
Towards a Taxonomy of Approaches for Mining of
Source Code Repositories

Huzefa Kagdi, Michael L. Collard, Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242

{hkagdi, collard, jmaletic}@cs.kent.edu

ABSTRACT
Source code version repositories provide a treasure of information
encompassing the changes introduced in the system throughout its
evolution. These repositories are typically managed by tools such
as CVS. However, these tools identify and express changes in
terms of physical attributes i.e., file and line numbers. Recently,
to help support the mining of software repositories (MSR),
researchers have proposed methods to derive and express changes
from source code repositories in a more source-code “aware”
manner (i.e., syntax and semantic). Here, we discuss these MSR
techniques in light of what changes are identified, how they are
expressed, the adopted methodology, evaluation, and results. This
work forms the basis for a taxonomic description of MSR
approaches.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR'05, May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00

Categories and Subject Descriptors
D.2.7. [Software Engineering]: Distribution, Maintenance,
and Enhancement – documentation, enhancement,
extensibility, version control

General Terms
Management, Experimentation

Keywords
Mining Software Repositories, Taxonomy, Survey

1. INTRODUCTION
Software version history repositories are currently being
extensively investigated under the umbrella term Mining of

Software Repositories (MSR). Many of the repositories being
examined are managed by CVS (Concurrent Versions System). In
addition to storing difference information across document(s)
versions, CVS annotates code commits, saves user-ids,
timestamps, and other similar information. However, the

differences between documents are expressed in terms of physical
entities (file and line numbers). Moreover, CVS does not
identify/maintain/provide any change-control information such as
grouping several changes in multiple files as a single logical
change. Neither does it provide high-level semantics of the nature
of corrective maintenance (e.g., bug-fixes).

Researchers have identified the need to discover and/or uncover
relationships and trends at a syntactic-entity level of granularity
and further associate high-level semantics from the information
available in the repositories. Recently, a wide array of approaches
emerged to extract pertinent information from the repositories,
analyze this information, and derive conclusions within the
context of a particular interest.

Here, we present our analyses showing the similarities and
variations among six recently published works on MSR
techniques. These examples represent a wide spectrum of current
MSR approaches. Our focus in on comparing these works with
regards to the following three dimensions:

Entity type and granularity

How changes are expressed and defined

Type of MSR question.

Further, we define notation to describe MSR in an attempt to
facilitate a taxonomic description of MSR approaches. Finally,
we outline the MSR process in terms of the underlying entities,
changes, and information required to answer a high-level MSR
question. We believe this work provides a better insight of the
current research in the MSR community and provides groundwork
for future direction in building efficient and effective MSR tools.

The remainder of the paper is organized as follows: section 2
discusses the various MSR approaches, section 3 gives a formal
definition of MSR, section 4 outlines the MSR process and
requirements, and finally we draw our conclusions.

2. APPROACHES TO MSR
A number of approaches for performing MSR are proposed in the
literature. Here, we discuss these techniques with regards to the
identified entities, questions addressed, evaluation, and results.

2.1. MSR via CVS Annotations
One approach is to utilize CVS annotation information. In the
work presented by Gall et al [2, 3], common semantic (logical and
hidden) dependencies between classes on account of addition or
modification of a particular class are detected, based on the

1

In summary, their technique brings forward various capabilities:version history of the source code. A sequence of release numbers
for each class in which it changed are recorded (e.g., class A =<1,
3, 7, 9>). The classes that changed in the same release are
compared in order to identify common change patterns based on
the author name and time stamp from CVS annotations. Classes
that changed with the same time stamp (in a 4 minute window)
and author name are inferred to have dependencies. In summary,
this work seeks answers to the following representative questions:

Ability to identify addition, modification, and deletion of
syntactic entities without utilizing any other external
information (e.g., AST).

Handles various programming languages and HTML
documents.

Detection of hidden dependencies that cannot be
identified by source-code analysis.

Which classes change together?

How many times was a particular class changed? 2.3. MSR via Heuristics
How many class changes occurred in a subsystem (files in
a particular directory)?

CVS annotation analysis can be extended by applying heuristics
that include information from source code or source-code models.
A variety of heuristics, such as developer-based, history-based,
call/use/define relation, and code-layout-based (file-based), are
proposed and used by Hassan et al [5] to predict the entities that
are candidates for a change on account of a given entity being
changed. CVS annotations are lexically analyzed to derive the set
of changed entities from the source-code repositories. The
following assumptions were used: changes in one record are
considered related; changes are symmetric; and the order of
modification of entities in a change set is unimportant. The
authors briefly state that they have developed techniques to map
line-based changes to syntactic entities such as functions and
variables, but it was not completely clear the extent to which this
is automated.

How many class changes occurred across subsystems?

This technique is applied on 28 releases of an industrial system
written in Java with half a million LOCS. The authors reported
that the logical couplings were revealed with a reasonable recall
when verified manually with the subsequent release. The authors
suggest that logical coupling can be strengthened by additional
information such as the number of lines changed and the CVS
comments.

In another study, the file-level changes in mature software (the
email client Evolution) are studied by German [4]. The CVS
annotations are utilized to group subsequent changes into what is
termed a modification request (MR). Here, the focus is on
studying bug-MRs and comment-MRs to address the following
questions:

These heuristics are applied to five open-source projects written in
C. General maintenance records (e.g., copyright changes, pretty
printing, etc) and records that add new entities are discarded. The
best average precision and recall reported in table 3 of [5] was
12% (file-based) and 87% (history) respectively. The
call/use/define heuristics gave a 2% and 42% value for precision
and recall respectively while the hybrid heuristics did better.

Do MRs add new functionality or fix different bugs?

Are MRs different in different stages of evolution?

Do files tend to be modified by the same developer?

Further effort was on investigating the hypotheses that bug-MRs
involve few files whereas comment-MRs involve large number of
files.

The research in both [8] and [5] use source-code version history to
identify and predict software changes. The questions that they
answered are quite interesting with respect to testing and impact
analysis.2.2. MSR via Data Mining

Data mining provides a variety of techniques with potential
application to MSR. Association rule mining is one such
technique. As an example, the recent work by Zimmerman et al
[8] aims to identify co-occurring changes in a software system,
For example, when a particular source-code entity (e.g., function
with name A) is modified what other entities are also modified
(e.g., functions with names B and C). This is akin to market-
basket analysis in Data Mining. The presented tool, ROSE, parses
the (C++, Java, Python) source code to map the line numbers to
the syntactic or physical-level entities. These derived entities are
represented as a triple (filename, type, identifier). The subsequent
entity changes in the repository are grouped as a transaction. An
association rule mining technique is employed to determine rules

of the form B, C A. Examples of deriving association rules such
as a particular “type” definition change leads to changes in
instances of variables of that “type” and coupling between
interface and implementation is demonstrated. This technique is
applied on eight open-source projects with a goal of utilizing
earlier versions to predict the changes in the later versions.
Although performed at a function and variable granularity, the
best precision reported was 26% at the file-level granularity.

2.4. MSR via Differencing
Source-code repositories contain differences between versions of
source code. Therefore, MSR can be performed by analyzing the
actual source-code differences. Such an approach is taken by the
tool Dex, presented by Raghavan et al [7], for detecting syntactic
and semantic changes from a version history of C code. All the
changes in a patch are considered to be part of a single higher
level change, e.g., bug-fix. Each version is converted to an
abstract semantic graph (ASG) representation. A top-down or
bottom-up heuristics-based differencing algorithm is applied to
each pair of in-memory ASGs specialized with Datrix semantics.
The differencing algorithm produces an edit script describing the
nodes that are added, deleted, modified, or moved in order to
achieve one ASG from another. The edit scripts produced for
each pair of ASGs are analyzed to answer questions from entity-
level changes such as how many functions and function calls are
inserted, added or modified to specific changes such as how many
if statement conditions are changed. Dex supports 398 such
statistics.

This technique was applied to version histories of GCC and
Apache. Only bug-fix patches were considered (deduced from the
CVS annotations), 71 for GCC and 39 for Apache respectively.

2

The differencing algorithm takes polynomial time to the number
of nodes. Average time of 60 seconds and 5 minutes per file were
reported for Apache and GCC respectively on a 1.8 Ghz Pentium
IV Xeon 1GB RAM machine. The six frequently occurring bug-
fix changes as a percentage of patches in which they appear are
reported. Dex reported 378 out of 398 statistics always correct
with an average rate of 1.1 incorrect results per patch.

In an approach by Collard et al [1, 6] a syntactic-differencing
approach called meta-differencing is introduced. The approach
allows you to ask syntax-specific questions about differences.
This is supported by encoding AST information directly into the
source code via an XML format, namely srcML, and then using
diff to compute the added, deleted, or modified syntactic elements.
The types and prevalence of syntactic changes are then easily
computed. The approach supports queries such as:

Are new methods added to an existing class?

Are there changes to pre-processor directives?

Was the condition in an if-statement modified?

While no extensive MSR case study has been carried out using
meta-differencing, it does support the functionality necessary to
address a range of these problems. Additionally, the method is
fairly efficient and usable with run times for translation similar to
that of compiling and computation of the meta-difference is
around five times that of diff.

3. A DEFINITION OF MSR
The investigations described in the previous section have a
number of common characteristics. They all are working on
version release histories (changes), all work at some level of
change granularity (software entity), and most of them ask a very
similar (MSR) question. We also see that the MSR process is to
extract pertinent information from repositories, analyze this
information, and derive conclusions within the context of software
evolution. From these examples we further define MSR by
identifying some fundamental representational issues and defining
the terminology so we can contrast the different approaches.
However, first we discuss the types of questions asked.

3.1. MSR Questions & Results
What types of questions can be answered by MSR? In the
examples described in section 2 we see two basic classes of
questions. The first is a type of market-basket question and the
other deals with the prevalence, or lack of, a particular type of
change. The market-basket1 type question is formulated as: If A
happens then what else happens on a regular basis? The answer to
such a question is a set of rules or guidelines describing situations
of trends or relationships. That is, if A happens then B and C

happen X amount of the time.

This type of question often addresses finding hidden dependencies
or relationships and could be very important for impact analysis.
MSR identifies (or attempts to identify) the actual impact set after
the fact (i.e., after an actual change). However, MSR oftentimes
gives a “best-guess” for the change. The change may not be
explicitly documented and as such must sometimes be inferred.

This is an interesting trade-off and is reflected in the results
described in Hassan et al [5] and Zimmerman et al [8].

The other type of question addressed in the examples discussed
concerns the characteristics of common changes. The work by
Raghavan et al [7] asks the question: What is the most common
type of change in a bug-fix? This also has implications to impact
analysis but not directly.

To even begin to answer these types of high-level questions we
need to address the practical aspects of extracting facts and
information from source-code repositories.

3.2. Underlying Representation
Repositories consist of text documents containing source code
(e.g., routine.h, routine.cpp). The representation of differences
between versions may also contain source code (e.g., output of
diff). If the mining process uses the source code in its original
document form than fact extractors are limited to using a light-
weight approach, such as regular expressions as an API to the
source code. The source code can also be represented in a data
view, such as an AST (Abstract Syntax Tree). The AST view
allows an API that is based on the abstract syntax of the source
code.

The choice of representation is very important. Using a textual
document view allows access to all parts of the document
including comments, white space, and particular ordering
information. Tools such as diff also work on text files. However,
this textual view creates difficulty in determining the contents of a
particular version. On the other hand, using an AST view of the
source code does not easily allow access to white space,
comments, etc.

The representation of the differences between source-code
documents is an extension of the source-code representation.
Textual representations can use tools such as diff. Regions of
lines that are deleted or added are recorded, along with additional
lines of text of the added lines. The ASG tree/graph-based
representations of a program allow for changes to be represented
as tree/graph changes and can include syntactic information easily.

As information is extracted for the purpose of mining it must be
stored. Because of the large amounts of source code involved the
extraction result is often chosen to produce as compact a result as
possible. For example, if the purpose is to take a single
measurement of each source-code document then only this single
result is required.

The higher the abstraction of the extraction result the more
specific the purpose of the extraction. This makes methods and
tools for extracting results unusable for other, even closely related,
applications.

Note that the desire to not store all of the original documents is
partially based on the source-code representation chosen. An AST
representation can be hundreds of times larger than the original
document. There is too much to store in memory simultaneously,
so an external representation format must be used.

These differences in representation and the level of syntactic
information extracted often makes methods and tools for
extracting results unusable for other, even closely related, MSR
applications.

1 The term market-basket analysis is widely used in describing data mining
problems. The famous example about the analysis of grocery store data is
that “people who bought diapers often times bought beer”.

3

3.3. Definitions of Terms 4.1. Entity-Level Information
With respect to MSR the basic concepts involve the level of
granularity of what type of software entity is being investigated,
the changes, and the underlying nature of a change. We present
the definitions of these concepts in an attempt to form a
terminology for what a change is and how it can be expressed
within the context of MSR. If a need arises, these definitions will
be refined to accommodate the future MSR approaches as they
emerge.

The entity-level category addresses which entities changed, the
location of the changed entities, and how many were changed.
For example if functions represent our entities then we want to be
able to answer queries such as:

Which functions were added?

Was the function A modified?

How many functions were deleted?

Definition: An entity, e, is a physical, textual, or syntactic element
in software. Example: file, line, function, class, comment, if-
statement, white-space, etc.

The first query is a discovery or fact extraction activity regarding
functions that were added between given source-code versions
(e.g., a list of functions [f1,f2, .. fn]). Similar questions can be
defined for the deletion, modification, or movement of an entity.
MSR approaches need this information for addressing questions
such as identifying relations between functions that were added
i.e., did a addition/deletion of a particular function lead to the
addition/deletion of other functions?

Definition: A change, , is a modification, addition, or deletion to,
or of, an entity. Additionally, this change defines a mapping from

the original entity to the new entity as in (e) e’, () e’ is

addition, and (e) is deletion. A change describes which
entities are changed and where the change occurs.

The second query regards a particular function of interest. The
research discussed in section 2.1 (CVS Annotations) needs this
type of support to determine whether a particular class was
modified in a given version.

Definition: The syntax of a change is a concise and specific
description of the syntactic changes to the entity. This description
is based on the grammar of the language(s) of entities. We

classify in the context of e as having some specific syntactic
type (if-statement), change type (add, remove), location, etc. For
example: a condition was added to an if-statement; a parameter
was renamed; an assignment statement was added inside a loop;
etc. The notation for deriving the syntax of a change is as follows:

syntax(e,) = (d1, d2, …, dn) where each di is some descriptor of
the syntax.

The last query is an aggregate count that is useful for
identification of higher level semantic changes such as those in the
techniques discussed in section 2.4 (Differencing).

4.2. Change Information
Determining the nature of a change in an entity is the next step in
the process. This kind of change can be syntactic or semantic.
This specific change information can enhance the research
presented in section 2.2 (Data Mining) by enabling the restricted
application of the association rules and thus cutting down the list
of affected entities that are reported. For example, consider a case
where the change to an existing if-statement is only in the

condition. The rule {if-condition change} A B, C would report
B and C as affected entities only when the precondition {if-

condition change} in entity A is satisfied. Augmenting these rules
with the exact nature of change further reduces the number of
affected components and applicable association rules; thus
avoiding false positives. Also, to determine a semantic change,
such as identifying interface changes, this type of knowledge is
needed:

Definition: The semantics of a change – is a high-level, yet
concise, description of the change in the entity’s semantics or
feature set. This may be the result of multiple syntactic changes

that is, = 1 2 … n. For example: a class interface change;
a bug fix; a new feature was added to a GUI; etc. So we can now

define notation for the semantics of a change as: semantics (e,)
= (d1, d2, …, dn) where each di is some descriptor of the semantics.

4. INFORMATIONAL REQUIREMENTS
Mining of Software Repositories (MSR) is operationalized by the
dimensions of the problem and types of information that must be
extracted to support the high-level question. We feel the
following are key dimensions to categorize MSR approaches:

Entity type and granularity used (e.g., file, function,
statement, etc.);

Are the modifications in function A only in if-statements?

Was the conditional in the 2nd if-statement deleted in
function A?How changes are expressed and defined (e.g.,

modification, Addition, Deletion, location, etc.);

Type of question (e.g., market-basket, frequency of a type
of change, etc.).

The higher-level semantic information such as identification of
conditional bugs addressed by research discussed in section 2.4
(Differencing) needs lower-level facts as reported by the above
questions:We have already addressed the type of questions in section 3.1.

We now need to focus on the information necessary to answer
these questions. From the discussion in section 3, we see that two
types of pertinent information need to be extracted to answer MSR
questions, namely entity-level information and information about
the nature of change of an entity. We now describe each category
and the specific types of fact extraction associated with each.

Were only comments changed in function A?

Was the header comment of function A modified?

Is there a change in the code layout in an entity A?

These questions enable analysis to utilize or discard such textual
changes. The research discussed in section 2.3 (Heuristics)
analyzed CVS message annotations to discard header comment
changes and proposed heuristics on predicating change
propagation based on developer name and code layout. This

4

approach can be augmented with the facts gathered by the above
questions.

Table 1. A taxonomy of MSR approaches.

Entity Change Question

Annotation
Analysis

Gall et al class

syntax and
semantic -

hidden
dependencies

market
basket and
prevalence

German
file &

comment

syntax and
semantic –
file coupling

market
basket and
prevalence

Heuristic

Hassan et al
function &
variable

syntax and
semantic -

dependencies

market
basket

Data Mining

Zimmerman
et al

class &
method

syntax and
semantic -
association

rules

market
basket

Differencing

Raghavan
et al

logical
statement

syntax and
semantic –

move
prevalence

Collard
et al

Logical
statement

syntax – add,
delete, modify

prevalence

5. CONCLUSIONS
In Table 1 we present an overview of the discussed approaches
along with their MSR characteristics. We’ve categorized them
generally into four groups (along the left). Then for each, we
identify what granularity of entities they deal with, what types of
changes they express (as defined in section 3.3), and what general
class of question they are trying to address.

There is a large difference in the level to which these approaches
understand the programming language syntax. Most of the
approaches work with a fairly high-level entity. The two
differencing approaches however can work as low as primitive
logical programming language statements (if, while, class, or
function).

Further investigation is necessary to discern between how changes
are expressed. Also, there is very different semantic information

being used in the approaches. The notation we defined fits in well
here but the domains must be further studied to support a more
descriptive taxonomy. It is interesting to notice that both classes
of questions are represented in this survey.

6. ACKNOWLEDGEMENTS
This work was supported in part by a grant from the National
Science Foundation C-CR 02-04175.

7. REFERENCES
[1] Collard, M. L. Meta-Differencing: An Infrastructure for

Source Code Difference Analysis. Kent State University,
Kent, Ohio USA, Ph.D. Dissertation Thesis, 2004.

[2] Gall, H., Hajek, K., and Jazayeri, M. Detection of Logical
Coupling Based on Product Release History in Proceedings
of 14th IEEE International Conference on Software
Maintenance (ICSM'98) (Bethesda, Maryland, March 16 -
19, 1998), 190-198.

[3] Gall, H., Jazayeri, M., and Krajewski, J. CVS Release
History Data for Detecting Logical Couplings in
Proceedings of Sixth International Workshop on Principles
of Software Evolution (IWPSE'03) (Helsinki, Finland,
September 01 - 02, 2003), 13-23.

[4] German, D. M. An Empirical Study of Fine-Grained
Software Modifications in Proceedings of 20th IEEE
International Conference on Software Maintenance
(ICSM'04) (Chicago, Illinois, September 11 - 14, 2004),
316-325.

[5] Hassan, A. E. and Holt, R. C. Predicting Change
Propagation in Software Systems in Proceedings of 20th
IEEE International Conference on Software Maintenance
(ICSM'04) (Chicago, Illinois, September 11 - 14, 2004),
284-293.

[6] Maletic, J. I. and Collard, M. L. Supporting Source Code
Difference Analysis in Proceedings of IEEE International
Conference on Software Maintenance (ICSM'04) (Chicago,
Illinois, September 11-17, 2004), 210-219.

[7] Raghavan, S., Rohana, R., Podgurski, A., and Augustine, V.
Dex: A Semantic-Graph Differencing Tool for Studying
Changes in Large Code Bases in Proceedings of 20th IEEE
International Conference on Software Maintenance
(ICSM'04) (Chicago, Illinois, September 11 - 14, 2004),
188-197.

[8] Zimmermann, T., Weißgerber, P., Diehl, S., and Zeller, A.
Mining Version Histories to Guide Software Changes in
Proceedings of 26th International Conference on Software
Engineering (ICSE'04) (Edinburgh, Scotland, United
Kingdom, May 23 - 28, 2004), 563-572.

5

