
High-level Open Evolvable Systems Design
By Process-oriented Modeling:

Application to DNA Replication Mechanism

Behzad Bastani Hoda Bastani
Computer Laboratory College of Medicine

University of Cambridge Pennsylvania State University
Cambridge, UK Hershey, PA

Behzad.Bastani@cl.cam.ac.uk Hoda@psu.edu

ABSTRACT
Open Evolvable Systems’ design requires a methodological [1]
and conceptual paradigm different from the conventional software
design. Evolvable Systems’ research [2, 6, 16, and 17] has
established itself as a new research field, but the content is more
domain-oriented than universal. Consequently, major contributions
toward substantiation of that universal methodological and
conceptual paradigm are yet to come. In this paper we present a
new perspective and method for the general-purpose design of
Evolvable Systems. The paper presents the attributes of the
Evolvable Systems and discusses the distinction between
Evolvable Systems’ and conventional software design as well as
the methodological ramifications. We pose and address the
question of what is an efficient methodology for designing a
system for which we do not know the boundaries? We present our
version of Process-oriented Modeling as the key method in the
high-level design of Evolvable Systems and show its utilization in
implementation of one modeling case of a complex Evolvable
System, the DNA replication process. We also present the
dynamic aspects of the design process management and pre-code
verifications in the framework of Quantified Controls and
Simulations.

CATEGORIES AND SUBJECT DESCRIPTORS

D.2.10 [Software Engineering]: Design - Methodologies,
representation

GENERAL TERMS
Software Engineering, Evolvable Systems, Modeling, Design,
Method, Framework.

KEYWORDS
Process-oriented Modeling, Evolvable Systems, Requirements
Analysis, Requirements and Architecture modeling, Specification,
Design, Design Patterns, Methodologies, Abstractions.

1. INTRODUCTION

The design of complex open evolvable systems poses serious
challenges to Software Engineering [2]. The history of Software
Engineering has witnessed an evolution of methods from

Functional Programming to Object Orientation and Model-based
strategies [3, 4]. Yet the methodological advances have essentially
referenced systems that we choose to call “finite systems”,
conceptually being an extension of finite state machines [5] in
architecture. A finite system in our definition is a system whose
boundaries are known to the designer at the design time. Being
clear on what an architect or designer intends to build, s/he would
use any of those conventional methods, organizing the activities
from inception to transition [7] of the system. The lifecycle starts
with Requirements inception, then analysis of the system, followed
by the general architecture and detailed design, implementation,
testing and deployment [7]. At this point the system is complete
and finalized, and only needs maintenance and fixes. Any
substantial change in the requirements of the system necessitates
the reconceptualization [8], redesign and reimplementation of the
system. The old system needs to be removed from the deployment
platform and the new system installed.

In light of this life-cycle reality, the research question is whether
we could design systems that can evolve over the time and adapt to
new requirements. There is no doubt that it would be very
desirable to have software architectures [24, 27] that could be
modified or redesigned [25, 28] while the system is in use without
infringing the integrity of the system and while having a consistent
running system [26]. The core question then boils down to how
we design a line of systems that can architecturally anticipate all
possible uses in future as well as environmental changes by being
open to continuous modification or redesign while in use.

Research in evolvable systems can be described as mixed, non-
uniform in assumptions and premises, domain oriented or subject
oriented [8, 9, 10, 11, 12, 13, 16, and 17]. Most of the existing
research literature is based on assumptions that limit them to the
systems in a specific domain, or have chosen to deal with certain
issues that make the results most suitable just for the subject area
of the specific issue dealt with [8]. In contrast, we try to look at the
subject matter in Software Engineering terms, hence our focus will
be on generic evolvable systems design. By generic, we mean that
the principles and choices are not elected given the requirements
of any specific domain or application, although specific domains
might need to extend the architecture to respond to their specific
system needs or to advance their system performance.

One other issue under consideration was choosing an appropriate

ACM SIGSOFT Software Engineering Notes Page 1 November 2007 Volume 32 Number 6

 2

testbed for the implementation of evolvable systems ideas.
Although the usual domains like business or command and control
modeling could be used, yet the issue of their evolvability is in fact
a matter of time realization, something that only the passage of
time will disclose. In other words, the issue of evolvability can be
true about every domain, however when we model, for instance, a
business application, we are normally clear about the dimensions
of the system, although we might artificially hold on to some
aspects as candidates for evolutionary additions in trial phases. In
such a scenario, we are in fact aware of the evolutionary
extensions and this might influence our initial modeling
considerations. Therefore, we finally reached the conclusion that
probably the best testbed for evolvable systems would be
biological systems modeling, and that was for two reasons. First,
although we might not be able to say biological systems evolve in
front of our eyes, however, the science of the complex biological
systems is constantly evolving, hence posing the field as a
practical evolutionary domain right before us. The second reason
was the extreme complexity of the biological entities and their
organismic relationship. This extreme complexity creates a
situation that deprives us from having a definite baseline for the
system. As a result, we almost do not have a clear starting point
for modeling the system, recognized as a point from which the
system starts. In a theoretical model of a bio-system, almost every
point can be the start of a range of larger systems, and also the end
of a slew of smaller systems known as member micro-systems.
Therefore, whichever point we pick as the start of our modeling
activity, the system is subject to expansion in two logical
directions simultaneously, the macro direction and the micro
direction, as well as engagement of a multidimensional web of
dynamic relations in a live 3D model structure. On the other hand,
the architectural and operational details of these multilaterally
related organisms are so overwhelming that it is truly hard to
imagine even one small area of the system with all its details at
any one time. This setting satisfies the condition we were looking
for initially: starting to model a system whose dimensions were
unclear at the time of design. The situation poses the challenge of
evolvability from the very beginning, as the modeling methods and
practices chosen will have early influence on the advancement of
the architectural formation. Presenting only the first set of these
methods and practices is the subject of this paper. The paper also
presents an implementation path within its scope, which addresses
means for architectural management issues and pre-coding
verification methods.

By exploring the issues of Open Evolvable Systems’ design, this
paper addresses two interrelated research questions, one on
methodology and the other on architecture:

1. What is an efficient methodology for designing a system where
we do not know its boundaries?

2. How could we manage architecturally consistent design and
development of an open-ended system that is continuously
changing?

This paper is presented to reflect partial results of the work on the
Open Evolvable Systems research project, which is carried on
under the umbrella Pebbles Project, at the Computer Laboratory of

the University of Cambridge. The project is funded by the
Cambridge-MIT Institute (CMI).

Section 2 presents some fundamental concepts around evolvable
systems and our definitions or requirements. Section 3 presents
Process-oriented Modeling as we perceive, define and use it, the
analytical and logical premises for such adoption, the context of
implementation, and the methodological relationship between our
version of Process-oriented Modeling and our previously
published open-systems modeling and design framework, the
Abstraction-oriented Frames [1].

Section 4 presents a system implementation of the Process-
oriented modeling within the scope of a DNA replication model as
a proof of concept and the elaboration of the method as well as the
theoretical issues involved.

Sections 5 and 6 offer the conclusion and the future work.

2. CONCEPTS AND DEFINITIONS
We suggest that there are two distinct concepts of evolution or
adaptation for a system to consider: user adaptation and
environmental adaptation. Having user adaptation means the
flexibility of the system to adapt to the individual user
requirements and preferences. This flexibility has structural
connotations, meaning the system should be capable of accepting
modifications at all levels. However, the insertion point of the
modifications is the architectural level so that the system’s
integrity can be preserved. Along the same concept, the
expression of the user choices is expected to be done at a high
level without a necessity to employ conventional coding
procedures. This assumption and requirement leads to
development of systems in which writing the system and running
the system would practically be the same undertaking.
Environmental adaptation, on the other hand, means the capability
of responding to changing environmental and context requirements
that might be dynamically presented to the system. This includes
the changes resulting from organismic relationships between and
among the sub-entities. These two concepts create an architectural
loop that continuously interacts with the use of the system, as
shown in Figure 1. Yet the loop is not closed but moves on along
the time and creates an overall spiral movement, with the activities
of figure 1 regenerating continuously.

The assumption for our purposes, contrary to SER [8], is that the
amount of change or extending of the system should be unlimited,
suggesting a true concept of an Open System. Here it might be
helpful to present a definition of Open Systems and Closed
Systems as combined with and related to the evolvable systems, as
well as some other system concepts related to our analysis.

2.1 OPEN EVOLVABLE SYSTEMS:

An Open System is a functional entity that its design and
implementation is not rigidly controlled by a central authority. An
Evolvable System is a consistent entity that is not confined by pre-
set boundaries and can continuously grow and extend to address
the environmental changes and/or users’ new requirements. From

ACM SIGSOFT Software Engineering Notes Page 2 November 2007 Volume 32 Number 6

 3

a conceptual point of view, the two sets of definitions we
presented are inherently related. An Open Evolvable System is
one compliant with both sets of presented definitions.

A key theoretical characteristic of open evolvable systems is
having the capability to address not only unanticipated run-time
issues [14, 15], but unanticipated concepts at their design time, and
ideally at a certain level of maturity in future, without any human
intervention, or practically with very little manual intervention.
The latter is in fact a “first class design activity” performed by the
system on itself [8, 10], but given the present state of such
systems, its realization might be considered a somewhat far-
fetched goal. As Nardi [18] puts: “As has been shown time and
again, no matter how much designers and programmers try to
anticipate and provide for what users will need, the effort always
falls short because it is impossible to know in advance what may
be needed... End users should have the ability to create
customizations, extensions, and applications.... {p. 3}” Obviously
this will require a totally new architecture and methodology.

A challenge of designing evolvable systems is to ascertain that
evolutionary extensions would not mean – necessarily – software
development. Not all the users are software developers, but it
should be possible for them to participate in evolving their systems
as their requirements dictate [11]. In such systems, the user has an
opportunity to do programming without doing software
development in the sense of conventional coding. Although at the
beginning a good amount of such activity might be manual, an
automated artifact generation facility or mechanism should be
considered in due course as an advanced requirement for evolvable
systems. It should be noted that the automation concept in
software systems is practically a moving target, always flying
ahead of some level of automation that might be available at any
specific point of time.

 2.2 CLOSED SYSTEMS:

Closed systems represent the idea of manufacturing finished
products that symbolizes the assumption of existence of a rigid
boundary between the formation phase of the system and usage
phase the system. One of the characteristics of closed systems is
that the scope and functionality of the system is essentially limited
to the concepts conceived at the design time, therefore new
concepts cannot find room in the fixed system. Adding
functionality normally is possible through enhancement of the
system to a new version [19]. The extent of the change and
associated cost depends on how radically the new concept is
different from the ones underlying the set system.

2.3 ETERNAL SYSTEMS:
The nature of activities in certain environments requires the
software and hardware systems in those environments to be up and
running eternally [16] without any downtime or reboot. Examples
of such systems are an air traffic control system, a spaceship
command and control system, or even at a much less mission
critical level, the command and control system in an automated
house that should guarantee the ongoing operation of all the
systems such as security system and temperature control.
Although eternality of operations could probably be obtained in
many different ways, including provision of redundant systems for
regular operations, and the use of backup systems during software
or hardware upgrade times to reduce the downtime to close to zero
[20], still these are in fact workaround techniques to give the
impression of eternality at the cutoff junctures – an approach
similar to wrappers that match legacy systems to newer systems.
We believe Evolvable Systems provide the most indigenous and
natural foundation for design of eternal systems, as practically
there is no need to shift from one set-system to other set-system to
require a shutdown or shift of some sort.

2.4 DESIGN ENVIRONMENT VS. DESIGNED SYSTEM:
Conventional systems are designed and delivered to the users,
either as a fixed system or with certain reconfiguration and
programming capabilities. Normally the design environment and
tools are not delivered to the user along with the system [8, 10].
The idea of evolvable systems necessitates that the design
environment and tools are also delivered or at least made available
to the user, in addition to the system itself. To get users out of the
“couch potatoes” [11] mentality, there should be provision of some
kind of motivation for the user to develop a designer mindset [8]
and feel capable and responsible to contribute toward evolution of
their systems outside the tight control of the experts.

2.5 DECENTRALIZED EVOLUTION:
The idea of evolvable systems logically goes hand in hand with the
idea of decentralized evolution. A centrally mandated change
inherently means pre-programming which is defeating the idea of
evolvable systems. The idea of decentralized evolution presents
fundamental difficulties to the software architecture of such
systems [10, 43]. Can decentralized be interpreted as not having
even a centralized authoritative architecture or design, as it is the
case with Open Source Software, to regulate the trend of
development and change? One of the questions is how could we

Architecture

Redesign

Figure 1: Representing one slice of the
system adaptation in an evolvable system

Use of the
System

ACM SIGSOFT Software Engineering Notes Page 3 November 2007 Volume 32 Number 6

 4

keep track of all evolutionary trends and design instances or
patterns in a decentralized environment and how could we use
such knowledge for naturalizing the evolutionary environment?
Whether there is some kind of central control idea or absolutely
none, there should also be contemplation about causal elements for
a paradigm shift in the evolutionary environment as well as
consideration of how the current systems might adapt to such
paradigm shift.

2.6 INTER-COMPATIBILITY OF EVOLVABLE SYSTEMS:

When a collection of evolvable systems undergo the evolutionary
changes in an environment, there should be a requirement that
these systems do not grow incompatible, but certain level of
compatibility should be maintained by the evolutionary process.

2.7 DYNAMIC DEPENDENCY MAINTENANCE
MECHANISM:

Dependency relationships are part of the natural attributes of a
system. The core question is what would be the boundaries of the
system. Do we need a centralized mechanism to keep tack of the
dependencies, or can we define the system as local units of
performance, and communications between them? In any case, it
seems there should be some kind of a Dynamic Dependency
Maintenance Mechanism to keep track of the volatile
dependencies that appear and disappear in the system [12, 21, 22],
based on the relative definition of the system and it boundaries.

2.8 SERVICE DISCOVERY MODEL AND FRAMEWORK:
As services are the front view of the system to the user, there
should be a friendly model and framework for discovering services
[21, 23]. Still this model and framework should be deep enough to
describe the architectural and operational aspects of the design of
evolvable systems.

2.9 DEFINING ADAPTATION OR EVOLUTION TRIGGER
MECHANISM: [30]

Adaptation or evolution is and should be an analog or continuous
process by nature. Yet there are major joints in the evolutionary
process of a system that should be recognized. In order to be
prepared, there should be an understanding of under what
circumstances the system should look to adapt or evolve into what
can be called a new or improved system. This might be based on a
Goals Evaluation [29] System that determines if the current goals
are generally satisfied in the most efficient manner, and whether
new goals are introduced into the environment.

2.10 ARCHITECTURAL EVOLUTION AND
ADAPTABILITY VS. SYSTEM MANAGEMENT AND
RECONFIGURATION:

In a number of research papers about evolvable systems [31, 32,
33], proposed views and remedies are of contents that we believe
are best categorized under the topic of “System Management and
Reconfiguration” not architectural evolution and adaptability [16,
34]. These two concepts should be carefully distinguished, as their
conceptual proximity makes them prone to be mixed up easily.
Some concrete examples clarify this issue.

2.10.1 CONTROL ENGINEERING concepts are suggested in
some literature [15, 49, 50] as means of making evolvable
systems. Examples are feed-forward, which is feeding
specification of the software and its expected behavior into newly
designed modules, and feedback, meaning gathering and
measuring software environmental attributes. We believe proper
utilization of control engineering concepts can help the design of
evolvable systems, but mere use of them in a system does not
categorize the system as an evolvable system, as most of control
engineering concepts are designed to help with the
reconfiguration of closed systems. Reconfiguration is
“conceptually minor” or “tactical adaptation” of the software with
the changes in the environment, while evolution is the capability
of a system for strategic adaptation to new environmental
concepts.

2.10.2 DYNAMIC INSTRUMENTATION makes use of
instruments such as gauges, probes and monitors (as used in
conventional engineering) [51] that can be dynamically attached to
application components at runtime (and removed as required) to
measure specific runtime parameters and monitor their behavior.
Obviously the results of such operations help the reconfiguration
of the system, but the capability of such reconfiguration is not
enough to qualify a closed system as an evolvable system.

3. PROCESS-ORIENTED MODELING

The conventional technology for building systems is inclined
toward building huge software objects with either multi-layer
hierarchical inheritances or multiple-inheritance. Normally these
huge and complex objects are used as components of some
ontologically predetermined system configurations. We believe so
much determinism both at the level of components and system
architecture is contrary to the idea of evolvable systems, as
application of any change would be so complex and costly with
unknown repercussions which would be either impractical or
infeasible.

We believe for a system to be evolvable, it needs to be
fundamentally as disintegrated as possible. In other terms, it needs
to be composed from some modules that are independently
accessible and modifiable. The emphasis here is on building
systems through “Composition” as opposed to “Inheritance”.
Logically, a pool of the maximum number of fine grained
independent modules would provide the best condition for the
maximum number of diverse configurations at any size. From a
system point of view, we can categorize the structure of such
systems as loosely coupled. This should not be interpreted as a
ban on the use of the technique of inheritance in such systems.
Designers still can make inheritance-based classes and objects for
satisfying their system needs, but the architecture or foundation of
the system is not established on a web of inheritance-based classes
that constrains the flexibility of the system for evolutionary
purposes.

As an architectural configuration for Evolvable Systems, we
propose a system of “Nuclear Process-Units in an Unspecified
Open Chaining Configuration” so that the system could be a
composition of such nuclear modules in any desired configuration.

ACM SIGSOFT Software Engineering Notes Page 4 November 2007 Volume 32 Number 6

Early in section 2 we defined a requirement that an Evolvable
System should be capable of accepting modifications at all levels,
however, the insertion point of the modifications should be the
architectural level so that the system’s integrity could be
preserved. Now with this configuration presented, we can offer an
extra clarification that the insertion point for modifications would
be at the architectural level of each single Nuclear Process-Unit.

 5

Figure 2: A sample logical view of the overall system with each
chain ring representing the Nuclear Process-Unit in an openly

connecting or disconnecting pattern, with protected semi-closed
systems (indicated by color coding).

Of course, the broader general computing environment is
practically divided into protected semi-closed systems like
companies, homes, airplanes, human bodies and bacteria, each
case of which follows its own individual policies, both as a type
and as an individual instance, in terms of providing services,
accessibility and security. Hence, the configuration above defines
the logic of the architecture and is not a representation of objects.

In this representation, each Nuclear Unit is a logical “Control
Station” (CS) abstracting a meaningful process at some level of
abstraction, while acting as a fairly autonomous command and
control station. Nuclear Process-Unit should not be considered an
indivisible unit in the sense of bonding and rigidity of the
structure. Given the need for very flexible structures for evolvable
systems, the Nuclear Process-Unit is considered to be a unit of
optimal benefit, while many such modules can be removed or
replaced depending on their role in the system and still have a
technically (vs. functionally) working system. By highlighting this
attribute, we mean the system will not be technically crippled by
removal of a module, although it might not be able to deliver the
intended functionality due to missing the functionality of that
module. That means there can be some modules in the system that
because of their critical role, their removal can cripple the system
even technically.

One example of a CS is a laptop or PC that has access to
component resources in the back end and presents a user interface
in the front end. Such a CS can be used to exert control on a
variety of entities in a dynamic environment based on developing
network connections. Another example of a light weight CS is a
software interface which might be in the form of a programming
menu on a digital camera, VCR or any finite state machine
display. Along the same concept, we might find a main logical CS
in a house with more than one interface, or more than one type of
interface, distributed around the house, exerting controls over
other devices in its locale and being responsible for the overall
computational operations, networking, configuration management
and monitoring operations. Yet, it should be emphasized that the
control issue should not be viewed only from our perspective, but
from a systemic-role perspective as well. A biological pacemaker
in the heart that controls the contractions of the heart muscles is an
example of a CS from an organismic point of view without us
directly operating it. Obviously this type of CS cannot be removed
from the system and still have a technically working system,
unless it is replaced by an artificial pacemaker that performs an
equivalent systemic role. Our theory of evolvable systems will try
to give system definitions, roles and implementation paths to all
these concepts.

To realize the user adaptation and environmental adaptation
capabilities as defined, we presented three conceptual
requirements for the Open Evolvable Systems:

1. The system capability of receiving modifications at all times
without the need for complete redesign;

2. The capability of applying high-level architectural choices
without a need for conventional coding;

3. The operational synonymity of writing the software system and
running it.

Obviously this requires a roadmap that is completely different
from the conventional paradigm of “design and code the system”.
The critical question is what type of architectural framework
would best facilitate realization of these requirements. We propose
that Process-oriented Modeling would create the necessary context
for design and development of the evolvable systems. It should be
noted that in the context of complex systems, Process-oriented
Modeling might mean different things to different designers, or
might be utilized in quite diverse manners [35, 36, 37 and 38]
although the fundamentals might very well be shared. Our
perspective on Process-oriented Modeling is explained through our
analysis and implementation.

In complex and dynamically changing systems, processes are the
most noticeable modules of the system when observed from the
outside. This can be portrayed using an example from biological
systems. DNA replication is one of the main processes occurring
in the cell nucleus. Gregor Mendel initially discovered the process
of inheritance in 1866 by observing the transmission of specific
traits in pea plants from one generation to the next [44]. However,
Mendel did not know which component of the cell was responsible
for this transmission, and it was not until the experiments of
Avery, MacCleod, and McCarty in 1944 that the cellular
component responsible for genetic transmission was found to be

ACM SIGSOFT Software Engineering Notes Page 5 November 2007 Volume 32 Number 6

DNA [45]. It was also theorized that two other cellular
components, RNA and protein, played roles in DNA replication
and genetic transmission, but the exact interrelationship between
these three components was only discovered fourteen years later
by Francis Crick [46]. Even the basic structural details of the
process of DNA replication were not fully understood until the
early 1960s when John Cairns demonstrated the process of DNA
replication using radioactively-labeled chromosomes that could be
seen replicating under an electron microscope [47]. In brief,
looking from outside at the complex entity of the cell, scientists
could initially only confirm that there was a process which caused
DNA to replicate itself. At this level there was no clarity as to the
objects involved in this process, including the internal structures of
those objects, their interfaces and their interrelationships. The
object-level clarifications came as the result of probing the
processes’ traits and variations.

 6

Since we are going to present the DNA replication model in the
next section as an application environment for our Process-
oriented Modeling, we deem it necessary to first give an overview
of the subprocesses involved in the DNA replication process in
order to assure better understanding of the developed model.
DNA exists as a helical double-stranded structure where each
strand consists of a chain of sugar molecules and phosphate
molecules interlinked. Also linked to each sugar molecule is one
of the following four bases: adenine (A), thymine (T), cytosine
(C), and guanine (G). A unit of sugar, phosphate and base
together is called a nucleotide. The bases from each of the two
DNA strands bond together in pairs, as shown in Figure 3, in a
complementary fashion (A and T always pair together, and G and
C always pair together). The sequence of bases in a strand of
DNA is what makes that DNA strand unique from all others and
forms its genetic code.

The process of DNA replication begins at locations on the DNA
strands known as origins of replication. It is first necessary to
unwind the helical structure of the DNA strands, a process
achieved by the enzyme helicase. Once the DNA is unwound and
the two strands are separated, exposing the bases on each strand
(Figure 4), the DNA is ready to be replicated. The primary
enzymes that form the “replication fork,” or the site of DNA
replication, are the DNA polymerase enzymes (there are five such
enzymes named alphabetically from α to ε).

The DNA polymerases scan the original strand of DNA and for
every nucleotide that is scanned, a nucleotide with a
complementary base is bonded to it, thus creating a new strand of
DNA identical to the original opposing strand. Consequently, the
two DNA molecules that result from the DNA replication process
will each consist of one original strand and one newly created
strand (Figure 5).

Considering that in our real-world conceptualization, processes
appear as the most noticeable modules of the complex systems, it
would be logical to consider processes as the top-level
architectural units of modularization in the system modeling, and
hence our adoption of a Process-oriented Modeling approach.
From a methodological point of view, this is equivalent to Michael
Jackson's system modeling theory of the world outside for the

Figure 3: Double-stranded structure of DNA with sugar-phosphate
backbone and paired bases. A=Adenine, C=Cytosine, G= Guanine,

P= Phosphate, S= Sugar, T= Thymine.

Figure 4: Exposure of the bases after separation of the DNA
strands

world of computers: “As software developers, we too, need not
aim to disclose the real essence of the phenomena. We can deal
with the phenomena as we experience them, as they appear to us
… Each method supports, encourages, or enforces a specific way
of seeing the world. A phenomenology, a way of seeing the world,
is embodied in a language: the language is adapted to express what
we see; and our seeing is conditioned by the concepts familiar
from our language… Most methods for solving problems that fit
the Simple IS frame rely on the technique of making a MODEL of
the Real World and embodying that model in the system. In effect,
the system becomes the simulation of the real world, and derives

S

S

S

S

S

S

C

T A

G C

P

P P

P

G

ACM SIGSOFT Software Engineering Notes Page 6 November 2007 Volume 32 Number 6

Following our stated requirement of “the capability of applying
high-level architectural choices without a need for conventional
coding”, we studied a number of implementation environments to
determine the best pathway for attaining our objectives. As
expected, we realized that there is no one single platform or
implementation environment that can respond to all our needs in
the design of evolvable systems. As a result we need to carefully
combine different environments to create an equivalent of a
manufacturing assembly line for generic evolvable systems as we
defined. For this first phase and in realization of our Process-
oriented modeling, we chose IBM WebSphere Business Modeler
as a suitable implementation environment. This platform provides
some of the necessary facilities for designing process models [40],
although a good amount of fine-granularity manipulation tools are
still missing in version 6.0.2.

Figure 5: A very simplistic representation of the overall DNA
replication

its information directly from its model, and only indirectly from
the real world itself. This kind of modelling technique is at the
core of JSD method ….” [39].

Although the starting point of the Jackson’s argument appears to
be at the expense of the ontological approach, keeping everything
in context of his broader discussion our understanding is that what
he is practically talking about is the methodological validity of an
approach in which the modeler models as the world unfolds to her
in a discovery process and expands the system design thereof to
more elaborate layers. The bearing for our argument is that
probing into complex systems such as biological systems would
unfold processes as the most prominent modules of
conceptualization and therefore methodologically we start our
architectural activity with process-oriented modeling.

Using Process-oriented Modeling as the core architectural style,
one can model a dynamically changing system at the highest level
– recognizable system processes and their interaction patterns –
and preserve the consistency of the software system over the
unfolding of evolutionary changes. The reality of complex
systems is that human perception continues to have ambiguities
about their details and inner structures, either from a scientific
perspective or from a software design perspective, and these
ambiguities lessen only in a discovery process. System initiation
by means of modeling from a process level would enable us to
focus on unambiguous parts for defining the system as a whole
and preserving its consistency over the evolutionary path. In this
paper we will present the details of this proposition through
Process-oriented modeling of DNA replication.

DNA replication is one of many processes occurring in a cell. If
one decides to model a human cell, the first question would likely
be where to start from. As the basic unit of life and the building
block of the human body, a cell in itself is an example of a

complex system. Each cell can contain hundreds to thousands of
energy production factories called mitochondria. Cells have
complex membrane systems that function to produce necessary
materials and package and ship them out if necessary. There are
cell components that are equipped to degrade and dispose of waste
within the cell. It is therefore clear that aside from DNA
replication, there are many other processes occurring within the
cell. The DNA replication process in itself has several
subprocesses that are described further below, and is also
interrelated with other cell processes. Thus, a structure like this
requires a flexible system design method in which each process
can be randomly taken, designed, tested with regards to some
operational criteria and then later connected to other processes in
order for the system to grow in an open-ended manner.

Regardless of the platform used for implementation, a Process
Model abstracts the dynamic nature, operations or activities of an
organization of any type, and includes Tasks, Resources, Services,
Repositories and Processes. In this paper we present the
application of our perspective on process-oriented modeling to a
high-level architectural modeling of DNA replication using a
framework that can be geared towards two of our principles,
process-oriented modeling and expression of high-level
architectural choices.

A Process Model for our purposes is an abstraction of an evolvable
system process’ real-time dynamics and contains individual task
units and their interaction control patterns. The control patterns
specify the conditions that initiate certain behavior. Resources are
part of the Process Model and indicate instrumental or consumable
entities that are necessary for the execution of the process or
improving its performance.

A Process Model of a biological system which is equivalent to our
Problem Model [1] can act as a foundation for understanding the
intricacies of such extremely complex multidimensional systems
by registering and exposing their inner interaction patterns in a
quantitative, measurable and repeatable manner. Biological
systems and their physiology are marked by webs of default
processes, yet at the same time each process might have alternate
processes dynamically unfolding due to diversification of
environmental conditions or disease circumstances. Modeling the
main processes and alternate processes along with their trigger

 7

ACM SIGSOFT Software Engineering Notes Page 7 November 2007 Volume 32 Number 6

 8

conditions and causes creates an unprecedented level of control
over the manipulation of the rule-based nature of such systems as
well as detection of the exception cases, for subsequent discovery
of the reasons underlying them. Furthermore, such a manipulable
Problem Model serves as the base model for defining the
subsequent Requirements Model as defined in the Integrated
Triple Sequence Model [1] that for such systems would be
expressions of the process-confined desired changes that might be
necessary for therapeutic or preventive operations. Last but not
least, the Requirements Model leads to a Specification Model [1]
that contains accurately manageable and quantitatively
controllable therapeutic solutions. Such a model in its
theoretically ultimate form can integrate monitoring devices that
can attach to a patient and interact with their counterpart processes
in the model.

4. SYSTEM IMPLEMENTATION
In this section we present the application of Process-oriented
Modeling to the DNA replication mechanism. The application of
this method to the DNA replication mechanism is meant to be a
partial proof of concept (within the scope of Problem Model
phase) and an elaboration of the method in practice. Although we
are focusing on one specific process which has several
subprocesses, the idea is not to demonstrate how the DNA
replication process has evolved in the nature. Our attempt is to
present that in a context where numerous processes are in
operation with some known or unknown forms of organismic
relationships, Process-oriented Modeling as we have defined
theoretically and applied practically would make it possible for
complex system designers to tackle the issue of complexity in a
manageable framework, discover the pieces of the system in a
random manner, and design discrete modules of a functional
computer model at different levels of abstraction. These modules
can then be related to each other in a hierarchical or horizontal
manner as dictated by the nature of the system in question.
Looking from a different perspective, two scientists can run their
research independently at two different parts of the world and even
in two different areas of expertise. Suppose a scientist has
discovered a pattern of gene mutation under certain circumstances.
Unaware of this research, another scientist has a new discovery on
a specific chemical reaction in certain circumstances similar to the
one in the first research. By using Process-oriented Modeling as a
response to Evolvable Systems’ design, these two sets of results
can easily be integrated in a Process-oriented computer model that
can still be open for some yet to be discovered organismic
connections. Although this model might be incomplete, it can still
function based on the current information. Furthermore,
quantification of the model elements can independently help the
advancement of the research on both sides of the proverbial pond.

In the Integrated Triple Sequence Model [1] we considered the
formation of the Problem Model as the first step in the Integrated
Triple Sequence Model. The Problem Model was defined as a
model of the concerned area of the real world without any
insertion of solutions or requirements, and as an entity belonging
to the problem domain. Consequently, the Problem Model is an
exact simulation of the operational model of the real world entities
involved. The Problem Model would later be used as the

foundation for Requirements Model. The Requirements Model as
described in the Integrated Triple Sequence Model [1] reflects the
amendments that the stakeholders wish to see in the systems under
question. The Requirements Models for the biological systems
might reflect amendments such as details of therapeutic, curing or
just preventive objectives.

This model is a Problem Model as described above. There are two
logical initiation points contained in this stage. One is the
methodological initiating point or the answer to the question of
how should we start methodologically. As we proposed in this
paper, Process-oriented modeling would be the first step for the
design of any evolvable system or subsystem. The second is a
random initiation point, which is the selection of a random part of
an evolvable system for design and implementation activity.
Although we started from DNA in this case, the random initiation
point could be any entity, like the cell nucleus (the container of the
DNA) or the cell itself. That is because, as we argued, in the case
of biological systems, for all practical purposes, there is almost no
concrete base-line for the system to start the design thereof. The
system, basically, at each random point is exposed to expansion at
both macro-direction and micro-direction. Entities or components
are intrinsically related to each other and are affected by each
other both hierarchically and on a peer-to-peer basis. Any object
that might be selected as the starting point for modeling, most
possibly is composed of other micro-objects who have a
determinant role in the behavior of that object. Unless one decides
to start from the atomic level, and then one will realize that
probably the String Theory will challenge her in determining the
object behavior even at that level. Of course you could never start
modeling the biological systems from the atomic or molecular
level because you will be entering yourself into an impossible
proposition in terms of ever being able to deliver one version of
the system.

It is important to keep in mind that the Process-oriented Modeling
defined in this paper covers only a partial scope of our design
landscape, as at this level it is confined to the system activities
performed at the Problem Model [1] phase. The Problem Model
phase is responsible for abstracting the world-outside-computer of
an evolvable system domain and representing it as an operational
computer model. This model will be followed up in future work by
its corresponding Requirements Model and then Specification
Model [1] which will be elaborated on their own rights. In this
case we chose our evolvable system domain to be bio-systems,
which is analog and vague in nature, and our imperfect
understanding of that needs to undergo a great transformation
before it can be represented as a manipulable computer model. Our
specific assertion in this paper is that this transformation from an
analog, vague, complex multidimensional phenomenon in nature
to an operational discrete computer model can only be achieved by
Process-oriented Analysis and Modeling as we have defined it, as
opposed to the conventional Object-oriented method for building
systems. There are two main reasons for this:

1. There is no recognized baseline point for the system to start the
system design from, as we explained, and practically speaking,
there are no absolute base-objects whose behavior is independent
from any other entity.

ACM SIGSOFT Software Engineering Notes Page 8 November 2007 Volume 32 Number 6

2. The essential relativity of the knowledge we have with regards
to this complex bio-systems domain, and the persistent discoveries
that keep our understanding and information constantly changing,
create a fundamentally volatile computer system design context
that should be capable of incessantly changing at all levels without
much of a bearing on other parts of the system.

In continuation of this research, we will extend Process-oriented
Analysis and Modeling at the Problem Model level – which is the
scope of this paper – to a “Process Class” entity at the
Specification Model level. We define a process class as an
abstraction of one modulated behavior of a system represented by
an atomic process which can reference one or more actual entities.

In choosing DNA replication, in fact, we took just the first step in
our evolvable system design which is “the identification of the
processes as the most prominent high-level expressions of
complex systems”. Identification of processes can conceptually be
compared with that of use cases. A use case is a case of use of the
system as it happens in the non-computer world. Detailing a use
case in the context of Object-oriented programming has an
ultimate goal of discovering the objects involved in the structure of
the system. However, looking carefully, the concept of a use case
comes from an environment of business applications, like the use
case of a customer placing an order through an online catalog, or
using the university registration system by a student to register for
courses. Although detailing such scenarios will expose certain
objects needed for implementation, writing similar use cases for
biological systems is impractical and will not expose underlying
micro-objects that are involved in the structure of such systems. In
a complex biological system like the human body, as a case of an
evolvable system as we discussed, there might be hundreds of
micro-processes that are not exposed in a way to yield themselves
to use cases modeling. In contrast we use Process-oriented
Modeling not only to look at a complex system as a set of
interrelated processes, but to effectively utilize an identified
process to discover and modulate the process elements in the
architectural expression of the system. A process element is a
distinct, self-contained unit of a process model [40] such as a task,

a processed item (called a business item in business applications),
a resource, or a connection. Figure 6 shows the top level DNA
replication process model designed in IBM WebSphere Business
Modeler Advanced Edition. A process model is an abstraction of a
real-time system process that in this case includes three local tasks,
a global repository and one local subprocess. As in the non-
computer world, a process might consist of any number of
subprocesses, and itself might be recognized as a subprocess of
another process. A task is the basic building block of a process
model and is an abstraction of an atomic activity performed in a
process. Conversely every process should eventually boil down to
a set of underlying tasks with explicitly defined relationships.
There is a concept of reuse associated with the task. A task defined
in a parent process might be reused in child processes, or a task
might be defined as a global element and reused in many
processes. The process model specifies the input and output for
each task as well as resources required for completion of the task.
For complex sets of inputs, we will define input criteria. In the
multi-input scenarios, different subsets of the input that can initiate
a task, element or process constitute discrete sets of input criterion.
Input criteria create a great deal of control on the process design.
For example, we might define input criteria constraints [41] on
certain sets of input so that if the constraints are not satisfied, the
input criterion will not cause the element or process to run. On the
other hand, we might define element preconditions so that if they
are not satisfied, the element will not run but will generate
exceptions. The first task in the DNA replication process (Figure
6) is “Get Replication Origin”. The replication origin or origin of
replication is a specific DNA sub-code which is recognized as the
starting point of the replication process. There are many
replication origins on each strand of DNA. Thus, when replication
starts, many semi-parallel replication processes start, each from a
specific origin of replication on the DNA strand. However, in
Figure 6 we are focusing on only one of these processes starting
from one replication origin. Therefore this first task is responsible
for recognizing the specific sub-code on the DNA strand that
signals a replication origin code. The second task is “Unwind
Helix” which is responsible for unwinding the two strands of
DNA. In its default state, a DNA molecule is in the shape of a
double-stranded helix (Figure 7).

Figure 6: Top level DNA replication Process Model

 9

ACM SIGSOFT Software Engineering Notes Page 9 November 2007 Volume 32 Number 6

Figure 7: DNA double helix

For the replication process to start, it is necessary that at a
replication origin, the two strands of the DNA first unwind and
then separate to allow the DNA polymerase enzymes access to the
inside of each strand. Therefore the next task (Figure 6) is opening
up the two strands so that the internal bases are exposed (Figure 8)
for enzyme attachment and synthesis process advancement.

The last unit of operation in Figure 6 is itself another complex
multi-level process which appears as a subprocess here called
“Enzyme Attachment & DNA Synthesis”. The top-level process
duly shows the start and the end of the process delimiting this
modulated unit of abstraction which could later appear as
contained in a larger entity. While the process is under focus for
the design of its ingredient modules, we are forced to think about
the inputs and outputs to the tasks and subprocesses and their
possible combinations and exceptions, as well as the
transformation of the process model elements. This design process
would reveal, for the purposes of architectural configuration, the
involved model elements like the DNA, RNA, enzyme and base.
However, to make the model more consistent and to have it reuse-
oriented, we do not design the elements directly but we start with
the templates for most model elements. The partial list of

templates at this top level includes BaseTemplate, DNATemplate,
EnzymeShapeTemplate, EnzymeTemplate, PhosphateTemplate
and SugarTemplate as the ingredients of DNA (Figure 9).

We also discover the resources and design them normally in a
three-step iteration by designing Resource definition template,
Resource definition, and finally the resource instance. A resource
is an entity that is instrumental in the realization of a task or
process. Resources might be consumable or nonperishable.
Creating Resource definition templates considerably improves the
consistency across the system for many resources that are
essentially similar. Such resource definitions inherit the essential
properties from the corresponding template, but they might
represent additional attributes. Resources are then defined as
instances of their corresponding resource definitions. While
analyzing the subprocess “Enzyme Attachment & DNA Synthesis”
(Figure 6), we came across the design of an enzyme called RNA
primase. Since enzymes act as catalysts in the formation of
processes, by definition we can model them as resources.
However, in an evolvable system design we have to put it in the
framework of the larger picture. Although enzymes are
operationally used as resources, they are manufactured by the
body. Therefore in future software iterations we need to
incorporate the enzyme manufacturing process into the system.
Hence we do not categorize it under the resources at this phase to
prevent further complications. Since there are many different
enzymes in the body we need to start with an element template
called EnzymeTemplate. According to the Lock-and-Key theory
of enzyme specificity, the shape of an enzyme is the most
important factor contributing to enzyme function [48]. Therefore
we start with EnzymeShapeTemplate to be a contributing complex
type toward the definition of EnzymeTemplate which in turn will
be the parent template for Enzyme definition (Figure 9). The
“RNA primase” as an element then inherits the EnzymeTemplate
definition. “RNA primase” is the enzyme that attaches to DNA to

Figure 8: Exposure of the internal bases for enzyme attachment

 10

ACM SIGSOFT Software Engineering Notes Page 10 November 2007 Volume 32 Number 6

Figure 9: A partial list of Model Element Templates and Model Elements shown in the left column

Figure 10: “DNA Leading Strand Synthesis” and “DNA Lagging Strand Synthesis” parallel subprocesses

create a small piece of RNA called an RNA primer, which is
instrumental in DNA replication. In the future, for more complex
processes, we might extend the resource concept by defining roles.
Roles represent portable characteristics for resources and can be
easily attached or detached with regards to dynamic resource
operations.

The “Enzyme Attachment & DNA Synthesis” subprocess (Figure

6) consists of two other subprocesses, “DNA Leading Strand
Synthesis” and “DNA Lagging Strand Synthesis”, operating as
two parallel processes at each DNA fork formed on the DNA
strand (Figure 10). In this paper we focus only on one single DNA
replication fork.

Each of the above subprocesses operates on one strand of a single
DNA and they move physically at opposite directions (Figure 11).

 11

ACM SIGSOFT Software Engineering Notes Page 11 November 2007 Volume 32 Number 6

Figure 11: Anti-parallel movement of replication process

The initiation of these processes needs an introductory process that
we have called “DNA Strands Differentiator.” Through this
subprocess, each DNA strand is logically marked as either a
leading template or a lagging template and sent to their
corresponding subprocesses. In the overall operation, the template
strands for both the DNA leading and lagging strands are in fact
global parameters. Many operations are performed with reference
to either of those two template strands at different times, exactly
the way conventional global parameters are treated. Furthermore,
numerous operations are performed on either of those two strands
at the same time in a parallel or semi-parallel manner. By semi-
parallel we mean processes that start with just a small time-lag and
operate practically in parallel on the same strand. In such a
situation the global parameter is not treated in the conventional
manner. To keep track of the operations as they propagate in real-
time, what we really are interested in are dynamic pointers to
certain areas of leading and lagging template strands. So if we
pass the leading or lagging template strand to a process or task, we
are in fact passing a specific pointer on the strand so that the
intended operations can resume with reference to the specific
coding of that point. This would create a very complex situation
because we have one single global parameter that is subject to
many parallel and serial operations that are in one way or the other
related to each other but in terms of modeling they are not
connected tasks or processes. In other words, we cannot pass the
global parameter from one task to the other as conventionally done
in such situations. To remedy this situation we create repositories.
A repository is a storage area for one single type – either simple or
complex type – of information created in a process. We normally
name a repository by the element contained in it. The DNA
repository would be a global repository to keep it available for all
different tasks and subprocesses involved. Inside its structure lies
the two lagging and leading strands each having their structure
while associated to each other. In the replication process, each

strand will be subject to different process-handlings, yet there will
be some kind of synchronicity between the two sets of processes
running on each strand. In our model the DNA_Repository is
under the Repositories Catalog which is a sub-section of the
“Process Catalogs”.

The outcome of the “DNA Leading Strand Synthesis” is the
original DNA leading strand template (parental strand now
separated from its original bonds) plus a new DNA replicated
strand (daughter strand) complementary to it. Likewise, the
outcome of the “DNA Lagging Strand Synthesis” is the original
DNA lagging strand template plus a new DNA replicated strand
complementary to it. (Figures 10 and 12)

Figure 12: Simple representation of

Parental Strands and Daughter Strands

We direct the newly manufactured strands into a logical join
(Figure 10). This software logical join is a pre-consolidation
mechanism that operates on synchronizing the inputs by waiting to
receive the corresponding input on all its incoming branches then
sends all the inputs to the next task, “Pairing DNA Strands &
Adding New DNA to Repository” (Figures 10 and 13).

Figure 13: Pairing DNA Strands

 12

ACM SIGSOFT Software Engineering Notes Page 12 November 2007 Volume 32 Number 6

So far we have only explained the top-level process as depicted in
Figure 10. Now let’s have a look inside the “DNA Leading Strand
Synthesis” process. From a biological point of view, at each DNA
fork, an enzyme attaches to the DNA leading strand template at the
start of the fork and creates a small piece of RNA called “RNA
Primer.” This is represented by the “RNA Primer Synthesis” task
in our model (Figure 14). Then, starting from the endpoint of the
RNA primer, a new DNA strand (daughter strand) is synthesized
complementary to the leading strand template, until it reaches the
next RNA primer that has been synthesized at another replication
origin. In this way the output of the “RNA Primer Synthesis” task
is a physical piece of RNA plus a pointer to the starting point of
the replication fork on the DNA leading strand template. These
two are passed to the “DNA Strand Synthesis” task (Figure 14) as
input where the DNA manufactured strand or daughter strand is
actually coded and generated.

The “DNA Lagging Strand Synthesis” subprocess (Figure 10)
follows a completely different logic (Figure 15). A DNA
polymerase I molecule which is shown as a green circle on the
right hand strand in Figure 15, attaches to the strand which would

be the lagging strand template, and generates replicated pieces that
are called “Okazaki fragments.” It should be noted, although the
red arrows in the figure point continuously downward, the first
fragment generated in the scope of this figure is, contrary to the
visual impression, the lowest piece in the figure, then the one
above it and finally the top fragment arrow. The direction of the
arrows only indicates the direction of elongation. The reason for
this pattern is that as the fork opens up, the lagging strand that
moves opposite to the direction of the opening would only get a
chance to create one small piece as big as the opened up physical
space allows. This is while the leading strand, that elongates in the
same direction that the fork moves, can continuously grow as the
fork moves along and so is demonstrated as a continuous red
arrow on the left side of Figure 15. After the Okazaki fragments
are generated, the enzyme DNA Ligase (shown in purple) stitches
them together making a continuous replicated strand of DNA. To
model this logic, we created a While Loop that continues to
generate Okazaki fragments until the DNA lagging strand is
complete.

Figure 14: Inside DNA Leading Strand Synthesis sub-process

Figure 15: Different replication patterns of leading strand and

lagging strand

However, in the IBM Business Modeler that we are using, the
Expression Builder that sets up a loop condition can only access a
local repository. Therefore it is necessary that we create a local
repository only for the DNA fork segment that the local loop
operates on (Figure 16).

This repository holds a specific fork segment and operates as the
condition setter for the While Loop we created. This fork segment
is a copy of a specific fork contained in the global
DNA_Repository and is used as a logical operator for the process.
There is a second loop in this process which is responsible for
stitching the Okazaki fragments as long as they exist. After both
loop operations are completed, the content of the repository is in
fact a DNA segment which will replace a part of the lagging strand
template on the global “DNA_Repository”. Hence this value
should get uploaded to the global “DNA_Repository” to replace
one specific piece of the parental strand. However, this uploading

 13

ACM SIGSOFT Software Engineering Notes Page 13 November 2007 Volume 32 Number 6

Figure 16: Inside DNA Leading Strand Synthesis sub-process

needs to be handled in a synchronized manner through the logical
join we discussed in the parent process, which gets passed to the
“Pairing DNA Strands & Adding New DNA to Repository” task
(Figure 10).

4.1. QUANTIFIED CONTROLS AND SIMULATIONS:
One of the by-products of designing Evolvable Systems by means
of Process-oriented Modeling is the capability of advance
implementation and testing of the model through defining and
assigning quantification measures and running them in the form of
simulations even before the system is fully coded. This gives the
designer(s) a chance to modify the system before full
implementation given the goals and requirements defined, and
even fine-tune the ingredients of the system to as detailed
specifications as they wish. This subsection should be considered
as an added benefit, and not the sole conclusion of our Process-
oriented Modeling method. The thrust of this paper is presenting a
method in response to the specific problem of the design of
Evolvable Systems as defined.

Each Quantified Control could be viewed as an individual
measurement dealing with either one entity or a collective pattern
of measurements covering several entities. Furthermore, each of
these measurements can be associated with either one run-through
of a process or associated with several run-time instances of
processes. In the latter, the data collected for the measurements
would cover a set of run-time instances. The mechanisms of the
Control Measurements are built into the system at the process-
level design and can utilize factual or hypothetical data for testing
consistency of the results or verification of the running system
utility and goals even before the actual coding of the system starts.
In our case we chose two Quantified Controls for our DNA
replication process, energy consumption and duration. The
quantification results can be achieved in the WebSphere Business
Modeler environment through running simulations. However, for
the best results and for more complex handling, it is possible to
combine the services of the WebSphere Business Modeler and the
WebSphere Business Monitor, although we do not present such
combination in this paper. As explained before, in an environment
of almost never-ending disclosure of micro-level information
about Evolvable Systems, it is critical to have system-level
mechanisms that accommodate continuous defining, specifying
and analyzing quantifiable aspects of the processes in a growing
but seamlessly integrated software system. Our “Quantified
Controls and Simulations” is an attempt in that direction.

Conceptually, we need to start with identifying observation points
as the entities or points that encompass critical information of the
system. For each observation point which will be in fact
monitored in real-time, we specify the information of interest that
we want monitored by utilizing an association of the business
measures with the concerned entity. The business measures can
be associated with the whole process or with the constituent
entities of the process. Business measures include Key
Performance Indicators (KPI) and Metrics. A KPI is a
measurement of concern with reference to the run-time state(s) of
a process or some overall system goals. Therefore, in addition to
the optimal target point for each criterion, we can also designate
allowable or critical ranges so that the Quantified Controls would
show the exact standing of the system performance in that area.
The calculation of the KPI relies on the definition of some metrics
that are used either individually or as a set. Obviously, a metric is
a data container consisting of some measurement criterion of the
system operations. If the metric application returns the result of a
single run of a process, it would be categorized as an instance
metric, while if the metric application returns the result of multiple
runs of a process in some kind of a mathematical formulation, it
would be an aggregate metric. For our purposes we define two
KPIs and one Instance Metric. The numbers we use in these
simulations are absolutely arbitrary and are used just to show how
the mechanisms of Quantified Controls and Simulations can be
designed, integrated into the system and utilized.

The first Key Performance Indicators (KPI) is “DNA Replication
per 24 Hour”. The description of a KPI should include exact
definitions and requirements for implementation as well as
instructions on how to complete and calculate the monitored
measure in the WebSphere Business Monitor Development
Toolkit. DNA Replication per 24 Hour is the total number of DNA
replications per cell, in each 24 hours. This Number should be
taken from the following several sources at different stages of
advancement:

1. Initially, it will be a general fixed number that is indicated by
the science for normal human being.

2. It will be a number based on better information sets. This
should be taken from specific information based on the categories
such as age, sex, and other health or ethnic information about a
specific person.

3. The number would be obtained based on accurate testing or

 14

ACM SIGSOFT Software Engineering Notes Page 14 November 2007 Volume 32 Number 6

sensory devices attached to the specific patient.

For now we assume one replication is done per 3 hours in a cell, so
we put it as the base of our target value and as a normal goal. The
target value then will be eight (8) with an indicated type of
Number. Since we indicated a target or optimal value, we also
need to indicate a range value which could be defined as a
percentage of the target value or as an actual range of numbers. In
this case we defined a range of four (4) to ten (10). A range can be
defined as a safe range or a warning range, and consequently
require special attention or action. The type of the alert or action
can be specifically defined and integrated. We can also specify a
time period for monitoring depending on circumstances. In
addition, it is also possible to select dimension(s) across which to
calculate a KPI. Our choice of dimension here is “DNA
Replication Speed”.

The second KPI we defined is “DNA Replication Duration”. This
is the time duration for one replication process to run through real-
time. One way of calculating it would be by subtracting the time
stamp of first input reaching the first task from the time stamp of
the last output leaving the last task. Initially we assume setting the
target value based on optimal numbers indicated by science for a
healthy person which we assumed at three hours, with a specified
range of two to four hours. The dimension across which to
calculate this KPI would be DNA Replication Duration.

The one metric we defined refers to a task duration measurement
and is called “Unwind Helix Duration”. In this case we defined it
as an instance metric. The unwind helix duration will be

calculated by subtracting the input time-stamp from the output
time-stamp. The default value given is three minutes, although we
could define it in any other time units consistent with other
duration measurements. We can get the accuracy of milliseconds
on all time measurements.

The process simulation provides an opportunity to observe and
calculate all aspects of a process at the finest granularity which is
the task level if required. In this process, Key Performance
Indicators can be set along with observation points to analyze and
design the internals of the dynamic architecture of the system.
Simulating a designed system and checking it against a set of
important criteria before coding the system is not only highly
desirable but critical for complex evolvable systems. In fact, since
an evolvable system is always subject to changes at the
architectural level, it is a necessity to test the system at the same
level for consistency purposes as well as ascertaining that the
system-level goals are properly met. The Process-oriented
modeling provides the required substrate for this type of
architectural and design level testing and simulation, as the
conceptual and software units of interaction are processes and their
interrelations, as opposed to detail objects and classes.
Fortunately, WebSphere Business Modeler presents the capability
of running simulations. Unfortunately for our purposes, the
environment is written for Business purposes as it is named such,
not for our specialized design. Therefore we have to extend the
platform to utilize it for our research intentions. We hope one of
the side-benefits of this research would come to be encouraging
the likes of IBM by giving them clear substance and direction in
writing off-the-shelf software that could be used directly for such

Figure 17: The result of a simulation based on two Quantified Controls

 15

ACM SIGSOFT Software Engineering Notes Page 15 November 2007 Volume 32 Number 6

 16

Bio-systems. One of the dimensions of our process observation
was energy used at the micro-levels of operations in the DNA
replication model. Although we could always define and
implement structures for our observation criteria, we found it more
appealing to use the ready features of the platform. Therefore in
an analogy between the energy spent for performing tasks and
processes on one hand, and the cost incurred for business
operations on the other, we chose to utilize the cost/currency
capability of the platform for calculating the energy used concept.
Although the energy unit at the cellular level is considered in ATP,
for simplicity we assumed it in the well known calorie format and
chose the symbol CAD (for our definition indicating Calories
Disposed) in our simulation. In this way we assigned to each task
or process some arbitrary units of calories consumed, as well as a
time duration for each, and then ran the simulation. The brief
results of the simulation are shown in the Figure 17 which shows
the processing durations and energy consumed for each task,
process and in aggregate. The simulation variables and values can
be fine-tuned at the global, local or instance levels. Simulations
provide great opportunity for fine-tuning the architectural-level
and design-level concerns and modifications. Our Bio-system
simulations deserve an independent paper and we consider it as a
future work.

The specified Quantified Controls can be exported as monitor
models to WebSphere Business Monitor Development Kit which is
part of WebSphere Integration Developer. It is also necessary to
specify the event collection mechanisms for control patterns of the
monitor model for use in WebSphere Business Monitor.

5. CONCLUSION

In this paper we presented a methodological framework for the
design of open evolvable systems. We placed our focus on two
interrelated research questions:

1. What is an efficient methodology for designing a system where
we do not know its boundaries?

2. How could we manage architecturally consistent design and
development of an open-ended system that is continuously
changing?

We laid out our perspective for the architectural scope of the
evolvable systems to be generic systems in contrast to the mostly
domain-oriented conventional approaches, and in this path we
defined system requirements to clarify and emphasize the two
concepts of evolvability and open-ended design capability.

On the premises of the complexities of evolvability, we presented
our version of “Process-oriented Modeling” as a fundamental
approach to provide for consistent open-ended design capability.
We pondered on the choice of the substrate for carrying out our
theoretical views and we came to the conclusion that biological
systems are probably the most complex evolvable systems we can
consider and we provided the reasoning behind it. We applied our
Process-oriented Modeling approach to a simplified version of the
DNA replication process as a proof of concept and elaboration of
the method in practice. The purpose of this application is not to

show evolution of the DNA process itself. The purpose is to
demonstrate the inner working and flexibility of the Process-
oriented approach in the design of Open Evolvable Systems. This
application elaborates how to approach the issue of design and
development in an extremely complex environment by
conceptualizing and modularizing the system as a collection of
dynamic processes, as opposed to a collection of hierarchical
objects and classes. By the application of Process-oriented
modeling to DNA replication mechanism, our purpose was to
demonstrate how a process could be picked randomly out of
hundreds or thousands of processes in an open complex system,
then flexibly add newly discovered subprocesses or parent
processes and yet preserve the integrity of the system. We also
indicated that the use case modeling as a powerful method in the
business world might not have any application to the biological
systems’ modeling as an instance of the Open Evolvable systems’
modeling. Finally, we briefly discussed the dynamic aspects of the
design process management by crystallization of the goals of the
system through the idea of “Quantified Controls” and verifications
of the purposes in the framework of Simulations even before
coding the system.

Furthermore, we hope this methodology will prove to be of special
value for scientific applications that are by default much more
complex than business applications. Our choice of bio-systems for
applying our method proved to be a valuable experience for us as
it turned our attention to many intricacies of the stringent
requirements of this domain. We hope future extensions of this
research, which can include modeling malfunctioning
physiological processes and development of Requirements Models
for prevention or treatment through the use of Process-oriented
Modeling, will open up grounds for a new line of medical
applications and devices.

6. FUTURE WORK
The future work will focus on two parts. The first is extending and
fine tuning the Process-oriented Modeling to go beyond the
Problem Model phase and cover the rest of the design lifecycle as
contended in the Integrated Triple Sequence Model [1]. Along
this line the current proof of concept application model presented
in this paper will inevitably be extended to new phases of
Requirements modeling and specifications modeling which is the
ultimate goal of the whole enterprise.

The second part is transforming the current architectural model
into a code-implemented system [42] by devising a mostly
automated roadmap. One of the conceptual requirements for the
Open Evolvable Systems we laid down in this paper was the
capability of applying high-level architectural choices without a
need for conventional coding. The fact is no software package is
written to serve as a comprehensive platform for our end-to-end
purposes and we do not intend to code such a platform from
scratch. In fact that would be a pre-coded solution that will
undermine our evolvability assumptions. Therefore, our only
choice is to carefully study the capabilities of the off-the-shelf
packages as we have done so far, carry out the initiatives to extend
them for our purposes, and stitch them together to serve our
requirements and specialized design.

ACM SIGSOFT Software Engineering Notes Page 16 November 2007 Volume 32 Number 6

 17

REFERENCES

[1] Bastani, B. (March 2007): A Requirements Analysis
Framework for Open Systems Requirements Engineering. ACM
SIGSOFT Software Engineering Notes, Volume 32, Issue 2.

[2] Center for Lifelong Learning & Design, University of
Colorado, Boulder (November 2001): The Software Technology of
the 21st Century. ISFST2001 — International Symposium on
Future Software Technology, ZhengZhou, China.

[3] Budgen, D. (2003): Software Design. Pearson – Addison
Wesley. ISBN: 0201722194.

[4] Ghezzi, C., et al. (2003): Fundamentals of Software
Engineering. Prentice Hall. ISBN: 0133056996.

[5] National Institute of Standards and technology:
http://www.nist.gov/dads/HTML/finiteStateMachine.html

[6] The 6th International Conference on Evolvable Systems, ICES
2005: http://147.83.49.249:8090/

[7] Arlow, J., et al. (2005): UML 2 and the Unified Process.
Addison Wesley. ISBN: 0321321278.

[8] Fischer, G., E. Scharff (2000): Meta-Design: Design for
Designers. Proceedings of the conference on Designing interactive
systems: processes, practices, methods, and techniques pp. 396-
405.

[9] Reilly, D., et al. (2002): An instrumentation and control-based
approach for distributed application management and adaptation.
Proceedings of the first workshop on Self-healing systems,
Charleston, South Carolina, pp. 61 – 66.

[10] Fischer, G. (1998): Seeding, Evolutionary Growth and
Reseeding: Constructing, Capturing and Evolving Knowledge in
Domain-Oriented Design Environments. Automated Software
Engineering. 5(4): pp. 447-464.

[11] Fischer, G. (1998): Beyond 'Couch Potatoes': From
Consumers to Designers. In 1998 Asia-Pacific Computer and
Human Interaction, APCHI'98, IEEE (Ed.). IEEE Computer
Society, pp. 2-9.

[12] Kramer, J., J. Magee (Nov. 1990): The Evolving
Philosophers Problem: Dynamic Change Management. IEEE
Trans. on Software Eng., 16 (1 l), pp. 1293-1306.

[13] Cheng, S., et al., (2002): Using Architectural Style as a basis
for System Self-Repair. The Working IEEE/IFIP Conference on
Software Architecture, Montreal.

[14] Dellarocas, C., et al. (1998): An architecture for constructing
self-evolving software systems. Proceedings of the third
international workshop on Software architecture, Orlando,
Florida, USA.

[15] Clarke, L.A., L. J. Osterweil (2000): Continuous Self-
Evaluation for the Self-Improvement of Software. Proceedings of
the First International Workshop on Self-Adaptive Software,
(IWSAS2000), Oxford, UK.

[16] Oreizy, P., et al. (1998): Architecture-Based Runtime
Software Evolution. Proceedings of the 20th Int’l Conference on
Soft. Eng. (ICSE’98), Kyoto, Japan, pp. 177-186.

[17] Subramanian, N., L. Chung (2002): Tool support for
engineering adaptability into software architecture. Proceedings
of the international workshop on Principles of software evolution
(IWPSE '02): Evolution patterns and models.

[18] Nardi, B.A. (1993): A Small Matter of Programming. The
MIT Press, Cambridge, MA.

[19] Hulse, C., et al. (1999): Reducing maintenance costs through
the application of modern software architecture principles.
Proceedings of the 1999 annual ACM SIGAda international
conference on Ada. ACM SIGAda Ada Letters, Volume XIX,
Issue 3.

[20] Laddaga, R. (2000): Active Software. First International
Workshop on Self-Adaptive Software (IWSAS2000), Oxford, UK,
Springer-Verlag.

[21] Dabrowski, C., K. Mills (2001): Analyzing Properties and
Behavior of Service Discovery Protocols Using an Architecture-
Based Approach. Proceedings of Working Conference on
Complex and Dynamic Systems Architecture, Brisbane, Australia.

[22] Sun Microsystems Inc. (2000): Jini Architecture
Specification - v1.1, http://www.sun.com/jini/specs.

[23] Bauer, M., D. Dengler (1999): TrIAs: Trainable Information
Assistants for Cooperative Problem Solving. Proceedings of the
Third International Conference on Autonomous Agents
(Agents'99).

[24] Shaw, M. (2001): The Coming-of-age of Software
Architecture Research. Proceedings of the 23rd international
conference on Software engineering, Toronto, Canada.

[25] Medvidovic, N., et al. (2002): Modeling Software
Architectures in the Unified Modeling Language. ACM
Transactions on Software Engineering and Methodology
(TOSEM), Volume 11, Issue 1.

[26] Robertson, P., et al. (2000): Self Adaptive Software. First
International Workshop on Self-Adapative Software, Oxford, UK,
April 17-19, 2000, Springer, New York, 2001.

[27] Garlan, D. (2000): Software architecture: a roadmap.
Proceedings of the conference on the future of Software
engineering. ACM Press, 2000.

[28] Ambriola, V., A. Kmiecik (2002): Software architectures:

ACM SIGSOFT Software Engineering Notes Page 17 November 2007 Volume 32 Number 6

http://portal.acm.org/citation.cfm?id=1234210.1234224&coll=portal&dl=ACM&idx=1234210&part=periodical&WantType=periodical&title=ACM%20SIGSOFT%20Software%20Engineering%20Notes&CFID=18848478&CFTOKEN=52062712
http://portal.acm.org/citation.cfm?id=1234210.1234224&coll=portal&dl=ACM&idx=1234210&part=periodical&WantType=periodical&title=ACM%20SIGSOFT%20Software%20Engineering%20Notes&CFID=18848478&CFTOKEN=52062712

 18

Architectural transformation. Proceedings of the 14th
international conference on Software engineering and knowledge
engineering.

[29] Darimont, R., et al. (1997): GRAIL/KAOS: An
Environment for Goal-Driven Requirements Engineering.
Proceedings of the 19th International Conference on Software
Engineering, Boston, MA., pp. 612 – 613. ISBN:0-89791-914-9.

[30] Maccari, A. (2002): Experiences in assessing product family
software architecture for evolution. Proceedings of the 24th
International Conference on Software Engineering, Orlando,
Florida, pp. 585 – 592. ISBN:1-58113-472-X.

[31] Sha, L., et al. (Feb. 1996): Evolving Dependable Real-time
Systems. Proceeding IEEE Aerospace Applications Conference.
Aspen, CO., vol. 1, pp 335-346. ISBN: 0-7803-3196-6.

[32] Kramer, J., J. Magee (Nov. 1990): The Evolving
Philosophers Problem: Dynamic Change Management. IEEE
Transactions on Software Engineering, vol. 16. no. 11.

[33] Peterson, J., et al. (July 1997): Principled Dynamic Code
Improvement. Yale University Research Report
YALEU/DCS/RR-1135. Department of Computer Science, Yale
University.

[34] Lung, C., et al. (1997): An Approach to Software
Architecture Analysis for Evolution and Reusability. Proceedings
of the 1997 conference of the Centre for Advanced Studies on
Collaborative Research. IBM Centre for Advanced Studies
Conference. Toronto, ON.

[35] Popova, V., A. Sharpanskykh (2007): Process-Oriented
Organization Modeling and Analysis. Proceedings of 5th
International Workshop on Modelling, Simulation, Verification
and Validation of Enterprise Information Systems, joint with
ICEIS'07, published by INSTICC Press.

[36] Chung, L., B. Nixon (1995): Dealing with Non-Functional
Requirements: Three Experimental Studies of a Process-Oriented
Approach. International Conference on Software Engineering
1995, Seattle, Washington.

[37] Ottjes, J., H. Veeke (June 2002): Prototyping in Process
Oriented Modeling and Simulation. Proceedings of the 16th
European Simulation Multiconference (ESM 2002). ISBN 90-
77039-07-4.

[38] Belhajjame, K., et al. (2001): A flexible Workflow Model
for Process-oriented Applications. Proceedings of the Second
International Conference on Web Information Systems
Engineering, WISE’2001., Dec. 3-6, 2001. Volume 1, pp. 72 – 80.

[39] Jackson, M. (1995): Software Requirements &
Specifications. New York, NY: The ACM Press.

[40] IBM WebSphere Business Modeler Library: http://www-

306.ibm.com/software/integration/wbimodeler/library/

[41] Balzer, R. (Oct. 1996): Enforcing architectural constraints.
Second International Software Architecture Workshop (ISA W-2),
San Francisco, CA.

[42] Aldrich, J., et al. (May 2002): ArchJava: connecting
software architecture to implementation. Proceedings of the 24th
international conference on Software engineering.

[43] Ostwald, J., et al. (July 2003): Organic Perspectives of
Knowledge Management. I-KNOW’03 Workshop on (Virtual)
Communities of Practice within Modern Organizations, Graz,
Austria.

[44] Edelson, E. (1999): Gregor Mendel and the Roots of
Genetics. Oxford University Press. ISBN: 0195122267.

[45] Avery, O., et al. (Feb. 1944): Studies on the Chemical Nature
of the Substance Inducing Transformation of Pneumococcal
Types: Induction of Transformation by a Desoxyribonucleic Acid
Fraction Isolated From Pneumococcus Type III. Journal of
Experimental Medicine. Volume 79(2): pp. 137-158.

[46] Crick, F. (Aug. 1970): Central Dogma of Molecular Biology.
Nature. Volume 227: pp. 561-563.

[47] Cairns, J., C. Davern (1967): The Mechanics of DNA
Replication in Bacteria. Journal of Cellular Physiology. Volume
70(S1): pp. 65-76.

[48] Stenesh, J. (1998): Biochemistry. Springer. ISBN:
0306457334.

[49] Meng, A. (2000): On Evaluating Self-Adaptive Software.
Proceedings of the First International Workshop on Self-Adaptive
Software, (IWSAS2000).

[50] Badr, N., et al. (May 2002): A Conflict Resolution Control
Architecture for Self-Adaptive Software. Architecting Dependable
Systems, WADS 2002 (ICSE 2002), Orlando, Florida.

[51] Garlan, D., B. Schmerl (2002): Model-based Adaptation for
Self-Healing Systems. Proceedings of the first workshop
on Self-healing systems, Charleston, South Carolina.
ISBN:1-58113-609-9.

ACM SIGSOFT Software Engineering Notes Page 18 November 2007 Volume 32 Number 6

