techniques
and using previously presented definitions for god classes.

8. CONCLUSION
The purpose of this thesis was to find empirical support for the
detection of code smells. To do this the approach was divided into
three phases.
First, the human performance of detecting god classes was
investigated. The findings show that the task of finding god
classes in a software system was perceived as not challenging by
the subjects. We conclude that, if provided with a suitable
process, humans can detect code smells in an effective fashion.
Nevertheless, the calculation of Cohen’s Kappa for the
classification by the subjects shows that agreement was low.
Other studies report similar results. The fact that a class contains a
method that would fit better into another class was identified as a
strong driver for whether or not the subjects identified the class as
a god class. Misplaced methods are interpreted as a lack of
cohesion.
Secondly, the performance of automated classifiers was compared
to the human results. Marinescu’s detection strategy for god
classes [11] was run on the same classes that were reviewed by
the subjects. With a recall of 100% and a precision of 71%, the
detection strategy proved effective in this context. Complexity
and cohesion related issues identified by the subjects could be
related to metrics used in Marinescu’s detection strategy.
Adjusting the thresholds of metrics used in the detection strategy
allowed to increase its precision to 100%.
Thirdly, an investigation of the effects of god classes on
maintainability effort did not show in all cases that they require
proportional more maintenance effort.

By conducting our studies in a professional environment,
conclusions can be drawn for real-life software development
projects. Based on the results and observations, a god class centric
review process can be recommended. The results and discussion
on research question RQ1 show how such an issue-focused
perspective helps the developers conduct a software review in an
effective and goal-oriented fashion.
Furthermore, the results for the automatic detection of god classes
show how Marinescu’s detection strategies recall successfully for
the two projects. A computer assisted strategy in which
automatically detected god classes undergo a second human
review can reduce the required effort. The results of the study
increase the overall confidence in the results of automatic code
smell detection.

9. EXPERIMENTAL REPLICATION AND
FUTURE WORK
To facilitate the replication of the study we have created a lab
package available online at www.codevizard.net. The package
includes the questionnaires, introductory material, questions from
the post-study interview,and protocols for the presented studies.
From our point of view, the following variations of the study
would be most interesting to conduct: (a) a variation of the
application type inspected (not web) and (b) a variation of the
kind(s) of Code Smell(s) under investigation.

10. ACKNOWLEDGEMENTS
We would like to thank Kathleen Mullen, Rick Flagg, and our
subjectsfor their valuable feedback.
This research was supported by NSF grant CCF 0916699,
“Measuring and Monitoring Technical Debt “ to the University of
Maryland, Baltimore County.

11. REFERENCES
[1] Cunningham, W. 1993. The WyCash portfolio management

system. SIGPLAN OOPS Mess. 4, 2 (Apr. 1993), 29-30.
[2] E. Van Emden, L. Moonen 2002, Java Quality Assurance by

Detecting Code Smells. Ninth Working Conference on
Reverse Engineering (2002).

[3] Fowler, M., Beck, K. 1999. Refactoring: improving the
design of existing code. Addison Wesley.

[4] Kreimer, J. 2005. Adaptive Detection of Design Flaws,
Electronic Notes in Theoretical Computer Science. Volume
141, Issue 4, Proceedings of the Fifth Workshop on
Language Descriptions, Tools, and Applications (12
December 2005), 117-136.

[5] Landis, J. R., Koch, G. G. 1977. The measurement of
observer agreement for categorical data. Biometrics , 33,
159-74.

[6] Lanza, M., Marinescu, R. 2006. Object-oriented metrics in
practice. Springer

[7] Mäntylä, M. V. and Lassenius, C. 2006. Drivers for software
refactoring decisions. In Proceedings of the 2006 ACM/IEEE
international Symposium on Empirical Software Engineering
(Rio de Janeiro, Brazil, September 21 - 22, 2006). ISESE '06.
ACM, New York, NY, 297-306.

[8] Mäntylä, M. (2005). An experiment on subjective
evolvability evaluation of object-oriented software:
Explaining factors and interrater agreement. In: Proceedings
of the 4th International Symposium on Empirical Software
Engineering (ISESE 2005). Noosa Heads, Queensland,
Australia. 17-18 November 2005, 10 pages.

[9] Mäntylä, M., Vanhanen, J., Lassenius, C. (2004, Sep). Bad
smells - humans as code critics. Software Maintenance,
2004. Proceedings. 20th IEEE International Conference on ,
399-408.

[10] Mäntylä, M., Lassenius, C. (2006). Subjective evaluation of
software evolvability using code smells: An empirical study.
Empirical Software Engineering, Volume 11, Issue 3, 395-
431.

[11] Marinescu, R. 2004. Detection Strategies: Metrics-Based
Rules for Detecting Design Flaws. In Proceedings of the 20th
IEEE international Conference on Software Maintenance
(September 11 - 14, 2004). ICSM. IEEE Computer Society,
Washington, DC, 350-359.

[12] Moha, N., Gueheneuc, Y.-G., Duchien, L., Meur, A.-F. L.
(2010). DECOR: A Method for the Specification and
Detection of Code and Design Smells. Software Engineering,
IEEE Transactions on , 36, 20 -- 36.

[13] Munro, M. J. 2005. Product Metrics for Automatic
Identification of "Bad Smell" Design Problems in Java
Source-Code. In Proceedings of the 11th IEEE international
Software Metrics Symposium (September 19 - 22, 2005).
METRICS. IEEE Computer Society, Washington, DC, 15.

[14] Olbrich, S., Cruzes, D., Basili, V., Zazworka, N. (2009). The
evolution and impact of code smells: A case study of two
open source systems. Empirical Software Engineering and
Measurement, 2009. ESEM 2009. 3rd International
Symposium on , 390-400.

[15] Parnin, C., Görg, C., and Nnadi, O. 2008. A catalogue of
lightweight visualizations to support code smell inspection.
In Proceedings of the 4th ACM Symposium on Software
Visualization (Ammersee, Germany, September 16 - 17,
2008). SoftVis '08. ACM, New York, NY, 77-86.

[16] Seaman, C., "Qualitative Methods," in Shull, F., Singer, J.,
and Sjøberg, D. I. K., (eds.) Guide to Advanced Empirical
Software Engineering, London: Springer, pp. 35-62, 2007.

[17] Thode Jr., H.C.: Testing for Normality. Marcel Dekker, New
York,2002

