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ABSTRACT 
Identifying refactoring opportunities in software systems is an 
important activity in today’s agile development environments. 
The concept of code smells has been proposed to characterize 
different types of design shortcomings in code. Additionally, 
metric-based detection algorithms claim to identify the “smelly” 
components automatically. This paper presents results for an 
empirical study performed in a commercial environment. The 
study investigates the way professional software developers detect 
god class code smells, then compares these results to automatic 
classification. The results show that, even though the subjects 
perceive detecting god classes as an easy task, the agreement for 
the classification is low. Misplaced methods are a strong driver 
for letting subjects identify god classes as such. Earlier proposed 
metric-based detection approaches performed well compared to 
the human classification. These results lead to the conclusion that 
an automated metric-based pre-selection decreases the effort spent 
on manual code inspections. Automatic detection accompanied by 
a manual review increases the overall confidence in the results of 
metric-based classifiers. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics 

General Terms 
Measurement, Design, Empirical Study, Verification. 

Keywords 
Code Smells, God Class, Code Inspection, Maintainability 

1. INTRODUCTION 
Code smells (first introduced by Fowler and Beck [3]) are an 
established concept to classify shortcomings in software that 
follows object-oriented design. Each “smell” is an indicator that 
points to the violation of object-oriented design principles such as 

data abstraction, encapsulation, modularity, and hierarchy. 

One of the code smells introduced by Fowler and Beck is the large 
class or god class smell. God classes do too much, often have 
more than one responsibility, and only delegate minor tasks to 
other classes [3] [6]. To ensure that object-oriented software 
remains easy to understand and maintainable over time, Fowler 
and Beck argued that these classes should therefore be split up 
into multiple classes, or else sub-classes should be extracted from 
the god class. 

Our study aims to improve the understanding how humans utilize 
the concept ofcode smells in improving software quality. We 
investigate how expert developers detectgod classes and whether 
it is a repeatable process (e.g., whether there is agreement among 
multiple judges). Based on observations of real developers and 
real systems, we can begin to formulate the symptoms that let 
humans identify agod class as such. 

We use these results to investigate the feasibility of tools for 
supporting this process. Fowler's and Beck's intention was that the 
detection ofcode smells would be based on human judgment and 
intuition. However, researchers (e.g., Marinescu[11]) have also 
proposed a metric-based approach for the detection of code 
smells.  

Furthermore, we investigate whether there are measurable effects 
(e.g., greater change frequency) ofgod classes in the software 
system that would corroborate Fowler and Beck’s contention that 
correcting these symptoms will lead to improvements in software 
maintainability. 

2. CONTEXT AND RELATED WORK 
The term Code Smell was first introduced by Kent Beck and 
gained popularity through Fowler's and Beck's book on 
refactoring [3]. They describe refactoring as "Improving the 
design (of software) after it has been written". This can become 
necessary since deadline pressure, strong focus on functionality, 
and inexperienced developers can have a negative influence on 
the design of a software system. 
Ward Cunningham notes that these factors, often present in hasty 
software development, may lead to the build-up of what he refers 
to as technical-debt [1]. On the one hand it can be tolerable to 
build up such debt in order to progress more rapidly in the 
development of a product. On the other hand, the debt may reach 
a level where the interest paid in the form of code that becomes 
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hard to understand, and deviations from the design, will outweigh 
these short-term benefits. Refactoring can be used to transition the 
design of a system that suffers fromtechnical debt into a more 
favorable one. 
However, there are situations, when it is less obvious where and 
what kind of refactoring would improve a certain part of a 
software system. Fowler and Beck use the concept of code smells 
to help developers identify design flaws in their software [3]. 
Each code smell has a set of refactoring techniques associated 
with it. Strategies for using and evaluating Code Smells can be 
grouped into automated, and manual approaches. 

2.1 Automatic Detection of Code Smells  
The detection of code smells has been described by Fowler and 
Beck as a human discipline based on intuition and experience [3]. 
Lanza and Marinescu argue [6] that the manual detection of code 
smells is time consuming, non-repeatable and does not scale. In 
conclusion, they propose detection strategies; a metric-based 
approach to detectcode smells automatically. In [11]Marinescu 
conducts a case study to assess the performance of detection 
strategies. He tries to find 10 differentcode smells in a medium 
size business application. The suspects that were found using 
detection strategies are examined again by humans. Based on their 
opinion, the precision of the automatic detection is reported to be 
70%. Recall is not calculated. Recent work by Olbrich et al. [14] 
also useMarinescu's detection strategies to investigate the 
relationship between certaincode smells and an increased 
maintainability effort. They report increased maintainability effort 
forgod classes. 
Munro et al. [13] refine Marinescu's method by suggesting a more 
systematic approach. This includes providing empirical evidence 
for choosing the software metrics used for the automatic 
detection. They also propose new metrics based on the 
characteristics and design heuristics associated with thecode 
smell. By automatically detecting the lazy class and temporary 
field smell in two academic applications (1500LOC and 16000 
LOC) Munro et al. determine the performance of their model. For 
the smaller of the two software systemscode smells were also 
detected manually. Due to the low number of false-positives (high 
precision) they conclude their model performed effectively. 
Other work by van Emden [2] uses the extracted meta-model of a 
software system to detect code smells. She automatically 
detectscode smells in software that does automatic facial 
recognition as part of a case study. She reports the developers' 
feedback to be  “generally positive”. The developers also found 
the additional visualizations the tool provided “were useful for 
conformance checking and refactoring support.” 
Mohaet. al[12] designed a comprehensive framework for the 
automatic detection ofcode smells. It includes a component for 
formally describing acode smell using adomain specific language. 
This description is not limited to metrics and is later on used to 
automatically generate detection algorithms for thecode smell. 
The authors validate their model using the Java framework 
Xerces. In addition, to automatic detection, the system was 
evaluated by three students on graduate level and two independent 
software engineers for the existence of certaincode smells. Based 
on these two assessments, Moha et al. report 100% recall and an 
average precision above 40%. 
In addition, to metric-based detection, Kreimer [4] proposes an 
adaptive detection technique that uses manual classification by 

developers to train automatic detection algorithms through 
machine learning. By doing this he tries to “overcome problems 
caused by different perceptions of CS (code smells) by different 
developers.” Using a relatively small training set (20 instances), 
the accuracy of the model is reported to be between 95% and 
100% for the long method and large class smell. Running the 
same detection algorithm on 20 sample program locations that 
were also evaluated by a human for the existence of the two 
smells, Kreimer reports precision to be between 80% and 90%. 

2.2 Human Detection of Code Smells  
Compared to the approaches for the automatic detection of code 
smells, the way they are detected by humans has not been 
thoroughly explored. To date, Mäntylä et al. have done the most 
comprehensive investigation on human performance of the 
classification of code smells. In two publications [9][10], they 
investigate the subjective evaluation of code smells using an 
empirical study. The study is run in a small software development 
company. Mäntylä et al. analyze the effect of demographic 
factors, such as experience and capabilities, on the manual 
detection ofcode smells. They conclude that demographics, to 
some extent, may be used to explain fluctuations in the smell 
evaluation. In addition, they investigate if there is agreement on 
the existence of code smells in the reviewed software modules 
among the judges. Here they report that the conflicting perception 
ofcode smells among the developers caused a lack of uniformity 
in the smell evaluations. Lastly they try to find correlations 
between code smells identified by the subjects and software 
metrics. However, no significant correlations were found. 
Mäntylä ran two more studies [7][8]using students to review a 
purposely poorly programmed small application (1000 NLOC1) 
In the first publication [8], Mäntylä et al. examined the inter-rater 
agreement for the existence of three method level code smells and 
the question if subjects would refactor the method. Agreement 
was high for simple code smells like Long Method and Long 
Parameter List. For the more complicated Feature Envy code 
smell and the refactoring decision, there was significantly lower 
agreement. In addition, they tried to find explaining factors for the 
above results using a metric-based regression model and 
demographic information on the subjects of the study. The 
regression model explained about 70% of the code smell 
detections. Only 40% of the refactoring decisions could be 
explained based on the model. 
Mäntylä et al. concluded that metrics and demographics are not 
ideal predictors for refactoring decisions. In the second study [7], 
they investigated the human rationale behind the refactoring 
decisions. They accomplished this by coding the answers they 
received and assigning them to different categories. Again, a 
regression model was used to determine how well these drivers 
explain the refactoring decision. The inter-rater agreement for the 
different categories was reported as poor. So the subjects did not 
have a uniform opinion as to what kind of issues existed in the 
examined methods. The regression model showed that qualitative 
data was a valuable explaining factor for the refactoring decision. 
Method Length in particular turned out to be the best predictor for 
the subjects refactoring decision. 
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2.3 Summary of Related Work 
The work presented above shows that automatic code smell 
detection yields reasonable results. Yet, except for Moha, none of 
the publications present numbers for the recall rate of their 
approach when compared to manual detection. This means that 
true-positives, so classes that a human might have considered god 
classes, might be missed by the automatic detection. In the 
publications covered so far, manual detection ofcode smells plays 
a secondary role and was used to assess the performance of an 
automatic detection technique. The information on how the 
detection was performed by humans is relatively sparse. Only one 
author (Mäntylä) reports on this topic. 

3. RESEARCH QUESTIONS 
We believe the work done by Mäntylä et al., especially their 
evaluation of drivers behind refactoring decisions, yields 
interesting results. Consequently, we decided to conduct a similar 
study where the refactoring decisions made by humans were not 
directly evaluated but one of the most prominent reasons for 
refactoring identified by Fowler and Beck:large classes orgod 
classes. The authors describegod classes as “prime breeding 
ground for duplicate code, chaos, and death” [3]. According to 
Lanza and Marinescu, a god class is “an aggregation of different 
abstractions and (mis)use other classes (often mere data holders) 
to perform its functionality” [6]. 
This leads to the common belief that god classes have a negative 
effect on the understandability and evolvability of a software 
system. Due to their expansive impact on a software system, god 
classes represent a code smell worth examining. Tool supported 
detection of god classes has been covered in some of the 
publications presented above ([11][13]), there has been no 
research on the human perception and performance of detecting 
god classes. 
Our study builds on and extends Mäntylä's work. It is run in a 
professional environment, and the subjects are the actual 
developers of the software under review. This is an important 
component to the work, since the subjects are familiar with the 
software they are reviewing. They know the design decisions that 
were made for the software and are aware of the constraints that 
existed during the development phase. 

3.1 Evaluation of Human Performance  
Our research questions focus on evaluating the human 
performance and perception of the process of detecting classes 
infected by thegod classcode smell in a professional environment. 
Answering these questions will help to understand how much 
effort is required when using a code review to identify such 
smells. Also, it will be shown how high agreement between the 
human evaluators can be expected using reviews. In addition, the 
characteristics and code issues (expressed by the reviewers) in a 
class that are associated with a specific code smell are collected. 
R1: How difficult is it for humans to identify god classes and how 
much effort does it take? 
R2: How well do humans agree on identifying god classes? 
R3: What issues in code make humans identify a god class as 
such? 

3.2 Evaluation of Automated Classifiers  
In addition, we evaluate if any of the issues that were used by the 
subjects to identify god classes can be linked to metrics used by 
automated classifiers. We investigate if we can optimize the 

metrics and thresholds used by automatic classifiers based on the 
findings from the first set of research questions. 
R4: How well do the previously proposed metric based classifiers 
perform in terms of precision and recall when compared to human 
classification? 
R5: How are the identified code issues related to the metric based 
classification approach? 
R6: Is it possible to improve existing metric based approaches? 

3.3 Effects of God Classes on Maintainability 
The last research question aims at finding evidence that classes 
identified with thegod class smell demand an increased level of 
maintainability effort. Such findings would corroborate Fowler 
and Beck’s contention that correcting these symptoms can lead to 
improvements in the software's maintainability. 
R7: Do god classes require a higher maintainability effort than 
non-god classes? 

4. STUDY DESIGN 
4.1 Setting  
The study was conducted in a professional environment at a 
midsized software development company located in Washington 
D.C. Most of the company’s projects are web applications written 
in the C# programming language and are based on Microsoft's 
ASP.NET framework. Two of the company’songoing projects 
(project A and B) were selected as candidates for the study. The 
two projects are database-driven web applications that enable the 
user to manipulate data through a browser. Both projects are 
based on a common architecture that is developed across all the 
projects in the company. Moreover, the projects have undergone a 
full product lifecycle (elicitation, design, implementation) and 
have booth been maintained by the company for more than a year. 
Additional characteristics of projects A and B can be found in 
Table 1. 

 

4.2 Evaluation of Human Performance 
The design of the study was done in an iterative fashion. Three 
pilot studies were conducted with computer science students at 
graduate (1 student) and undergraduate level (2 students). These 
studies helped to identify flaws in the procedure and allowed for a 
step-wise refinement of the inspection process used. 
A total time of 90 minutes was allotted for the study for each 
participant, where the inspection of classes should not take longer 
than 75 minutes. The second class and third class were inspected 
for project A and project B respectively. This selection 
strategywas chosen to assure a widespread of classes over all 

Table 1: Project characteristics of the two systems 

 Project A Project B 

# Classes  154  105  

Lines of Code*  11264  5676 

Avg. LOC / Class  73  55  

# Developers  2  2  

Project History in 
SVN 

10 months: 
1268 revisions 

4 months: 
645 revisions 

* based on the total size of methods in a class, including 
blank lines and comments [6]. 



namespaces of the software system. Additionally, this strategy 
ensured an un-biased selection of classes. This means, large 
classes were not given preference in order to not automatically 
exclude small god classes that might have been detected by the 
human subjects. 

4.2.1 Description of Subjects 
Subject A1 from study A has the role of a programmer and has 
been programming using object-oriented languages for more than 
three years. Subject A2 is the technical lead of the project and has 
been programming for more than 7 years using object-oriented 
languages. Both subjects had never heard the termscode smell 
orgod class before. Their current refactoring practice included an 
ad-hoc process (whenever it becomes necessary) discussed as a 
team. 
Subject B1 from study B is the technical lead of the project and 
has been programming for more than three years in an object-
oriented language. The subject had heard aboutgod classes before. 
Subject B2 has been programming in object-oriented languages 
for less than a year. The terms code smells and god classes were 
new to her. The subjects describe their refactoring approach to be 
ad-hoc as well as planned. They decide on refactoring using 
software reviews either done by one person or in a team. 

4.2.2 Study Procedure 
During the study, subjects were first asked to fill out a pre-study 
questionnaire. The questionnaire helped to collect background 
information such as their role within the company, their 
programming experience, their familiarity with code smells and 
god classes and their current refactoring approach. Next, the 
subjects were introduced to the god classcode smell using a short 
presentation2.This was done in such a way that any mention of 
software metrics was strictly avoided (e.g., concepts such as 

                                                                 
2 The presentation slides can be found in the online lab package. 

complexity, cohesion, coupling, etc.). Instead, the introduction 
focused on the refactoring techniques used to eliminate such a 
problem. A list of questions was compiled to help the subjects 
identify god classes: 

• Does the class have more than one responsibility? 
• Does the class have functionality that would fit better 

into other classes? 
o By looking at the methods, one could ask: “Is 

this the class’ job?” 
• Do you have problems summarizing the class’ 

responsibility in one sentence? 
• Would splitting up the class improve the overall design? 

For the inspection of classes, a mini-process was designed. This 
ensures that all subjects perform the inspection of classes in a 
similar fashion.The process consists of the following steps for 
each class: 

1) Subjects confirm they are familiar with the class. The 
pilot studies showed, that subjects have problems 
identifying God Classes whenever they had not seen the 
code before (when it was written by a different 
developer for example). One pilot study subject 
indicated that, "I might have tended to classify it as a 
God Class when somebody else wrote it, because I 
could not fully understand all the design decisions." 

2) Classes are opened in an editor for examination. In one 
of the pilot studies a subject did not review each class 
by looking at the code (because we did not explicitly 
instruct them to do so). In that case the classification 
was solely based on memory. This step was added to 
avoid such a scenario. 

3) Classes are reviewed with the questions presented above 
in mind. 

4) Subjects rate the class on the following scale: 
(1) It is not a God Class 

Figure 1: Classes (made anonymous) in project B in the Core.Controllers name space visualized by CodeVizard. The life lines of 
each class (starting at creation and ending at deletion time) are plotted over time (x-axis). Light coloring indicates that a class is not

a GodClass, dark red that it is a God Class. Grey bars in the lifeline show when the class was modified.The bars in the time ruler 
on top show the commit activity by visualizing how many classes were changed per commit (weekly work intervals are visible). 



(2) It might be a God Class 
(3) It is a God Class 

The scale is based on the findings from the pilot studies where 
Likert scales with four and five different values were used. It was 
hard for subjects to decide on values that were not on the extreme 
ends of the scale. 
During the entire process, subjects were encouraged to "think-
aloud", thus sharing their thoughts and rationales with the 
facilitators of the study. This was also recorded as audio. In 
addition, the subjects were asked if the concept of god classes 
made sense to them and if they would consider such classes 
harmful. 

4.2.3 Evaluation of Qualitative Data  
Coding was used to categorize the comments collected during the 
think-aloud phase from the subjects. To do this, first the audio 
recordings were transcribed. For each class that was examined, 
the subject's comments were collected in a spreadsheet. Next, the 
researchers reviewed the transcripts and created a number of 
codes that reflect the issues that were expressed by the subjects 
during the study using the methodology described in [16]: 

• Class is not used anymore 
• Class is highly complex 
• Class is misplaced 
• Class is special (e.g. a necessary framework class) 
• Method is wrongly named 
• Method is highly complex 
• Method is misplaced 
• Attribute is not used 
• Method/Class lacks comments 

In a second step two researchers assigned the codes independently 
to the transcribed data on a class-by-class basis. For each class, 
each researcher decided which of the above issues, if any, were 
mentioned by a subject during thethink-aloud review of that 
particular class. Inter-rater agreement between the two researchers 
was calculated using Cohen's Kappa. Kappa is a chance corrected 
measure of agreement that is used when two raters judge items on 
a binary scale. For the first round of coding Kappa was calculated 
to be 85%. According to Landis and Koch [5] this indicates 
almost perfect agreement between the judges. Those items the 
researchers could not agree on (a total of 12 out of 1664 ratings) 
were discussed. This resulted in an agreement of 100%. 

4.3 Instrumentation for Evaluation of 
Automated Classifiers 
We used the results of our human subjects as a way to evaluate a 
metrics based approach to god class detection. We encoded this 
approach into a software tool (CodeVizard – see Figure 1) 
developed by our research group.The tool can automatically mine 
data from source code repositories (i.e. Subversion) and visualize 
it in various ways. The tool also includes a component that 
calculates software metrics for Java programs that was used in 

earlier studies [14].The capabilities of this component were 
extended to parse C# programs and calculate code metrics for 
them. The metrics are based on the definitions presented by Lanza 
andMarinescuin [6]. In addition the tool implements Marinescu's 
detection strategies [11]for the automatic detection of code smells 
(including god classes). 

4.3.1 The God Class Detection Strategy 
A detection strategy is a logical composition of appropriate code 
metrics and corresponding thresholds that automatically detects 
design flaws in an application. Lanza and Marinescudefine them 
as "the quantifiable expression of a rule by which design 
fragments that conform to that rule can be detected in the source 
code"[6]. 
Marinescudefined god classes exhibiting the following 
characteristics: (1) high complexity, (2) low cohesion and (3) 
extensive access to the data of foreign classes. In conclusion he 
uses the following code metrics to capture theses characteristics: 
(1) weighted method count (WMC), (2) tight class cohesion 
(TCC),and (3) access to foreign data (ATFD). Figure 2illustrates 
the structure of the detection strategy for god classes. More details 
on the metrics and thresholds can be found in Lanza’s 
andMarinescu'sbook on object oriented metrics [6]. 

4.4 Effects of God Classes on Maintainability 
To evaluate if god classes require an increased maintenance effort 
and to answer RQ 7, an analysis of the change likelihood for god 
classes and non-god classes from the two studies was conducted. 
For this, CodeVizard identifies god classes not only for the latest 
revision of a class in a repository but also over the complete 
history (e.g., all revisions) of that class. It is important to take a 
class’ history into account in this context. It would be wrong to 
conclude that if a class is a god class in the latest revision it has 
been one for all its existence. Figure 1 (a screenshot from 
CodeVizard) illustrates the evolution of god classes in project B. 
A second issue that needs to be considered for this analysis is the 
fact that god classes are usually among the larger classes in a 
software system. This is due to their nature of accumulating large 
parts of the software's functionality. From a statistical point of 
view, a change to the software will more likely manifest itself in a 
large class instead of a small class, assuming that changes are 
uniformly distributed over all lines of code in the software. To 
account for this circumstance one should normalize the change 
likelihood by the lines of code (LOC) of a class. In earlier work 
by Olbrich et al. [14], it was shown that, without normalizing by 
LOC, god classes are changed four to five times as often as non-
god classes. 
The change likelihood is computed as follows. For each revision 
the number of changed god and non-god classes is determined. 
Then, both numbers are divided by the total number of god and 
non-god classes existing in the system. Table 2 shows an extract 
of the revisions from project A. For example, in revision 1415 one 

Table 2: Example change Likelihood for God Classes and 
non-God Classes 

Revision 1407 1415 1416 1421 1424 Likeli-
hood 

GC 0/6 1/6 2/6 0/6 0/6 0.100 

N-GC 2/218 2/220 9/219 2/219 2/218 0.015  
Figure 2: Detection Strategy for God Classes 



out of six (16.6%) god classes was changed and two out of 220 
(0.9\%) non god classes were changed. 
The change likelihood is then calculated as the average of the 
change ratios over all revisions forgod and non-god classes. In 
other words, this is the likelihood of one particular god or non-god 
class to be changed during one revision. The hypothesis is thatgod 
classes have significant higher change likelihood than non-god 
classes. Two things need to be taken into consideration: (1) if a 
revision does not have any changes to source files (e.g. only 
documentation stored in the repository was changed) then the 
revision is ignored, and (2) if a system at a revision does not 
contain any god classes (e.g. in the beginning of the project) then 
this revision is ignored in the average for the god classes.  
Normalization by lines of code is done by dividing the values in 
Table 2 by the average lines of code of all changed God/non-God 
Classes for that revision. 

5. RESULTS 
In the following section the collected and observed results for the 
research questions stated above are presented. 

5.1 Evaluation of Human Performance 
R1:How difficult is it for humans to identify God Classes and how 
much effortdoes it take? 
All subjects were able to identify classes they felt weregod 
classes. In the follow-up interview to the study, subjects were 
directly asked if it was hard for them to detect god classes. 
Subject A1 from project A said that, due to her familiarity with 
the project under investigation, it was easy. The same subject said 
that the classification process became easier after a while. She 
explained that the mini-process and its accompanying set of 

questions “help you to organize your mind.” Also the fact that she 
could follow a plan and the repetitive nature of the classification 
process made the review easier after a while. 
Subject B2 from project B said that, based on the introduction, she 
had no problem understanding what makes a class agod class. The 
subject also agreed that classification became easier after a while 
and said that “most of the times when I was unsure, was when it 
was a class I was unfamiliar with.” 
Subject B1 of project B also said that detecting god classes did not 
present a difficult task for him. He said in the post-study interview 
that, “Going through the classes method by method … there is not 
really a way somebody could not do it.” 
Concerning the effort required to review a number of classes for 
the existence of God Classes we made the findings presented in 
Table 3. 
R2:How well do humans agree on identifying God Classes? 
Table 4and Table 5show the identified god classes for the two 
projects. In addition to the subject's classification, the table 
contains a column that indicates which namespace the class 
belongs to and a classification based on Marinescu's detection 
strategy. Classes that were identified as god classes by either the 
subjects or the detection strategy are highlighted in the tables. 
For the analysis and presentation of results, the two cases, “might 
be a god class” and “is a god class”, from the classification scale 
were combined into “evidence for god class found”. This is 
necessary due to the sparseness of the “is a god class” case. 
The first observation that can be drawn from the data is that god 
classes were rather rare in the set of inspected classes. In project 
A each of the subjects identified only one class as “maybe a god 
class” out of 52 inspected classes. Both subjects identified a 
different class. Using Cohen's Kappa, an agreement of -2% was 
calculated between the two subjects. Based on Landis's and 
Koch's[5] interpretation of Kappa, this indicates no agreement 
between the two judges. In project B, one subject (subject C) 
identified one class as “is a god class” and the second subject 
(subject D) identified the same class as “maybe a god class”. 

Table 3: Classification Performance of Subjects 

subject # classes time taken  classes / hour 

Subject A  34  73 min  ca. 28  

Subject B  52  85 min  ca. 37  

Subject C  53  78 min  ca. 40  

Subject D  49  65 min  ca. 45  

Table 4: God Class results for investigated classes from 
Project A. God Classes are highlighted 

Class Namespace  Subj. A  Subj. B Mar. 

A1, …, A5  Core.Controller no no no 

A6  Core.Controller no maybe yes 

A7, …, A9  Core.Controller no no no 

A10  Core.Controller maybe no yes 

A11, ..., A19  Core.Models no no no 

A20, ..., A30  Web  no no no 

A31  Web  no no yes 

A32, …, A33  Web  no no no 

A35  Web  no no yes 

A36, …, A52 Web  skipped no no 
 

Table 5: God Class results for investigated classes from 
Project B. God Classes are highlighted 

Class  Namespace  Subj. C  Subj. D Mar. 

B1, ..., B4  Core.Controllers no no no 

B5  Core.Controllers yes maybe yes 

B6, …, B18  Core.Controllers no no no 

B19, …, B35  Core.Models no no no 

B36  Core.Properties no skipped no 

B37, B38  Core.Utils no no no 

B39, B40  Web  no no no 

B41  Web  maybe no yes 

B42  Web  no maybe yes 

B43, …, B45  Web  no no no 

B46, B47  Web  no skipped no 

B48, …, B51  Web  no no no 
 



Further, each of the subjects marked an additional class as “maybe 
a god class”. As in the first project these two classes did not 
match. The calculated Kappa is 48% in this case. This number 
suggests moderate agreement between the two judges. Due to the 
apparent low agreement between the subjects, it is important to 
identify the reasoning behind the subjects' classification of god 
classes. 
R3:What issues in code makes humans identify a God Class as 
such? 
To answer this question the data obtained through the think-aloud 
transcripts from the two studies was used. Table 6 shows the 
combined coding results of both studies. The column headings 
represent the issues identified through the coding process. In the 
rows a distinction is made between god classes and non-god 
classes identified by the subjects and by Marinescu's detection 
strategy. The numbers in the cells are to be interpreted as follows. 
The “special/framework” category includes classes that are 
required by the underlying architecture or frameworks that were 
used. 
For god classes, “X/Y” means out of Y times that someone 
identified a god class, X subjects indicated the issue in the same 
column to be present. The same applies for non-god classes. For 
example, out of six reviews where subjects classified a class as 
god class, twice they indicated the class had high complexity. 
The row with totals shows that misplaced methods and classes 
that are not used anymore are among the most prominent issues 
identified by the subjects. 
Those classes that were identified as god classes by the subjects 
are only linked to a limited number of issues. These are methods 
that are misplaced, have the wrong name, or exhibit a high level 
of complexity. Among these issues, misplaced method is the most 
prominent one. Every time a subject identified agod class, the 
subject also indicated that the class contained a misplaced method. 
For the remaining 182 times, the subjects classified a class as a 
non-god class, they only determined in two cases that the class 
contained a misplaced method. 
In addition, the agreement on the identified issues between the 
subjects for the two studies was calculated using Cohen's Kappa. 
Kappa for project A is 37% and 39% for project B. This indicates 
”fair agreement” between the subjects [5]. The agreement for 
individual issues was calculated as well.  For misplaced methods, 
the agreement is 46% for project A and 47% for project B. This 
results in ``moderate agreement'' between the subjects for the 
misplaced method issue.  

5.2 Evaluation of Automated Classifiers  
R4:How well do the previously proposed metric based classifiers 
do compared to human classification? 
Table 4 and Table 5 show that all classes that were identified as 
god classes by the human subjects, were also detected by 
Marinescu's detection strategy. Assuming the classification done 
by the human subjects to be the ground-truth, this results in a 
recall of 100% for the automatic detection (all god classes were 
found). The precision of the detection strategy for god classes is 
also successful - Only two additional classes were detected that 
were not identified by the humans. This results in a precision 
of71%.  
R5:How are the identified code issues related to the metric based 
classification approach? 
In section 4.3.1 it was shown how Marinescu's detection strategy 
uses metrics to detect high complexity, low cohesion and 
extensive access to the data of foreign classes to automatically 
determine whether or not a class is a god class. Only ”methods 
that do not belong into a class” could be identified as a strong 
driver that let humans classify a class as a god class. This finding 
will be further investigated in the discussion section for this 
research question. 
R6:Is it possible to improve existing metric based approaches 
based on the previous findings? 
Marinescu's detection strategy detects two additional classes as 
god classes that were not identified by the subjects as such. An 
improvement in the context of the two studies would be if the 
detection strategy would not detect those extra two classes. 
When comparing the values for ATFD, TCC and WMC of these 
two classes to those of the other god classes the values for ATFD 
are relatively low (8, 9) and close to the Detection Strategy’s 
minimum threshold for ATFD of 5. For allother god classes the 
values for ATFD are higher (14, 55, 29, 38, 28). Increasing the 
god class detection strategy's threshold for ATFD to 10 would 
result in a precision of 100% for automatic detection. 

5.3 Effects of God Classes on Maintainability 
R7:Do God Classes require a higher maintainability effort than 
non-God Classes? 
Table 7 and Table 8 show the results of the change likelihood 
analysis, once without and once with normalizing by lines of 
code. In Table 7 one can see that in project A there were 421 
changes to the software where god classes were present at that 

Table 6: Coding for all classes."X/Y" means that out of Y decisions (review of one class by one subject) X times subjects indicated 
that the issue in the same column was present. 

Class  Method  Attribute Method/Class 
 

not 
used  

high 
complexity  

misplaced special/ 
framework  

wrong 
name  

high 
complexity  

misplaced not used  lack of 
comments  

God Classes  0/6 2/6 0/6 0/6 2/6 1/6 6/6 0/6 0/6 

Non-God Classes 6/182 4/182 1/182 9/182 1/182 2/182 2/182 1/182 1/182 

Total  6/188 6/188 1/188 9/188 3/188 3/188 8/188 1/188 1/188 



time. The likelihood of a god class being part of a change was 
about 9%. In other words, if a class is a god class then it is 
changed in almost every 10th revision. 
On the contrary, the chance of a non-god class being part of a 
change is only 1.7%. For project B the likelihood is about 19% for 
god classes and 2% for non-god classes. To test the results for 
statistical significance a Shapiro-Francia test for normality [17] 
was first performed (p<0.001) on all datasets. Afterwards a two 
tailed, two sample t-test was applied similar to Olbrich's approach 
in [14]. Both results are significant when tested with the t-test 
(p<0.05). The p-values are given in the last row of the table. 
In Table 8 the same numbers are presented after normalizing by 
lines of code. One can see that the difference between the 
likelihood for project A is small (0.029% for god classes vs. 
0.022% for non-god classes}. For project B the likelihood of a 
line of code being changed in a god class is almost twice as high 
as in a non-god class (0.042% vs. 0.027%). However, both results 
are not significant when tested with a two sample t-test (p<0.05). 
Therefore, the hypothesis that the likelihood of a change of a line 
of code in agod class is significantly higher than in a non-god 
class has to be rejected. 

6. DISCUSSION 
In this section we present answers to our research questions and 
compare our findings to the related work mentioned earlier. 

6.1 Evaluation of Human Performance  
R1:How difficult is it for humans to identify God Classes and how 
much effortdoes it take? 
The results show that the subjects in the two studies did not find 
the task of identifying god classes to be challenging. We believe 
that this is in large part due to the way subjects were introduced to 
god classes. The introduction, itself, and the identification process 
were purposely designed in a way related to the decisions 
developers would typically make on their code. For example, the 
subjects were not told how god classes violate the paradigm of 
high cohesion and loose coupling. Instead, the set of questions 
that accompanies the process was designed to relate to their 
refactoring activities. 
One subject told us after the study that he really liked the 
problem-oriented nature of the experiment that focused on a 
certain flaw. He said, "I have never done an exercise like this, 
where I looked at the [B5] classwith god classes in mind I could 
see, how this could definitely be broken up. And I see the benefit 
of splitting that up into multiple classes. I have never really 
thought about that before, but it is easy to see, once you look at it 
in that way." 
Another subject told us that he could definitely see how god 

classes are harmful. He considered our introduction and the 
focused review approach to be very helpful. He said, “It was 
good. I think it was a good learning experience.”  
R2:How well do humans agree on identifying God Classes? 
The results show that the agreement on the identification of god 
classes was low among the subjects in the studies. The low 
agreement may be due to differing perception of code issues by 
different developers. This will be investigated in the discussion of 
research question RQ3. 
Mäntylä et al. [8] state similar results. They report high agreement 
among the subjects for simple code smells like Long Method and 
Long Parameter List. For more complicated ones like Feature 
Envy they observed low agreement among the judges. When 
comparing god classes to these three code smells they clearly fall 
into the category with the more complicated ones. Unlike long 
method and long parameter list, god classes cannot be identified 
by simply counting certain size characteristics. 
R3:What issues in code makes humans identify a God Class as 
such? 
Thesubjects linked the following issues to god classes they 
identified: misplaced methods, methods with the wrong name, 
methods with high complexity, and classes with high complexity. 
Misplaced methods can clearly be identified as the strongest 
driver for letting the subjects classify a class as a god class. 
Based on this observation it is worthwhile to investigate what 
effects a misplaced method can have on a class. If a method is 
misplaced, there has to be another class that would serve as a 
better container for that method. The most obvious reason for why 
a method would better fit into another class is when the method 
actually processes data from foreign classes rather than the class 
that contains it. The transcripts from the study show examples 
where subjects identified such behavior: 
"It would make more sense for me to define [this method] in the 
ABC class so I am not sure why it is in here. ... I think it would 
make more sense for that to go in with the rest of the retrieving 
ABC information." Another subject identified the exact same 
issue: "In here we have retrievedABC, now this actually should 
not be here, this should be in the ABC" 
The combination of these observations indicates that the presence 
of methods in a class that do not belong there are an indicator for 
a lack of cohesion.Mäntylä et al.report in [7]poor inter-rater 
agreement for the refactoring drivers that were identified by their 
subjects. Based on[5] we determined "fair agreement" between the 
subjects. These results might not be directly comparable, since 
Mäntylä does not give details on how the agreement was 
calculated. 

Table 7: Change likelihood for God and non-God Classes 
in both projects. N represents the number of changes 

  Project A  Project B 
  God 

Classes 
Non‐God 
Classes 

God 
Classes 

Non‐God 
Classes 

N  421  534  121  167 
mean  0.090  0.017  0.197  0.020 
s  0.201  0.041  0.333  0.023 
  p‐value: 1.1E‐15  p‐value: 5.0E‐11 

Table 8: LOC Normalized change likelihood for God and 
non-God Classes for both projects N is the # of changes 

  Project A  Project B 
  God 

Classes 
Non‐God 
Classes 

God 
Classes 

Non‐God 
Classes 

N  421  534  121  167 
mean  0.00029  0.00022  0.00042  0.00027 
s  0.00090  0.00068  0.00074  0.00064 
  p‐value: 0.192  p‐value: 0.060 



6.2 Evaluation of Automated Classifier  
R4:How well do the previously proposed metric based classifiers 
do compared to human classification? 
The results show that Marinescu's detection strategy is effective at 
detecting god classes in this case. Using the classification of the 
subjects as a reference, recall was 100% and precision 71%. 
Related work from Marinescu [11] (70% precision), Moha[12], 
(40% precision, 100% recall) and Kreimer[4], (90% precision) 
show similar results. A reason for Moha's relatively low precision 
might be the fact that her’s is actually the only publication, except 
for this study, that also reports recall. The other two studies may 
have easily missed some of the code smells that would have been 
identified by humans. 
Table 4 shows the two classes (A31, A35) that were identified by 
the detection strategy but not by the subjects both reside in the 
Web namespace of the application. These classes contain the logic 
behind the web pages in the application. Each class is directly 
associated with one page of the web interface. Usually the 
developers placed all the logic that is required by a web page in its 
accompanying class.  
As a consequence, several of the classes in the Web namespace 
have multiple responsibilities and contain a collection of 
functionality required by the web page.  However, a subject 
explained that all functionality for a given web page must go in 
the same class. He identified this as a disadvantage of the 
underlying architecture used by both applications examined in the 
studies. In conclusion, he suggests that the applications “would 
definitely benefit from having another layer to go in between 
these models and the controllers that handles your business 
objects and does preprocessing before you display data on the 
pages.” This example shows how the underlying architecture 
influences the design in a negative way. 
R5:How are the identified code issues related to the metric based 
classification approach? 
The results show how a lack of cohesion and complexity are 
identified as issues that let the human subjects identify a class as a 
god class. This corresponds with the use of the weighted method 
count metric (WMC) and tight class cohesion metric (TCC) used 
by Marinescu to express complexity and cohesion in his detection 
strategy for god classes. 
In addition to these two metrics, the detection strategy also uses 
the access to foreign data metric (ATFD) to express the classes' 
degree of coupling to other classes in terms of data usage. 
Nevertheless, no issues could be identified during the coding 
process that can be associated with this metric or coupling 
directly. This might be due to the fact that coupling is difficult to 
evaluate in a software review that inspects classes in a file-by-file 
fashion. Without a diagram (e.g., a UML class diagram) that 
reveals the connections between the components of the software, 
the degree of coupling might be hard to assess by human 
reviewers. 
R6:Is it possible to improve existing metric based approaches? 
The results show how increasing the detection strategy's threshold 
for the metric access to foreign data (ATFD) to 10 results in a 
precision of 100% for the automatic detection of god classes. 
Nevertheless, one has to keep in mind that such an adjustment 
may result in over-fitting the model to these particular software 
systems. 

Another finding in this context is the fact that the detection 
strategy could be reduced to an evaluation of the class' complexity 
(WMC) only. As a reaction to the previous findings ATFD was 
removed from the detection strategy. For the remaining metrics 
the thresholds were kept the same. For both software projects, the 
same god classes were detected. The detection strategy was 
further simplified by leaving out the TCC metric. It was still 
possible to detect the exact same god classes as before by only 
marking the classes with a WMC higher than 47. 

6.3 Effects of God Classes on Maintainability 
R7:Are God Classes correlated with higher maintainability 
effort? 
God Classes are indeed, in both systems, changed five to ten times 
more often than their counterparts. However, after taking the 
increased size of a God Class into account no significant 
difference can be found.  

7. THREATS TO VALIDITY 
The most obvious threats to external validity are the sample size 
and scope. The experiment was only run in one company and with 
two projects. For each project, only two developers participated 
(both projects were 2-person projects). Therefore, it cannot be 
concluded that the results will hold in general. Additionally, only 
six god classes were found using automatic detection and human 
judgment combined. Consequently, this may affect the validity of 
the conclusions drawn. 
As a threat to internal validity, the instructional material and the 
god class classification process might contain potential for biasing 
the subjects. However, this thread was minimized by avoiding the 
mention of metrics, focusing on concrete refactoring techniques 
and using previously presented definitions for god classes.  

8. CONCLUSION 
The purpose of this thesis was to find empirical support for the 
detection of code smells. To do this the approach was divided into 
three phases.  
First, the human performance of detecting god classes was 
investigated. The findings show that the task of finding god 
classes in a software system was perceived as not challenging by 
the subjects. We conclude that, if provided with a suitable 
process, humans can detect code smells in an effective fashion. 
Nevertheless, the calculation of Cohen’s Kappa for the 
classification by the subjects shows that agreement was low. 
Other studies report similar results. The fact that a class contains a 
method that would fit better into another class was identified as a 
strong driver for whether or not the subjects identified the class as 
a god class. Misplaced methods are interpreted as a lack of 
cohesion. 
Secondly, the performance of automated classifiers was compared 
to the human results. Marinescu’s detection strategy for god 
classes [11] was run on the same classes that were reviewed by 
the subjects. With a recall of 100% and a precision of 71%, the 
detection strategy proved effective in this context. Complexity 
and cohesion related issues identified by the subjects could be 
related to metrics used in Marinescu’s detection strategy. 
Adjusting the thresholds of metrics used in the detection strategy 
allowed to increase its precision to 100%. 
Thirdly, an investigation of the effects of god classes on 
maintainability effort did not show in all cases that they require 
proportional more maintenance effort. 



By conducting our studies in a professional environment, 
conclusions can be drawn for real-life software development 
projects. Based on the results and observations, a god class centric 
review process can be recommended. The results and discussion 
on research question RQ1 show how such an issue-focused 
perspective helps the developers conduct a software review in an 
effective and goal-oriented fashion. 
Furthermore, the results for the automatic detection of god classes 
show how Marinescu’s detection strategies recall successfully for 
the two projects. A computer assisted strategy in which 
automatically detected god classes undergo a second human 
review can reduce the required effort. The results of the study 
increase the overall confidence in the results of automatic code 
smell detection.  

9. EXPERIMENTAL REPLICATION AND 
FUTURE WORK 
To facilitate the replication of the study we have created a lab 
package available online at www.codevizard.net. The package 
includes the questionnaires, introductory material, questions from 
the post-study interview,and protocols for the presented studies. 
From our point of view, the following variations of the study 
would be most interesting to conduct: (a) a variation of the 
application type inspected (not web) and (b) a variation of the 
kind(s) of Code Smell(s) under investigation. 
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