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ABSTRACT 
Open Evolvable Systems’ design requires a methodological [1] 
and conceptual paradigm different from the conventional software 
design.  Evolvable Systems’ research [2, 6, 16, and 17] has 
established itself as a new research field, but the content is more 
domain-oriented than universal. Consequently, major contributions 
toward substantiation of that universal methodological and 
conceptual paradigm are yet to come. In this paper we present a 
new perspective and method for the general-purpose design of 
Evolvable Systems. The paper presents the attributes of the 
Evolvable Systems and discusses the distinction between 
Evolvable Systems’ and conventional software design as well as 
the methodological ramifications. We pose and address the 
question of what is an efficient methodology for designing a 
system for which we do not know the boundaries?  We present our 
version of Process-oriented Modeling as the key method in the 
high-level design of Evolvable Systems and show its utilization in 
implementation of one modeling case of a complex Evolvable 
System, the DNA replication process.  We also present the 
dynamic aspects of the design process management and pre-code 
verifications in the framework of Quantified Controls and 
Simulations. 
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1. INTRODUCTION 

The design of complex open evolvable systems poses serious 
challenges to Software Engineering [2].  The history of Software 
Engineering has witnessed an evolution of methods from 

Functional Programming to Object Orientation and Model-based 
strategies [3, 4].  Yet the methodological advances have essentially 
referenced systems that we choose to call “finite systems”, 
conceptually being an extension of finite state machines [5] in 
architecture.  A finite system in our definition is a system whose 
boundaries are known to the designer at the design time.  Being 
clear on what an architect or designer intends to build, s/he would 
use any of those conventional methods, organizing the activities 
from inception to transition [7] of the system. The lifecycle starts 
with Requirements inception, then analysis of the system, followed 
by the general architecture and detailed design, implementation, 
testing and deployment [7].  At this point the system is complete 
and finalized, and only needs maintenance and fixes. Any 
substantial change in the requirements of the system necessitates 
the reconceptualization [8], redesign and reimplementation of the 
system. The old system needs to be removed from the deployment 
platform and the new system installed.  

In light of this life-cycle reality, the research question is whether 
we could design systems that can evolve over the time and adapt to 
new requirements.  There is no doubt that it would be very 
desirable to have software architectures [24, 27] that could be 
modified or redesigned [25, 28] while the system is in use without 
infringing the integrity of the system and while having a consistent 
running system [26].  The core question then boils down to how 
we design a line of systems that can architecturally anticipate all 
possible uses in future as well as environmental changes by being 
open to continuous modification or redesign while in use. 

Research in evolvable systems can be described as mixed, non-
uniform in assumptions and premises, domain oriented or subject 
oriented [8, 9, 10, 11, 12, 13, 16, and 17].  Most of the existing 
research literature is based on assumptions that limit them to the 
systems in a specific domain, or have chosen to deal with certain 
issues that make the results most suitable just for the subject area 
of the specific issue dealt with [8]. In contrast, we try to look at the 
subject matter in Software Engineering terms, hence our focus will 
be on generic evolvable systems design. By generic, we mean that 
the principles and choices are not elected given the requirements 
of any specific domain or application, although specific domains 
might need to extend the architecture to respond to their specific 
system needs or to advance their system performance. 

One other issue under consideration was choosing an appropriate 
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testbed for the implementation of evolvable systems ideas. 
Although the usual domains like business or command and control 
modeling could be used, yet the issue of their evolvability is in fact 
a matter of time realization, something that only the passage of 
time will disclose. In other words, the issue of evolvability can be 
true about every domain, however when we model, for instance, a 
business application, we are normally clear about the dimensions 
of the system, although we might artificially hold on to some 
aspects as candidates for evolutionary additions in trial phases. In 
such a scenario, we are in fact aware of the evolutionary 
extensions and this might influence our initial modeling 
considerations. Therefore, we finally reached the conclusion that 
probably the best testbed for evolvable systems would be 
biological systems modeling, and that was for two reasons. First, 
although we might not be able to say biological systems evolve in 
front of our eyes, however, the science of the complex biological 
systems is constantly evolving, hence posing the field as a 
practical evolutionary domain right before us.  The second reason 
was the extreme complexity of the biological entities and their 
organismic relationship.  This extreme complexity creates a 
situation that deprives us from having a definite baseline for the 
system. As a result, we almost do not have a clear starting point 
for modeling the system, recognized as a point from which the 
system starts. In a theoretical model of a bio-system, almost every 
point can be the start of a range of larger systems, and also the end 
of a slew of smaller systems known as member micro-systems.  
Therefore, whichever point we pick as the start of our modeling 
activity, the system is subject to expansion in two logical 
directions simultaneously, the macro direction and the micro 
direction, as well as engagement of a multidimensional web of 
dynamic relations in a live 3D model structure.  On the other hand, 
the architectural and operational details of these multilaterally 
related organisms are so overwhelming that it is truly hard to 
imagine even one small area of the system with all its details at 
any one time.  This setting satisfies the condition we were looking 
for initially: starting to model a system whose dimensions were 
unclear at the time of design. The situation poses the challenge of 
evolvability from the very beginning, as the modeling methods and 
practices chosen will have early influence on the advancement of 
the architectural formation.  Presenting only the first set of these 
methods and practices is the subject of this paper. The paper also 
presents an implementation path within its scope, which addresses 
means for architectural management issues and pre-coding 
verification methods. 

By exploring the issues of Open Evolvable Systems’ design, this 
paper addresses two interrelated research questions, one on 
methodology and the other on architecture: 

1.  What is an efficient methodology for designing a system where 
we do not know its boundaries? 

2.  How could we manage architecturally consistent design and 
development of an open-ended system that is continuously 
changing? 

This paper is presented to reflect partial results of the work on the 
Open Evolvable Systems research project, which is carried on 
under the umbrella Pebbles Project, at the Computer Laboratory of 

the University of Cambridge. The project is funded by the 
Cambridge-MIT Institute (CMI). 

Section 2 presents some fundamental concepts around evolvable 
systems and our definitions or requirements.  Section 3 presents 
Process-oriented Modeling as we perceive, define and use it, the 
analytical and logical premises for such adoption, the context of 
implementation, and the methodological relationship between our 
version of Process-oriented Modeling and our previously 
published open-systems modeling and design framework, the 
Abstraction-oriented Frames [1].  

Section 4 presents a system implementation of the Process-
oriented modeling within the scope of a DNA replication model as 
a proof of concept and the elaboration of the method as well as the 
theoretical issues involved. 

Sections 5 and 6 offer the conclusion and the future work. 

2. CONCEPTS AND DEFINITIONS   
We suggest that there are two distinct concepts of evolution or 
adaptation for a system to consider: user adaptation and 
environmental adaptation.  Having user adaptation means the 
flexibility of the system to adapt to the individual user 
requirements and preferences. This flexibility has structural 
connotations, meaning the system should be capable of accepting 
modifications at all levels. However, the insertion point of the 
modifications is the architectural level so that the system’s 
integrity can be preserved.  Along the same concept, the 
expression of the user choices is expected to be done at a high 
level without a necessity to employ conventional coding 
procedures. This assumption and requirement leads to 
development of systems in which writing the system and running 
the system would practically be the same undertaking. 
Environmental adaptation, on the other hand, means the capability 
of responding to changing environmental and context requirements 
that might be dynamically presented to the system.  This includes 
the changes resulting from organismic relationships between and 
among the sub-entities. These two concepts create an architectural 
loop that continuously interacts with the use of the system, as 
shown in Figure 1. Yet the loop is not closed but moves on along 
the time and creates an overall spiral movement, with the activities 
of figure 1 regenerating continuously.   

The assumption for our purposes, contrary to SER [8], is that the 
amount of change or extending of the system should be unlimited, 
suggesting a true concept of an Open System. Here it might be 
helpful to present a definition of Open Systems and Closed 
Systems as combined with and related to the evolvable systems, as 
well as some other system concepts related to our analysis.   

2.1  OPEN EVOLVABLE SYSTEMS:  

An Open System is a functional entity that its design and 
implementation is not rigidly controlled by a central authority.  An 
Evolvable System is a consistent entity that is not confined by pre- 
set boundaries and can continuously grow and extend to address 
the environmental changes and/or users’ new requirements.  From  
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a conceptual point of view, the two sets of definitions we 
presented are inherently related.  An Open Evolvable System is 
one compliant with both sets of presented definitions.  

A key theoretical characteristic of open evolvable systems is 
having the capability to address not only unanticipated run-time 
issues [14, 15], but unanticipated concepts at their design time, and 
ideally at a certain level of maturity in future, without any human 
intervention, or practically with very little manual intervention. 
The latter is in fact a “first class design activity” performed by the 
system on itself [8, 10], but given the present state of such 
systems, its realization might be considered a somewhat far- 
fetched goal.  As Nardi [18] puts: “As has been shown time and 
again, no matter how much designers and programmers try to 
anticipate and provide for what users will need, the effort always 
falls short because it is impossible to know in advance what may 
be needed... End users should have the ability to create 
customizations, extensions, and applications.... {p. 3}” Obviously 
this will require a totally new architecture and methodology.   

A challenge of designing evolvable systems is to ascertain that 
evolutionary extensions would not mean – necessarily – software 
development.  Not all the users are software developers, but it 
should be possible for them to participate in evolving their systems 
as their requirements dictate [11]. In such systems, the user has an 
opportunity to do programming without doing software 
development in the sense of conventional coding.  Although at the 
beginning a good amount of such activity might be manual, an 
automated artifact generation facility or mechanism should be 
considered in due course as an advanced requirement for evolvable 
systems.  It should be noted that the automation concept in 
software systems is practically a moving target, always flying 
ahead of some level of automation that might be available at any 
specific point of time. 

 2.2  CLOSED SYSTEMS:  

Closed systems represent the idea of manufacturing finished 
products that symbolizes the assumption of existence of a rigid 
boundary between the formation phase of the system and usage 
phase the system. One of the characteristics of closed systems is 
that the scope and functionality of the system is essentially limited 
to the concepts conceived at the design time, therefore new 
concepts cannot find room in the fixed system.  Adding 
functionality normally is possible through enhancement of the 
system to a new version [19].  The extent of the change and 
associated cost depends on how radically the new concept is 
different from the ones underlying the set system.   

2.3  ETERNAL SYSTEMS:   
The nature of activities in certain environments requires the 
software and hardware systems in those environments to be up and 
running eternally [16] without any downtime or reboot.  Examples 
of such systems are an air traffic control system, a spaceship 
command and control system, or even at a much less mission 
critical level, the command and control system in an automated 
house that should guarantee the ongoing operation of all the 
systems such as security system and temperature control.  
Although eternality of operations could probably be obtained in 
many different ways, including provision of redundant systems for 
regular operations, and the use of backup systems during software 
or hardware upgrade times to reduce the downtime to close to zero 
[20], still these are in fact workaround techniques to give the 
impression of eternality at the cutoff junctures – an approach 
similar to wrappers that match legacy systems to newer systems.  
We believe Evolvable Systems provide the most indigenous and 
natural foundation for design of eternal systems, as practically 
there is no need to shift from one set-system to other set-system to 
require a shutdown or shift of some sort.   

2.4  DESIGN ENVIRONMENT VS. DESIGNED SYSTEM:   
Conventional systems are designed and delivered to the users, 
either as a fixed system or with certain reconfiguration and 
programming capabilities.  Normally the design environment and 
tools are not delivered to the user along with the system [8, 10].  
The idea of evolvable systems necessitates that the design 
environment and tools are also delivered or at least made available 
to the user, in addition to the system itself.  To get users out of the 
“couch potatoes” [11] mentality, there should be provision of some 
kind of motivation for the user to develop a designer mindset [8] 
and feel capable and responsible to contribute toward evolution of 
their systems outside the tight control of the experts.   

2.5  DECENTRALIZED EVOLUTION:   
The idea of evolvable systems logically goes hand in hand with the 
idea of decentralized evolution.  A centrally mandated change 
inherently means pre-programming which is defeating the idea of 
evolvable systems.  The idea of decentralized evolution presents 
fundamental difficulties to the software architecture of such 
systems [10, 43].  Can decentralized be interpreted as not having 
even a centralized authoritative architecture or design, as it is the 
case with Open Source Software, to regulate the trend of 
development and change?  One of the questions is how could we 

Architecture 

Redesign

Figure 1: Representing one slice of the 
system adaptation in an evolvable system  

Use of the 
System 
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keep track of all evolutionary trends and design instances or 
patterns in a decentralized environment and how could we use 
such knowledge for naturalizing the evolutionary environment?  
Whether there is some kind of central control idea or absolutely 
none, there should also be contemplation about causal elements for 
a paradigm shift in the evolutionary environment as well as 
consideration of how the current systems might adapt to such 
paradigm shift.   

2.6  INTER-COMPATIBILITY OF EVOLVABLE SYSTEMS:  

When a collection of evolvable systems undergo the evolutionary 
changes in an environment, there should be a requirement that 
these systems do not grow incompatible, but certain level of 
compatibility should be maintained by the evolutionary process.   

2.7  DYNAMIC DEPENDENCY MAINTENANCE 
MECHANISM:    

Dependency relationships are part of the natural attributes of a 
system.  The core question is what would be the boundaries of the 
system.  Do we need a centralized mechanism to keep tack of the 
dependencies, or can we define the system as local units of 
performance, and communications between them?  In any case, it 
seems there should be some kind of a Dynamic Dependency 
Maintenance Mechanism to keep track of the volatile 
dependencies that appear and disappear in the system [12, 21, 22], 
based on the relative definition of the system and it boundaries.    

2.8  SERVICE DISCOVERY MODEL AND FRAMEWORK:  
As services are the front view of the system to the user, there 
should be a friendly model and framework for discovering services 
[21, 23].  Still this model and framework should be deep enough to 
describe the architectural and operational aspects of the design of 
evolvable systems.    

2.9  DEFINING ADAPTATION OR EVOLUTION TRIGGER 
MECHANISM: [30] 

Adaptation or evolution is and should be an analog or continuous 
process by nature.  Yet there are major joints in the evolutionary 
process of a system that should be recognized.  In order to be 
prepared, there should be an understanding of under what 
circumstances the system should look to adapt or evolve into what 
can be called a new or improved system.  This might be based on a 
Goals Evaluation [29] System that determines if the current goals 
are generally satisfied in the most efficient manner, and whether 
new goals are introduced into the environment.   

2.10  ARCHITECTURAL EVOLUTION AND 
ADAPTABILITY VS. SYSTEM MANAGEMENT AND 
RECONFIGURATION:      

In a number of research papers about evolvable systems [31, 32, 
33], proposed views and remedies are of contents that we believe 
are best categorized under the topic of “System Management and 
Reconfiguration” not architectural evolution and adaptability [16, 
34].  These two concepts should be carefully distinguished, as their 
conceptual proximity makes them prone to be mixed up easily.  
Some concrete examples clarify this issue.   

2.10.1 CONTROL ENGINEERING concepts are suggested in 
some literature [15, 49, 50] as means of making evolvable 
systems.  Examples are feed-forward, which is feeding 
specification of the software and its expected behavior into newly 
designed modules, and feedback, meaning gathering and 
measuring software environmental attributes. We believe proper 
utilization of control engineering concepts can help the design of 
evolvable systems, but mere use of them in a system does not 
categorize the system as an evolvable system, as most of control 
engineering concepts are designed to help with the  
reconfiguration of  closed systems. Reconfiguration is 
“conceptually minor” or “tactical adaptation” of the software with 
the changes in the environment, while evolution is the capability 
of a system for strategic adaptation to new environmental 
concepts.   

2.10.2 DYNAMIC INSTRUMENTATION makes use of 
instruments such as gauges, probes and monitors (as used in 
conventional engineering) [51] that can be dynamically attached to 
application components at runtime (and removed as required) to 
measure specific runtime parameters and monitor their behavior. 
Obviously the results of such operations help the reconfiguration 
of the system, but the capability of such reconfiguration is not 
enough to qualify a closed system as an evolvable system.   

3.  PROCESS-ORIENTED MODELING   

The conventional technology for building systems is inclined 
toward building huge software objects with either multi-layer 
hierarchical inheritances or multiple-inheritance.  Normally these 
huge and complex objects are used as components of some 
ontologically predetermined system configurations.  We believe so 
much determinism both at the level of components and system 
architecture is contrary to the idea of evolvable systems, as 
application of any change would be so complex and costly with 
unknown repercussions which would be either impractical or 
infeasible.     

We believe for a system to be evolvable, it needs to be 
fundamentally as disintegrated as possible.  In other terms, it needs 
to be composed from some modules that are independently 
accessible and modifiable.  The emphasis here is on building 
systems through “Composition” as opposed to “Inheritance”.  
Logically, a pool of the maximum number of fine grained 
independent modules would provide the best condition for the 
maximum number of diverse configurations at any size.  From a 
system point of view, we can categorize the structure of such 
systems as loosely coupled.  This should not be interpreted as a 
ban on the use of the technique of inheritance in such systems.  
Designers still can make inheritance-based classes and objects for 
satisfying their system needs, but the architecture or foundation of 
the system is not established on a web of inheritance-based classes 
that constrains the flexibility of the system for evolutionary 
purposes.   

As an architectural configuration for Evolvable Systems, we 
propose a system of “Nuclear Process-Units in an Unspecified 
Open Chaining Configuration” so that the system could be a 
composition of such nuclear modules in any desired configuration.  
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Early in section 2 we defined a requirement that an Evolvable 
System should be capable of accepting modifications at all levels, 
however, the insertion point of the modifications should be the 
architectural level so that the system’s integrity could be 
preserved.  Now with this configuration presented, we can offer an 
extra clarification that the insertion point for modifications would 
be at the architectural level of each single Nuclear Process-Unit.  
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Figure 2: A sample logical view of the overall system with each 
chain ring representing the Nuclear Process-Unit in an openly 

connecting or disconnecting pattern, with protected semi-closed 
systems (indicated by color coding). 

Of course, the broader general computing environment is 
practically divided into protected semi-closed systems like 
companies, homes, airplanes, human bodies and bacteria, each 
case of which follows its own individual policies, both as a type 
and as an individual instance, in terms of providing services, 
accessibility and security.  Hence, the configuration above defines 
the logic of the architecture and is not a representation of objects.   

In this representation, each Nuclear Unit is a logical “Control 
Station” (CS) abstracting a meaningful process at some level of 
abstraction, while acting as a fairly autonomous command and 
control station.  Nuclear Process-Unit should not be considered an 
indivisible unit in the sense of bonding and rigidity of the 
structure. Given the need for very flexible structures for evolvable 
systems, the Nuclear Process-Unit is considered to be a unit of 
optimal benefit, while many such modules can be removed or 
replaced depending on their role in the system and still have a 
technically (vs. functionally) working system.  By highlighting this 
attribute, we mean the system will not be technically crippled by 
removal of a module, although it might not be able to deliver the 
intended functionality due to missing the functionality of that 
module.  That means there can be some modules in the system that 
because of their critical role, their removal can cripple the system 
even technically.   

One example of a CS is a laptop or PC that has access to 
component resources in the back end and presents a user interface 
in the front end.  Such a CS can be used to exert control on a 
variety of entities in a dynamic environment based on developing 
network connections.  Another example of a light weight CS is a 
software interface which might be in the form of a programming 
menu on a digital camera, VCR or any finite state machine 
display.  Along the same concept, we might find a main logical CS 
in a house with more than one interface, or more than one type of 
interface, distributed around the house, exerting controls over 
other devices in its locale and being responsible for the overall 
computational operations, networking, configuration management 
and monitoring operations.  Yet, it should be emphasized that the 
control issue should not be viewed only from our perspective, but 
from a systemic-role perspective as well.  A biological pacemaker 
in the heart that controls the contractions of the heart muscles is an 
example of a CS from an organismic point of view without us 
directly operating it.  Obviously this type of CS cannot be removed 
from the system and still have a technically working system, 
unless it is replaced by an artificial pacemaker that performs an 
equivalent systemic role.  Our theory of evolvable systems will try 
to give system definitions, roles and implementation paths to all 
these concepts.  

To realize the user adaptation and environmental adaptation 
capabilities as defined, we presented three conceptual 
requirements for the Open Evolvable Systems:  

1. The system capability of receiving modifications at all times 
without the need for complete redesign; 

2. The capability of applying high-level architectural choices 
without a need for conventional coding; 

3. The operational synonymity of writing the software system and 
running it.   

Obviously this requires a roadmap that is completely different 
from the conventional paradigm of “design and code the system”. 
The critical question is what type of architectural framework 
would best facilitate realization of these requirements. We propose 
that Process-oriented Modeling would create the necessary context 
for design and development of the evolvable systems. It should be 
noted that in the context of complex systems, Process-oriented 
Modeling might mean different things to different designers, or 
might be utilized in quite diverse manners [35, 36, 37 and 38] 
although the fundamentals might very well be shared.  Our 
perspective on Process-oriented Modeling is explained through our 
analysis and implementation.   

In complex and dynamically changing systems, processes are the 
most noticeable modules of the system when observed from the 
outside.  This can be portrayed using an example from biological 
systems. DNA replication is one of the main processes occurring 
in the cell nucleus.  Gregor Mendel initially discovered the process 
of inheritance in 1866 by observing the transmission of specific 
traits in pea plants from one generation to the next [44].  However, 
Mendel did not know which component of the cell was responsible 
for this transmission, and it was not until the experiments of 
Avery, MacCleod, and McCarty in 1944 that the cellular 
component responsible for genetic transmission was found to be 
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DNA [45].  It was also theorized that two other cellular 
components, RNA and protein, played roles in DNA replication 
and genetic transmission, but the exact interrelationship between 
these three components was only discovered fourteen years later 
by Francis Crick [46].  Even the basic structural details of the 
process of DNA replication were not fully understood until the 
early 1960s when John Cairns demonstrated the process of DNA 
replication using radioactively-labeled chromosomes that could be 
seen replicating under an electron microscope [47]. In brief, 
looking from outside at the complex entity of the cell, scientists 
could initially only confirm that there was a process which caused 
DNA to replicate itself.  At this level there was no clarity as to the 
objects involved in this process, including the internal structures of 
those objects, their interfaces and their interrelationships.  The 
object-level clarifications came as the result of probing the 
processes’ traits and variations. 

 6

Since we are going to present the DNA replication model in the 
next section as an application environment for our Process-
oriented Modeling, we deem it necessary to first give an overview 
of the subprocesses involved in the DNA replication process in 
order to assure better understanding of the developed model.  
DNA exists as a helical double-stranded structure where each 
strand consists of a chain of sugar molecules and phosphate 
molecules interlinked. Also linked to each sugar molecule is one 
of the following four bases: adenine (A), thymine (T), cytosine 
(C), and guanine (G).  A unit of sugar, phosphate and base 
together is called a nucleotide.  The bases from each of the two 
DNA strands bond together in pairs, as shown in Figure 3, in a 
complementary fashion (A and T always pair together, and G and 
C always pair together).  The sequence of bases in a strand of 
DNA is what makes that DNA strand unique from all others and 
forms its genetic code.  

The process of DNA replication begins at locations on the DNA 
strands known as origins of replication.  It is first necessary to 
unwind the helical structure of the DNA strands, a process 
achieved by the enzyme helicase.  Once the DNA is unwound and 
the two strands are separated, exposing the bases on each strand 
(Figure 4), the DNA is ready to be replicated. The primary 
enzymes that form the “replication fork,” or the site of DNA 
replication, are the DNA polymerase enzymes (there are five such 
enzymes named alphabetically from α to ε).   

The DNA polymerases scan the original strand of DNA and for 
every nucleotide that is scanned, a nucleotide with a 
complementary base is bonded to it, thus creating a new strand of 
DNA identical to the original opposing strand.  Consequently, the 
two DNA molecules that result from the DNA replication process 
will each consist of one original strand and one newly created 
strand (Figure 5).   

Considering that in our real-world conceptualization, processes 
appear as the most noticeable modules of the complex systems, it 
would be logical to consider processes as the top-level 
architectural units of modularization in the system modeling, and 
hence our adoption of a Process-oriented Modeling approach.  
From a methodological point of view, this is equivalent to Michael 
Jackson's system modeling theory of the world outside for the  

 

 

Figure 3: Double-stranded structure of DNA with sugar-phosphate 
backbone and paired bases. A=Adenine, C=Cytosine, G= Guanine, 

P= Phosphate, S= Sugar, T= Thymine. 

 
 

 

Figure 4: Exposure of the bases after separation of the DNA 
strands 

world of computers: “As software developers, we too, need not 
aim to disclose the real essence of the phenomena.  We can deal 
with the phenomena as we experience them, as they appear to us 
… Each method supports, encourages, or enforces a specific way 
of seeing the world. A phenomenology, a way of seeing the world, 
is embodied in a language: the language is adapted to express what 
we see; and our seeing is conditioned by the concepts familiar 
from our language… Most methods for solving problems that fit 
the Simple IS frame rely on the technique of making a MODEL of 
the Real World and embodying that model in the system. In effect, 
the system becomes the simulation of the real world, and derives  
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Following our stated requirement of “the capability of applying 
high-level architectural choices without a need for conventional 
coding”, we studied a number of implementation environments to 
determine the best pathway for attaining our objectives.  As 
expected, we realized that there is no one single platform or 
implementation environment that can respond to all our needs in 
the design of evolvable systems.  As a result we need to carefully 
combine different environments to create an equivalent of a 
manufacturing assembly line for generic evolvable systems as we 
defined.  For this first phase and in realization of our Process-
oriented modeling, we chose IBM WebSphere Business Modeler 
as a suitable implementation environment.  This platform provides 
some of the necessary facilities for designing process models [40], 
although a good amount of fine-granularity manipulation tools are 
still missing in version 6.0.2.   

Figure 5: A very simplistic representation of the overall DNA 
replication 

its information directly from its model, and only indirectly from 
the real world itself. This kind of modelling technique is at the 
core of JSD method ….” [39].   

Although the starting point of the Jackson’s argument appears to 
be at the expense of the ontological approach, keeping everything 
in context of his broader discussion our understanding is that what 
he is practically talking about is the methodological validity of an 
approach in which the modeler models as the world unfolds to her 
in a discovery process and expands the system design thereof to 
more elaborate layers.  The bearing for our argument is that 
probing into complex systems such as biological systems would 
unfold processes as the most prominent modules of 
conceptualization and therefore methodologically we start our 
architectural activity with process-oriented modeling.   

Using Process-oriented Modeling as the core architectural style, 
one can model a dynamically changing system at the highest level 
–  recognizable system processes and their interaction patterns – 
and preserve the consistency of the software system over the 
unfolding of evolutionary changes.  The reality of complex 
systems is that human perception continues to have ambiguities 
about their details and inner structures, either from a scientific 
perspective or from a software design perspective, and these 
ambiguities lessen only in a discovery process.  System initiation 
by means of modeling from a process level would enable us to 
focus on unambiguous parts for defining the system as a whole 
and preserving its consistency over the evolutionary path.  In this 
paper we will present the details of this proposition through 
Process-oriented modeling of DNA replication.   

DNA replication is one of many processes occurring in a cell.  If 
one decides to model a human cell, the first question would likely 
be where to start from.  As the basic unit of life and the building 
block of the human body, a cell in itself is an example of a 

complex system.  Each cell can contain hundreds to thousands of 
energy production factories called mitochondria. Cells have 
complex membrane systems that function to produce necessary 
materials and package and ship them out if necessary.  There are 
cell components that are equipped to degrade and dispose of waste 
within the cell.  It is therefore clear that aside from DNA 
replication, there are many other processes occurring within the 
cell.  The DNA replication process in itself has several 
subprocesses that are described further below, and is also 
interrelated with other cell processes.  Thus, a structure like this 
requires a flexible system design method in which each process 
can be randomly taken, designed, tested with regards to some 
operational criteria and then later connected to other processes in 
order for the system to grow in an open-ended manner.   

Regardless of the platform used for implementation, a Process 
Model abstracts the dynamic nature, operations or activities of an 
organization of any type, and includes Tasks, Resources, Services, 
Repositories and Processes.  In this paper we present the 
application of our perspective on process-oriented modeling to a 
high-level architectural modeling of DNA replication using a 
framework that can be geared towards two of our principles, 
process-oriented modeling and expression of high-level 
architectural choices.   

A Process Model for our purposes is an abstraction of an evolvable 
system process’ real-time dynamics and contains individual task 
units and their interaction control patterns.  The control patterns 
specify the conditions that initiate certain behavior. Resources are 
part of the Process Model and indicate instrumental or consumable 
entities that are necessary for the execution of the process or 
improving its performance.   

A Process Model of a biological system which is equivalent to our 
Problem Model [1] can act as a foundation for understanding the 
intricacies of such extremely complex multidimensional systems 
by registering and exposing their inner interaction patterns in a 
quantitative, measurable and repeatable manner.  Biological 
systems and their physiology are marked by webs of default 
processes, yet at the same time each process might have alternate 
processes dynamically unfolding due to diversification of 
environmental conditions or disease circumstances.  Modeling the 
main processes and alternate processes along with their trigger 
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conditions and causes creates an unprecedented level of control 
over the manipulation of the rule-based nature of such systems as 
well as detection of the exception cases, for subsequent discovery 
of the reasons underlying them.  Furthermore, such a manipulable 
Problem Model serves as the base model for defining the 
subsequent Requirements Model as defined in the Integrated 
Triple Sequence Model [1] that for such systems would be 
expressions of the process-confined desired changes that might be 
necessary for therapeutic or preventive operations.  Last but not 
least, the Requirements Model leads to a Specification Model [1] 
that contains accurately manageable and quantitatively 
controllable therapeutic solutions.  Such a model in its 
theoretically ultimate form can integrate monitoring devices that 
can attach to a patient and interact with their counterpart processes 
in the model.    

4. SYSTEM IMPLEMENTATION  
In this section we present the application of Process-oriented 
Modeling to the DNA replication mechanism. The application of 
this method to the DNA replication mechanism is meant to be a 
partial proof of concept (within the scope of Problem Model 
phase) and an elaboration of the method in practice.  Although we 
are focusing on one specific process which has several 
subprocesses, the idea is not to demonstrate how the DNA 
replication process has evolved in the nature.  Our attempt is to 
present that in a context where numerous processes are in 
operation with some known or unknown forms of organismic 
relationships, Process-oriented Modeling as we have defined 
theoretically and applied practically would make it possible for 
complex system designers to tackle the issue of complexity in a 
manageable framework, discover the pieces of the system in a 
random manner, and design discrete modules of a functional 
computer model at different levels of abstraction. These modules 
can then be related to each other in a hierarchical or horizontal 
manner as dictated by the nature of the system in question.  
Looking from a different perspective, two scientists can run their 
research independently at two different parts of the world and even 
in two different areas of expertise. Suppose a scientist has 
discovered a pattern of gene mutation under certain circumstances. 
Unaware of this research, another scientist has a new discovery on 
a specific chemical reaction in certain circumstances similar to the 
one in the first research.  By using Process-oriented Modeling as a 
response to Evolvable Systems’ design, these two sets of results 
can easily be integrated in a Process-oriented computer model that 
can still be open for some yet to be discovered organismic 
connections.  Although this model might be incomplete, it can still 
function based on the current information. Furthermore, 
quantification of the model elements can independently help the 
advancement of the research on both sides of the proverbial pond.  

In the Integrated Triple Sequence Model [1] we considered the 
formation of the Problem Model as the first step in the Integrated 
Triple Sequence Model.  The Problem Model was defined as a 
model of the concerned area of the real world without any 
insertion of solutions or requirements, and as an entity belonging 
to the problem domain.  Consequently, the Problem Model is an 
exact simulation of the operational model of the real world entities 
involved.  The Problem Model would later be used as the 

foundation for Requirements Model. The Requirements Model as 
described in the Integrated Triple Sequence Model [1] reflects the 
amendments that the stakeholders wish to see in the systems under 
question.  The Requirements Models for the biological systems 
might reflect amendments such as details of therapeutic, curing or 
just preventive objectives.   

This model is a Problem Model as described above. There are two 
logical initiation points contained in this stage.  One is the 
methodological initiating point or the answer to the question of 
how should we start methodologically.  As we proposed in this 
paper, Process-oriented modeling would be the first step for the 
design of any evolvable system or subsystem.  The second is a 
random initiation point, which is the selection of a random part of 
an evolvable system for design and implementation activity. 
Although we started from DNA in this case, the random initiation 
point could be any entity, like the cell nucleus (the container of the 
DNA) or the cell itself. That is because, as we argued, in the case 
of biological systems, for all practical purposes, there is almost no 
concrete base-line for the system to start the design thereof.  The 
system, basically, at each random point is exposed to expansion at 
both macro-direction and micro-direction.  Entities or components 
are intrinsically related to each other and are affected by each 
other both hierarchically and on a peer-to-peer basis. Any object 
that might be selected as the starting point for modeling, most 
possibly is composed of other micro-objects who have a 
determinant role in the behavior of that object. Unless one decides 
to start from the atomic level, and then one will realize that 
probably the String Theory will challenge her in determining the 
object behavior even at that level. Of course you could never start 
modeling the biological systems from the atomic or molecular 
level because you will be entering yourself into an impossible 
proposition in terms of ever being able to deliver one version of 
the system.  

It is important to keep in mind that the Process-oriented Modeling 
defined in this paper covers only a partial scope of our design 
landscape, as at this level it is confined to the system activities 
performed at the Problem Model [1] phase. The Problem Model 
phase is responsible for abstracting the world-outside-computer of 
an evolvable system domain and representing it as an operational 
computer model. This model will be followed up in future work by 
its corresponding Requirements Model and then Specification 
Model [1] which will be elaborated on their own rights.  In this 
case we chose our evolvable system domain to be bio-systems, 
which is analog and vague in nature, and our imperfect 
understanding of that needs to undergo a great transformation 
before it can be represented as a manipulable computer model. Our 
specific assertion in this paper is that this transformation from an 
analog, vague, complex multidimensional phenomenon in nature 
to an operational discrete computer model can only be achieved by 
Process-oriented Analysis and Modeling as we have defined it, as 
opposed to the conventional Object-oriented method for building 
systems.  There are two main reasons for this: 

1. There is no recognized baseline point for the system to start the 
system design from, as we explained, and practically speaking, 
there are no absolute base-objects whose behavior is independent 
from any other entity.   
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2. The essential relativity of the knowledge we have with regards 
to this complex bio-systems domain, and the persistent discoveries 
that keep our understanding and information constantly changing, 
create a fundamentally volatile computer system design context 
that should be capable of incessantly changing at all levels without 
much of a bearing on other parts of the system.        

In continuation of this research, we will extend Process-oriented 
Analysis and Modeling at the Problem Model level – which is the 
scope of this paper – to a “Process Class” entity at the 
Specification Model level.  We define a process class as an 
abstraction of one modulated behavior of a system represented by 
an atomic process which can reference one or more actual entities. 

In choosing DNA replication, in fact, we took just the first step in 
our evolvable system design which is “the identification of the 
processes as the most prominent high-level expressions of 
complex systems”. Identification of processes can conceptually be 
compared with that of use cases. A use case is a case of use of the 
system as it happens in the non-computer world. Detailing a use 
case in the context of Object-oriented programming has an 
ultimate goal of discovering the objects involved in the structure of 
the system. However, looking carefully, the concept of a use case 
comes from an environment of business applications, like the use 
case of a customer placing an order through an online catalog, or 
using the university registration system by a student to register for 
courses. Although detailing such scenarios will expose certain 
objects needed for implementation, writing similar use cases for 
biological systems is impractical and will not expose underlying 
micro-objects that are involved in the structure of such systems.  In 
a complex biological system like the human body, as a case of an 
evolvable system as we discussed, there might be hundreds of 
micro-processes that are not exposed in a way to yield themselves 
to use cases modeling. In contrast we use Process-oriented 
Modeling not only to look at a complex system as a set of 
interrelated processes, but to effectively utilize an identified 
process to discover and modulate the process elements in the 
architectural expression of the system.  A process element is a 
distinct, self-contained unit of a process model [40] such as a task, 

a processed item (called a business item in business applications), 
a resource, or a connection.  Figure 6 shows the top level DNA 
replication process model designed in IBM WebSphere Business 
Modeler Advanced Edition. A process model is an abstraction of a 
real-time system process that in this case includes three local tasks, 
a global repository and one local subprocess. As in the non-
computer world, a process might consist of any number of 
subprocesses, and itself might be recognized as a subprocess of 
another process. A task is the basic building block of a process 
model and is an abstraction of an atomic activity performed in a 
process.  Conversely every process should eventually boil down to 
a set of underlying tasks with explicitly defined relationships. 
There is a concept of reuse associated with the task. A task defined 
in a parent process might be reused in child processes, or a task 
might be defined as a global element and reused in many 
processes.  The process model specifies the input and output for 
each task as well as resources required for completion of the task.  
For complex sets of inputs, we will define input criteria.  In the 
multi-input scenarios, different subsets of the input that can initiate 
a task, element or process constitute discrete sets of input criterion.  
Input criteria create a great deal of control on the process design.  
For example, we might define input criteria constraints [41] on 
certain sets of input so that if the constraints are not satisfied, the 
input criterion will not cause the element or process to run. On the 
other hand, we might define element preconditions so that if they 
are not satisfied, the element will not run but will generate 
exceptions.  The first task in the DNA replication process (Figure 
6) is “Get Replication Origin”.  The replication origin or origin of 
replication is a specific DNA sub-code which is recognized as the 
starting point of the replication process.  There are many 
replication origins on each strand of DNA. Thus, when replication 
starts, many semi-parallel replication processes start, each from a 
specific origin of replication on the DNA strand. However, in 
Figure 6 we are focusing on only one of these processes starting 
from one replication origin. Therefore this first task is responsible 
for recognizing the specific sub-code on the DNA strand that 
signals a replication origin code. The second task is “Unwind 
Helix” which is responsible for unwinding the two strands of 
DNA.  In its default state, a DNA molecule is in the shape of a 
double-stranded helix (Figure 7).    

 

 

 

Figure 6: Top level DNA replication Process Model 
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Figure 7:  DNA double helix 

For the replication process to start, it is necessary that at a 
replication origin, the two strands of the DNA first unwind and 
then separate to allow the DNA polymerase enzymes access to the 
inside of each strand. Therefore the next task (Figure 6) is opening 
up the two strands so that the internal bases are exposed (Figure 8) 
for enzyme attachment and synthesis process advancement.  

The last unit of operation in Figure 6 is itself another complex 
multi-level process which appears as a subprocess here called 
“Enzyme Attachment & DNA Synthesis”.  The top-level process 
duly shows the start and the end of the process delimiting this 
modulated unit of abstraction which could later appear as 
contained in a larger entity. While the process is under focus for 
the design of its ingredient modules, we are forced to think about 
the inputs and outputs to the tasks and subprocesses and their 
possible combinations and exceptions, as well as the 
transformation of the process model elements.  This design process 
would reveal, for the purposes of architectural configuration, the 
involved model elements like the DNA, RNA, enzyme and base.  
However, to make the model more consistent and to have it reuse-
oriented, we do not design the elements directly but we start with 
the templates for most model elements.  The partial list of 

templates at this top level includes BaseTemplate, DNATemplate, 
EnzymeShapeTemplate, EnzymeTemplate, PhosphateTemplate 
and SugarTemplate as the ingredients of DNA (Figure 9). 

We also discover the resources and design them normally in a 
three-step iteration by designing Resource definition template, 
Resource definition, and finally the resource instance. A resource 
is an entity that is instrumental in the realization of a task or 
process. Resources might be consumable or nonperishable. 
Creating Resource definition templates considerably improves the 
consistency across the system for many resources that are 
essentially similar. Such resource definitions inherit the essential 
properties from the corresponding template, but they might 
represent additional attributes. Resources are then defined as 
instances of their corresponding resource definitions. While 
analyzing the subprocess “Enzyme Attachment & DNA Synthesis” 
(Figure 6), we came across the design of an enzyme called RNA 
primase. Since enzymes act as catalysts in the formation of 
processes, by definition we can model them as resources. 
However, in an evolvable system design we have to put it in the 
framework of the larger picture.  Although enzymes are 
operationally used as resources, they are manufactured by the 
body. Therefore in future software iterations we need to 
incorporate the enzyme manufacturing process into the system.  
Hence we do not categorize it under the resources at this phase to 
prevent further complications.  Since there are many different 
enzymes in the body we need to start with an element template 
called EnzymeTemplate.  According to the Lock-and-Key theory 
of enzyme specificity, the shape of an enzyme is the most 
important factor contributing to enzyme function [48].  Therefore 
we start with EnzymeShapeTemplate to be a contributing complex 
type toward the definition of EnzymeTemplate which in turn will 
be the parent template for Enzyme definition (Figure 9). The 
“RNA primase” as an element then inherits the EnzymeTemplate 
definition. “RNA primase” is the enzyme that attaches to DNA to  

 
 

 
Figure 8: Exposure of the internal bases for enzyme attachment 
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Figure 9: A partial list of Model Element Templates and Model Elements shown in the left column 
 

 

Figure 10: “DNA Leading Strand Synthesis” and “DNA Lagging Strand Synthesis” parallel subprocesses 

create a small piece of RNA called an RNA primer, which is 
instrumental in DNA replication. In the future, for more complex 
processes, we might extend the resource concept by defining roles. 
Roles represent portable characteristics for resources and can be 
easily attached or detached with regards to dynamic resource 
operations.      

The “Enzyme Attachment & DNA Synthesis” subprocess (Figure 

6) consists of two other subprocesses, “DNA Leading Strand 
Synthesis” and “DNA Lagging Strand Synthesis”, operating as 
two parallel processes at each DNA fork formed on the DNA 
strand (Figure 10).  In this paper we focus only on one single DNA 
replication fork.   

Each of the above subprocesses operates on one strand of a single 
DNA and they move physically at opposite directions (Figure 11).    
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Figure 11: Anti-parallel movement of replication process 

The initiation of these processes needs an introductory process that 
we have called “DNA Strands Differentiator.”  Through this 
subprocess, each DNA strand is logically marked as either a 
leading template or a lagging template and sent to their 
corresponding subprocesses.  In the overall operation, the template 
strands for both the DNA leading and lagging strands are in fact 
global parameters.  Many operations are performed with reference 
to either of those two template strands at different times, exactly 
the way conventional global parameters are treated.  Furthermore, 
numerous operations are performed on either of those two strands 
at the same time in a parallel or semi-parallel manner.  By semi-
parallel we mean processes that start with just a small time-lag and 
operate practically in parallel on the same strand.  In such a 
situation the global parameter is not treated in the conventional 
manner. To keep track of the operations as they propagate in real-
time, what we really are interested in are dynamic pointers to 
certain areas of leading and lagging template strands.  So if we 
pass the leading or lagging template strand to a process or task, we 
are in fact passing a specific pointer on the strand so that the 
intended operations can resume with reference to the specific 
coding of that point.  This would create a very complex situation 
because we have one single global parameter that is subject to 
many parallel and serial operations that are in one way or the other 
related to each other but in terms of modeling they are not 
connected tasks or processes.  In other words, we cannot pass the 
global parameter from one task to the other as conventionally done 
in such situations.  To remedy this situation we create repositories. 
A repository is a storage area for one single type – either simple or 
complex type – of information created in a process.  We normally 
name a repository by the element contained in it. The DNA 
repository would be a global repository to keep it available for all 
different tasks and subprocesses involved.  Inside its structure lies 
the two lagging and leading strands each having their structure 
while associated to each other. In the replication process, each 

strand will be subject to different process-handlings, yet there will 
be some kind of synchronicity between the two sets of processes 
running on each strand.  In our model the DNA_Repository is 
under the Repositories Catalog which is a sub-section of the 
“Process Catalogs”.      

The outcome of the “DNA Leading Strand Synthesis” is the 
original DNA leading strand template (parental strand now 
separated from its original bonds) plus a new DNA replicated 
strand (daughter strand) complementary to it. Likewise, the 
outcome of the “DNA Lagging Strand Synthesis” is the original 
DNA lagging strand template plus a new DNA replicated strand 
complementary to it. (Figures 10 and 12) 

 
Figure 12: Simple representation of  

Parental Strands and Daughter Strands 

We direct the newly manufactured strands into a logical join 
(Figure 10). This software logical join is a pre-consolidation 
mechanism that operates on synchronizing the inputs by waiting to 
receive the corresponding input on all its incoming branches then 
sends all the inputs to the next task, “Pairing DNA Strands & 
Adding New DNA to Repository” (Figures 10 and 13).   

 

Figure 13:  Pairing DNA Strands 
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So far we have only explained the top-level process as depicted in 
Figure 10.  Now let’s have a look inside the “DNA Leading Strand 
Synthesis” process.  From a biological point of view, at each DNA 
fork, an enzyme attaches to the DNA leading strand template at the 
start of the fork and creates a small piece of RNA called “RNA 
Primer.”  This is represented by the “RNA Primer Synthesis” task 
in our model (Figure 14).  Then, starting from the endpoint of the 
RNA primer, a new DNA strand (daughter strand) is synthesized 
complementary to the leading strand template, until it reaches the 
next RNA primer that has been synthesized at another replication 
origin.  In this way the output of the “RNA Primer Synthesis” task 
is a physical piece of RNA plus a pointer to the starting point of 
the replication fork on the DNA leading strand template.  These 
two are passed to the “DNA Strand Synthesis” task (Figure 14) as 
input where the DNA manufactured strand or daughter strand is 
actually coded and generated. 

The “DNA Lagging Strand Synthesis” subprocess (Figure 10) 
follows a completely different logic (Figure 15).  A DNA 
polymerase I molecule which is shown as a green circle on the 
right hand strand in Figure 15, attaches to the strand which would 

be the lagging strand template, and generates replicated pieces that 
are called “Okazaki fragments.”  It should be noted, although the 
red arrows in the figure point continuously downward, the first 
fragment generated in the scope of this figure is, contrary to the 
visual impression, the lowest piece in the figure, then the one 
above it and finally the top fragment arrow.  The direction of the 
arrows only indicates the direction of elongation. The reason for 
this pattern is that as the fork opens up, the lagging strand that 
moves opposite to the direction of the opening would only get a 
chance to create one small piece as big as the opened up physical 
space allows.  This is while the leading strand, that elongates in the 
same direction that the fork moves, can continuously grow as the 
fork moves along and so is demonstrated as a continuous red 
arrow on the left side of Figure 15.  After the Okazaki fragments 
are generated, the enzyme DNA Ligase (shown in purple) stitches 
them together making a continuous replicated strand of DNA.  To 
model this logic, we created a While Loop that continues to 
generate Okazaki fragments until the DNA lagging strand is 
complete.    

 

 

Figure 14:  Inside DNA Leading Strand Synthesis sub-process 

 

 
Figure 15:  Different replication patterns of leading strand and 

lagging strand 

However, in the IBM Business Modeler that we are using, the 
Expression Builder that sets up a loop condition can only access a 
local repository.  Therefore it is necessary that we create a local 
repository only for the DNA fork segment that the local loop 
operates on (Figure 16).   

This repository holds a specific fork segment and operates as the 
condition setter for the While Loop we created. This fork segment 
is a copy of a specific fork contained in the global 
DNA_Repository and is used as a logical operator for the process.  
There is a second loop in this process which is responsible for 
stitching the Okazaki fragments as long as they exist. After both 
loop operations are completed, the content of the repository is in 
fact a DNA segment which will replace a part of the lagging strand 
template on the global “DNA_Repository”. Hence this value 
should get uploaded to the global “DNA_Repository” to replace 
one specific piece of the parental strand.  However, this uploading 
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Figure 16: Inside DNA Leading Strand Synthesis sub-process 

needs to be handled in a synchronized manner through the logical 
join we discussed in the parent process, which gets passed to the 
“Pairing DNA Strands & Adding New DNA to Repository” task 
(Figure 10).   

4.1.  QUANTIFIED CONTROLS AND SIMULATIONS:   
One of the by-products of designing Evolvable Systems by means 
of Process-oriented Modeling is the capability of advance 
implementation and testing of the model through defining and 
assigning quantification measures and running them in the form of 
simulations even before the system is fully coded.  This gives the 
designer(s) a chance to modify the system before full 
implementation given the goals and requirements defined, and 
even fine-tune the ingredients of the system to as detailed 
specifications as they wish.  This subsection should be considered 
as an added benefit, and not the sole conclusion of our Process-
oriented Modeling method.  The thrust of this paper is presenting a 
method in response to the specific problem of the design of 
Evolvable Systems as defined.     

Each Quantified Control could be viewed as an individual 
measurement dealing with either one entity or a collective pattern 
of measurements covering several entities.  Furthermore, each of 
these measurements can be associated with either one run-through 
of a process or associated with several run-time instances of 
processes.  In the latter, the data collected for the measurements 
would cover a set of run-time instances.  The mechanisms of the 
Control Measurements are built into the system at the process-
level design and can utilize factual or hypothetical data for testing 
consistency of the results or verification of the running system 
utility and goals even before the actual coding of the system starts.  
In our case we chose two Quantified Controls for our DNA 
replication process, energy consumption and duration.  The 
quantification results can be achieved in the WebSphere Business 
Modeler environment through running simulations.  However, for 
the best results and for more complex handling, it is possible to 
combine the services of the WebSphere Business Modeler and the 
WebSphere Business Monitor, although we do not present such 
combination in this paper. As explained before, in an environment 
of almost never-ending disclosure of micro-level information 
about Evolvable Systems, it is critical to have system-level 
mechanisms that accommodate continuous defining, specifying 
and analyzing quantifiable aspects of the processes in a growing 
but seamlessly integrated software system.  Our “Quantified 
Controls and Simulations” is an attempt in that direction.  

Conceptually, we need to start with identifying observation points 
as the entities or points that encompass critical information of the 
system.  For each observation point which will be in fact 
monitored in real-time, we specify the information of interest that 
we want monitored by utilizing an association of the business 
measures with the concerned entity.  The business measures can 
be associated with the whole process or with the constituent 
entities of the process.  Business measures include Key 
Performance Indicators (KPI) and Metrics.  A KPI is a 
measurement of concern with reference to the run-time state(s) of 
a process or some overall system goals.  Therefore, in addition to 
the optimal target point for each criterion, we can also designate 
allowable or critical ranges so that the Quantified Controls would 
show the exact standing of the system performance in that area.  
The calculation of the KPI relies on the definition of some metrics 
that are used either individually or as a set. Obviously, a metric is 
a data container consisting of some measurement criterion of the 
system operations.  If the metric application returns the result of a 
single run of a process, it would be categorized as an instance 
metric, while if the metric application returns the result of multiple 
runs of a process in some kind of a mathematical formulation, it 
would be an aggregate metric.  For our purposes we define two 
KPIs and one Instance Metric. The numbers we use in these 
simulations are absolutely arbitrary and are used just to show how 
the mechanisms of Quantified Controls and Simulations can be 
designed, integrated into the system and utilized.   

The first Key Performance Indicators (KPI) is “DNA Replication 
per 24 Hour”.  The description of a KPI should include exact 
definitions and requirements for implementation as well as 
instructions on how to complete and calculate the monitored 
measure in the WebSphere Business Monitor Development 
Toolkit. DNA Replication per 24 Hour is the total number of DNA 
replications per cell, in each 24 hours. This Number should be 
taken from the following several sources at different stages of 
advancement:  

1. Initially, it will be a general fixed number that is indicated by 
the science for normal human being.    

2. It will be a number based on better information sets.  This 
should be taken from specific information based on the categories 
such as age, sex, and other health or ethnic information about a 
specific person.  

3. The number would be obtained based on accurate testing or 
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sensory devices attached to the specific patient.  

For now we assume one replication is done per 3 hours in a cell, so 
we put it as the base of our target value and as a normal goal. The 
target value then will be eight (8) with an indicated type of 
Number.  Since we indicated a target or optimal value, we also 
need to indicate a range value which could be defined as a 
percentage of the target value or as an actual range of numbers.  In 
this case we defined a range of four (4) to ten (10).  A range can be 
defined as a safe range or a warning range, and consequently 
require special attention or action.  The type of the alert or action 
can be specifically defined and integrated.  We can also specify a 
time period for monitoring depending on circumstances.  In 
addition, it is also possible to select dimension(s) across which to 
calculate a KPI. Our choice of dimension here is “DNA 
Replication Speed”.   

The second KPI we defined is “DNA Replication Duration”.  This 
is the time duration for one replication process to run through real-
time. One way of calculating it would be by subtracting the time 
stamp of first input reaching the first task from the time stamp of 
the last output leaving the last task.  Initially we assume setting the 
target value based on optimal numbers indicated by science for a 
healthy person which we assumed at three hours, with a specified 
range of two to four hours.  The dimension across which to 
calculate this KPI would be DNA Replication Duration.   

The one metric we defined refers to a task duration measurement 
and is called “Unwind Helix Duration”. In this case we defined it 
as an instance metric.  The unwind helix duration will be 

calculated by subtracting the input time-stamp from the output 
time-stamp.  The default value given is three minutes, although we 
could define it in any other time units consistent with other 
duration measurements.  We can get the accuracy of milliseconds 
on all time measurements.   

The process simulation provides an opportunity to observe and 
calculate all aspects of a process at the finest granularity which is 
the task level if required. In this process, Key Performance 
Indicators can be set along with observation points to analyze and 
design the internals of the dynamic architecture of the system.  
Simulating a designed system and checking it against a set of 
important criteria before coding the system is not only highly 
desirable but critical for complex evolvable systems.  In fact, since 
an evolvable system is always subject to changes at the 
architectural level, it is a necessity to test the system at the same 
level for consistency purposes as well as ascertaining that the 
system-level goals are properly met.  The Process-oriented 
modeling provides the required substrate for this type of 
architectural and design level testing and simulation, as the 
conceptual and software units of interaction are processes and their 
interrelations, as opposed to detail objects and classes.  
Fortunately, WebSphere Business Modeler presents the capability 
of running simulations.  Unfortunately for our purposes, the 
environment is written for Business purposes as it is named such, 
not for our specialized design.  Therefore we have to extend the 
platform to utilize it for our research intentions.  We hope one of 
the side-benefits of this research would come to be encouraging 
the likes of IBM by giving them clear substance and direction in 
writing off-the-shelf software that could be used directly for such 

 

 

Figure 17: The result of a simulation based on two Quantified Controls 
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Bio-systems. One of the dimensions of our process observation 
was energy used at the micro-levels of operations in the DNA 
replication model.  Although we could always define and 
implement structures for our observation criteria, we found it more 
appealing to use the ready features of the platform.  Therefore in 
an analogy between the energy spent for performing tasks and 
processes on one hand, and the cost incurred for business 
operations on the other, we chose to utilize the cost/currency 
capability of the platform for calculating the energy used concept.  
Although the energy unit at the cellular level is considered in ATP, 
for simplicity we assumed it in the well known calorie format and 
chose the symbol CAD (for our definition indicating Calories 
Disposed) in our simulation.  In this way we assigned to each task 
or process some arbitrary units of calories consumed, as well as a 
time duration for each, and then ran the simulation.  The brief 
results of the simulation are shown in the Figure 17 which shows 
the processing durations and energy consumed for each task, 
process and in aggregate.  The simulation variables and values can 
be fine-tuned at the global, local or instance levels.  Simulations 
provide great opportunity for fine-tuning the architectural-level 
and design-level concerns and modifications.  Our Bio-system 
simulations deserve an independent paper and we consider it as a 
future work.   

The specified Quantified Controls can be exported as monitor 
models to WebSphere Business Monitor Development Kit which is 
part of WebSphere Integration Developer.  It is also necessary to 
specify the event collection mechanisms for control patterns of the 
monitor model for use in WebSphere Business Monitor.     

5. CONCLUSION 

In this paper we presented a methodological framework for the 
design of open evolvable systems.  We placed our focus on two 
interrelated research questions:  

1. What is an efficient methodology for designing a system where 
we do not know its boundaries?  

2. How could we manage architecturally consistent design and 
development of an open-ended system that is continuously 
changing? 

We laid out our perspective for the architectural scope of the 
evolvable systems to be generic systems in contrast to the mostly 
domain-oriented conventional approaches, and in this path we 
defined system requirements to clarify and emphasize the two 
concepts of evolvability and open-ended design capability.   

On the premises of the complexities of evolvability, we presented 
our version of “Process-oriented Modeling” as a fundamental 
approach to provide for consistent open-ended design capability.  
We pondered on the choice of the substrate for carrying out our 
theoretical views and we came to the conclusion that biological 
systems are probably the most complex evolvable systems we can 
consider and we provided the reasoning behind it.  We applied our 
Process-oriented Modeling approach to a simplified version of the 
DNA replication process as a proof of concept and elaboration of 
the method in practice.  The purpose of this application is not to 

show evolution of the DNA process itself.  The purpose is to 
demonstrate the inner working and flexibility of the Process-
oriented approach in the design of Open Evolvable Systems.  This 
application elaborates how to approach the issue of design and 
development in an extremely complex environment by 
conceptualizing and modularizing the system as a collection of 
dynamic processes, as opposed to a collection of hierarchical 
objects and classes. By the application of Process-oriented 
modeling to DNA replication mechanism, our purpose was to 
demonstrate how a process could be picked randomly out of 
hundreds or thousands of processes in an open complex system, 
then flexibly add newly discovered subprocesses or parent 
processes and yet preserve the integrity of the system.  We also 
indicated that the use case modeling as a powerful method in the 
business world might not have any application to the biological 
systems’ modeling as an instance of the Open Evolvable systems’ 
modeling.  Finally, we briefly discussed the dynamic aspects of the 
design process management by crystallization of the goals of the 
system through the idea of “Quantified Controls” and verifications 
of the purposes in the framework of Simulations even before 
coding the system.   

Furthermore, we hope this methodology will prove to be of special 
value for scientific applications that are by default much more 
complex than business applications. Our choice of bio-systems for 
applying our method proved to be a valuable experience for us as 
it turned our attention to many intricacies of the stringent 
requirements of this domain.  We hope future extensions of this 
research, which can include modeling malfunctioning 
physiological processes and development of Requirements Models 
for prevention or treatment through the use of Process-oriented 
Modeling, will open up grounds for a new line of medical 
applications and devices.   

6.  FUTURE WORK 
The future work will focus on two parts.  The first is extending and 
fine tuning the Process-oriented Modeling to go beyond the 
Problem Model phase and cover the rest of the design lifecycle as 
contended in the Integrated Triple Sequence Model [1].  Along 
this line the current proof of concept application model presented 
in this paper will inevitably be extended to new phases of 
Requirements modeling and specifications modeling which is the 
ultimate goal of the whole enterprise.   

The second part is transforming the current architectural model 
into a code-implemented system [42] by devising a mostly 
automated roadmap.  One of the conceptual requirements for the 
Open Evolvable Systems we laid down in this paper was the 
capability of applying high-level architectural choices without a 
need for conventional coding.  The fact is no software package is 
written to serve as a comprehensive platform for our end-to-end 
purposes and we do not intend to code such a platform from 
scratch.  In fact that would be a pre-coded solution that will 
undermine our evolvability assumptions.  Therefore, our only 
choice is to carefully study the capabilities of the off-the-shelf 
packages as we have done so far, carry out the initiatives to extend 
them for our purposes, and stitch them together to serve our 
requirements and specialized design.   
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