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Abstract

Reengineering is the process of examination, under-
standing, and alteration of a system with the intent of im-
plementing the system in a new form. Many approaches
for design recovery or reverse engineering have been sug-
gested, most with some type of support tool. Since a
project’s time constraints may prohibit use of sophisticated
techniques and/or tools due to the learning curves associ-
ated with the techniques and tools, methods that can be ap-
plied in lieu of complex support tools may be required. This
paper describes a case study project involving the reengi-
neering of a network application used by Texas Instruments
to monitor network traffic in a local area network.

1 Introduction

Software maintenance is considered to be the most
costly phase of the software lifecycle. It has been estimated
that approximately 60 percent of the effort in software de-
velopment is in software maintenance [1]. Given that soft-
ware maintenance is an inevitable activity, successful soft-
ware maintenance of large systems depends on several fac-
tors including the existence of accurate documentation of
the system design. In some cases, software and documen-
tation fail to be consistent in that the documentation, and
subsequently the designs, are rarely updated to reflect mod-
ifications made to the system. In other cases the original
system does not have any type of existing documentation
and, as such, any rationale behind the decisions made dur-
ing the implementation of the system are lost. In either
case, the lack of a consistent design has many impacts on
the effectiveness of any efforts to maintain and modify ex-
isting systems.

�This work was performed while this author was a Ph.D. student at
Michigan State University.
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Software reverse engineering is the process of analyz-
ing the components and component interrelationships of
a software system in order to describe that system at a
level of abstraction higher than that of the original sys-
tem [2]. Reengineering is the process of examination, un-
derstanding, and alteration of a system with the intent of
implementing the system in a new form [2]. Software
reengineering is considered to be a better solution for han-
dling legacy code when compared to re-developing soft-
ware from the original requirements.

This paper presents a case study that illustrates how a
combination of object-oriented (OO) and structured analy-
sis and structured design (SA/SD) techniques can be used
in tandem to reengineer an existing application that is used
by Texas Instruments to analyze traffic on local area net-
works. The remainder of this paper is organized as fol-
lows. Section 2 presents background information regard-
ing software maintenance and software reengineering. The
application and domain are described in Section 3. The
methods used for software reengineering are introduced in
Section 4 and applied in Section 5. Section 6 describes re-
lated work, and Section 7 draws conclusions and suggests
further investigations.

2 Background

This section gives background information in the area of
software maintenance and semi-formal analysis and design
techniques.

2.1 Software Maintenance

Figure 1 contains a graphical depiction of a process
model for reverse engineering and reengineering [3]. The
process model is captured by two sectioned triangles,
where each section in a triangle represents a different level
of abstraction. The higher levels in the model are concepts
and requirements. The lower levels include designs and im-
plementations. Entry into this reengineering process model
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begins with system A, where Abstraction (or reverse engi-
neering) is performed to a level of detail appropriate to the
task being performed. For instance, if a system is to be
reengineered in response to efficiency constraints, then ab-
straction to the design level may be appropriate. This task
can also be considered a process of design recovery. The
next step is Alteration, where the system is configured into
a new form at the same level of abstraction. Finally, Re-
finement of the new form into an implementation can be
performed to create system B.

Alteration
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Design

Implementation

System A System B

‘‘Forward Engineering’’‘‘Reverse Engineering’’

Abstraction Refinement

Figure 1: Reverse Engineering Process Model

This paper describes a case study investigation into the
reengineering of a network application. The context of
the investigations are applicable to all phases of the Byrne
reengineering process model [3] and span all levels of ab-
straction.

2.2 Semi-Formal Analysis and Design

Object-oriented development techniques encompass
analysis, design, and implementation. The Object Mod-
eling Technique (OMT) [5] is commonly used in indus-
try and academia. OMT comprises three complementary
models, each of which are simple to use and understand.
The object model describes the static, structural aspects
of the system. The object model captures the objects of
the system and the relationships between the objects. The
dynamic model depicts the temporal and behavioral as-
pects of the system. Finally, the functional model describes
the services provided by the system. Respectively, entity-
relationship diagrams, state transition diagrams, and data
flow diagrams are used to represent the object, dynamic,
and functional models, and each model is only used to
capture a specific perspective of the system. With recent
work [6, 7], rigorous analysis of each of the models is pos-
sible, thus enabling consistency and completeness checks
at the model level prior to the implementation phase.

3 Application

The PACKRAT tool monitors network traffic in order
to provide debugging information to developers during the
development of Ethernet drivers [8]. Currently, the PACK-
RAT tool is being used to investigate the development of

internetworking protocol stacks [8]. In this section we de-
scribe the original PACKRAT system, and then the modi-
fications that were required due to the changing needs of
Texas Instruments.

3.1 Original System

PACKRAT is a network traffic monitoring application
that was implemented for the Microsoft Windows 95 en-
vironment. The original system implementation provided
a facility for communicating with the network interface
driver via the Windows 95 Network Device Interface Spec-
ification (NDIS) interface. A graphical user interface
(GUI) provided users with options for analyzing Medium
Access Control (MAC) layer statistics, such as type and
number of frames captured per second. Additional op-
erations facilitated examination of decoded data captured
from the network. No system documentation existed for
the development of the original PACKRAT system. The
source code for this system was approximately 5,500 lines
of code and supported several users from the software de-
velopment team at the Texas Instruments Network Busi-
ness Unit.

3.2 New Requirements

Several modifications of the PACKRAT system were
requested by the customers and consisted primarily of
changes to two specific areas: user interface changes and
network packet decoding enhancements [8]. The more sig-
nificant modification requirements for PACKRAT involved
support for the decoding of several Transmission Control
Protocol/Internet Protocol (TCP/IP) application protocols
such as Simple Network Management Protocol (SNMP)
Version 1, Telnet, and Domain Name Service (DNS).
The user interface changes dealt with visual presentation
and ease of use issues, including the translation and dis-
play of numeric and character-based Internet Protocol (IP)
addresses as well as Organizationally Unique Identifiers
(OUIs). In this paper we focus primarily upon the reengi-
neering of the network packet decoding functionality since
the modifications, from a reengineering point of view, were
more significant with respect to design recovery and sys-
tem re-implementation.

In addition to the requirements described above, sev-
eral constraints were placed on the reengineering project.
These constraints were largely environmental; the original
PACKRAT tool was implemented in the C programming
language for Intel-based machines running the Windows
95 operating system. One of the constraints on the project
was time-based; the project from original proposal to de-
livery was limited to fifteen weeks, where all five members
had other commitments in addition to this project.



3.3 Reengineering Development Team

The reengineering development team consisted of five
members, each of varying levels of software engineering
experience. Although each member had experience with
OMT, they had limited exposure to software maintenance
and reengineering. As such, a short tutorial on the methods
for reengineering was required. The methods, as described
in Section 4, were developed with the intention of being
lightweight in the amount of new techniques that would
have to be learned by the developers. The primary goal of
these techniques was to leverage the experience the team
members had obtained from previous software analysis and
design projects.

4 Method

In this section we present the methods used for design
recovery and modification, and discuss the overall con-
straints on the project.

4.1 Process Overview

In the context of the reengineering process model pre-
sented in Section 2, the investigations described in this pa-
per are depicted by the diagram shown in Figure 2. Specif-
ically, this paper describes a case study that involved three
distinct phases of investigation: 1) a design recovery, or ab-
straction step, 2) a design modification, or alteration step,
and 3) a design implementation, or refinement step. In the
diagram, the phases are depicted by the dashed arrows that
originate from the implementation level to the design level
in System A, from the design level of System A to the de-
sign level of System B, and from the design level of System
B to the implementation level of System B, respectively.
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Figure 2: Project Context Diagram

4.2 Multi-level Approach to Design Recovery

Several techniques have been suggested for recovering
designs from existing systems. These techniques range
from formal approaches [9], to semi-formal functional ab-
straction [10], and structural abstraction [11]. The repre-
sentations constructed by these techniques are often biased
by the implementations, and as such, do not always corre-
spond to existing high-level models.

The method used to perform the case study described in
this paper is based on a combined top-down and bottom-up
approach for design recovery. Recent investigations have
suggested that this kind of approach is reasonable [11, 12].

For this project, the technique used for design recovery
involved three distinct steps. First, a high-level concept
model for the system was developed and refined based on
customer interviews and empirical investigations involving
the existing system. Second, a low-level source model, in
the form of a call graph, was constructed. Finally, an iter-
ative top-down and bottom-up abstraction and encapsula-
tion step was performed. In this step, the low-level models
were abstracted into higher-level entities and then verified
against refinements of the high-level models that were con-
structed in the first step.

Many reengineering approaches have focused on the re-
covery of objects from existing code [13, 14]. In order to
facilitate the recovery of an object-oriented model from the
existing system, the use of the OMT method was combined
with the SA/SD technique. For the high-level models of
the system, OMT was used as the modeling notation. At
the very low-levels of design, SA/SD was used as the mod-
eling notation. The integrating mechanism between OMT
and SA/SD is the data-flow diagram, a model used by both
techniques. As such, the developers found this approach to
be sufficient and effective.

Although many tools exist that support the activities
described above, including Rigi [15], and the Reflexion
Model (RM)-Tool [11], it was determined that due to time
constraints and to avoid the learning curve associated with
using a new support tool, that a simple source code browser
would be used to derive the source models, and that the en-
capsulation of models into higher-level entities would be
performed manually. In retrospect, as described in Sec-
tion 5.4, the developers found that the results obtained due
to this decision were the source of some confusion about
the functionality represented by the recovered design.

4.3 Design Modification

The primary goal of the method described in Section 4.2
is to provide developers with a detailed understanding of
the existing system. With this understanding, the develop-
ers could then modify the existing design in such a way that
would facilitate the incorporation of the requested modifi-
cations to the system.

The next step in the process was to change the design
of the current system by analyzing the modification re-
quirements requested by the project customer. These re-
quirements allowed the developers to identify the context
for the requested modifications and to focus their efforts
on impacted subsystems. Specifically, this step involved
three distinct phases. First, a requirements analysis was
performed that addressed the new requirements for the sys-



tem. Second, an impact analysis was performed on the re-
covered design to identify the parts of the system that were
to be modified based on the new requirements. Finally, the
recovered design was modified in order to incorporate the
new requirements into the functionality of the existing sys-
tem. For each of these phases, analysis and modeling were
performed in the context of the OMT notation.

4.4 System Modification

Modification of the recovered designs to incorporate
new requirements is referred to as the alteration step [3].
After a design has been altered to incorporate new re-
quirements or constraints, traditional software develop-
ment techniques can be used to develop the code that sat-
isfies the modified design. An implicit constraint in the
development phase of the project was to reuse the existing
source code. In addition, the system was to target the same
operating system (Windows 95) and source language (C).

5 Case Study Details
In this section we summarize the application of the

methods described in Section 4 as they were applied to the
PACKRAT system.

5.1 Design Recovery

As mentioned previously, the design recovery phase of
PACKRAT consisted of three distinct steps: creation of
a high-level concept model, construction of a low-level
source code model, and finally, a top-down, bottom-up
refinement of the resulting models until a medium-level
model was derived. The first two steps were performed
concurrently; the iterative third step was completed after
both high-level and low-level models were constructed.

5.1.1 High-Level Models

The high-level concept models for the PACKRAT sys-
tem were constructed using two sources of information.
The first source of information was a result of data collec-
tion from an empirical analysis of the existing system. This
consisted of operating PACKRAT in a manner similar to
that of the typical user population and observing the output
of the system. For instance, a typical scenario would con-
sist of selecting a network device, capturing packets, and
then viewing decoded information (output). From observ-
ing the various types of output of the system, the develop-
ers were able to abstract the output into classes that shared
common characteristics (i.e., output in the same window,
output at the same time, etc.).

The second source of information that was used to con-
struct the high-level models was data gathered from inter-
views with the developers of the original software. How-
ever, in gathering design information from the original de-
veloper, a conscious effort was made to recognize imple-
mentation bias.

Figures 3 and 4 depict the high-level object and func-
tional models of the PACKRAT system, respectively. Fig-
ure 3 is the model of the various objects extracted from the
system based on empirical observations and developer in-
terviews. The object model shows classes as labeled rect-
angles and relationships between classes as lines. In the
notation, the diamond symbol at one end of a line is used
to indicate an aggregation relationship. As indicated by
Figure 3, PACKRAT is an aggregation of global data and
various GUI components (i.e., Frame Window, View Win-
dow, etc.).
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Figure 3: High-level Object Model

A functional model, or data flow diagram, uses circles
to denote process, labeled arcs to denote data flow, labeled
parallel lines to denote data stores, and rectangles to indi-
cate external entities or actors. Figure 4 is a data flow dia-
gram that shows three high-level PACKRAT modules: Win-
Main, Core Process, and Core Process Management. Win-
Main is the primary driver for PACKRAT and is responsi-
ble for the initialization of GUI components and acting as a
communication mechanism between the GUI components
of the application. Core Process is another major compo-
nent of the system that handles all output interaction with
the user, performs all data manipulation associated with
processing packets, and interacts with the network device.
Core Process Management is primarily concerned with the
initialization and termination of the system.

5.1.2 Low-Level Model

The low-level source model, shown in Figure 5, depicts
the call graph of the original PACKRAT system. In the dia-
gram, a vertex represents a function, with the lines between
vertices indicating a calling relationship. Specifically, a
vertex B connected by a line to another vertex A, where B
lies below A in the graph, is called-by A. Using a source
browser (i.e., a program that facilitates hypertext source
code traversal, where procedure calls serve as hypertext
links), the developers constructed a call graph that repre-
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Figure 5: System Call Graph
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sents the entire PACKRAT system. The call graph served
as the entry point for the low-level reverse engineering and
design recovery process.

The root module in the hierarchy of Figure 5 is Win-
Main, which maps directly to the high-level concept model
(in Figure 4). Below WinMain, there exists a number of
functions devoted to handling events for a particular win-
dow in the GUI. Among these are MainWinProc (han-

dles events for the main window), ListWinProc (handles
events for the List Window), DebugWinProc (handles
events for the Status Window), HexDumpWinProc (han-
dles events for the Hex Dump Window), and DecodeWin-
Proc (handles events for the Decode Window). Most of the
data processing for PACKRAT occurs in functions called by
these event handlers, as can be seen in Figure 5.

After analyzing the various event handlers, it was de-
termined that two particular routines, the ListWinProc
and DecodeWinProc, had redundant behavior. These two
event handlers were responsible for decoding packets that
were related to the packets listed in separate windows. The
ListWinProc performed decoding on packets for a scrol-
lable list used for selecting packets. Information for each
entry in the list included packet size, source/destination IP
address, and an index uniquely identifying that packet. The
DecodeWinProc performed more extensive decoding on
packets that were selected from a different scrollable list.
The decoded information had a dependency on the proto-
col of the selected packet, but there were fields that were
similar to fields decoded by the ListWinProc handler such



as frame type, source/destination IP address, size of packet,
and transport layer protocol, among others.

Global data was a particularly prominent feature of
the PACKRAT system and consisted of various items that
were critical to the operation of PACKRAT. Among such
data were the capture buffer or Frame List that was used
to store captured packets, various packet statistics, and
a pointer to the most recently captured frame. Figure 6
shows an object model of a subset of the global data items.
The object modeling of the global data provided a level
of abstraction that facilitated the use of global data as
“classes”, thus providing a disciplined policy for access
and modification of the global data. This model became
of particular interest during the modification phase, as de-
scribed in Section 5.2.1.

5.1.3 Medium-Level Model

The next step was to construct a medium-level design
model from the high-level concept and low-level source
models. The approach involved two concurrent tasks: ab-
straction of the low-level source model of Figure 5 into
higher-level entities, and refinement of the high-level con-
cept model in Figure 4 into lower-level entities. Both of
these tasks were performed iteratively until they resulted
in a single, medium-level model. The result of these activ-
ities is shown in Figure 7.

There were several levels of abstraction between the
medium-level and low-level models. Due to space con-
straints, we focus on only one intermediate level of abstrac-
tion. Figure 8 shows the relationship between the medium-
level (Figure 7) and low-level models (Figure 5), where the
dotted lines enclosing groups of functions were abstracted
into corresponding modules of the medium-level model (in
Figure 7).
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Figure 6: Subset of Global Data Object Model

Several features of the call graph in Figure 5 facilitated
the abstraction of the various procedures into the mod-
ules shown in Figure 8. First, naming conventions pro-
vided the initial cues about the partitioning of the sys-
tem into initialization routines and shutdown routines. As
such, the Cleanup function and all functions that it di-
rectly or indirectly calls were abstracted into the Shutdown
module. Similarly, InitApplication, InitInstance, and all
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Figure 8: Call graph abstraction

functions called by InitInstance were abstracted into the
Startup module.

Another cue provided by the call graph was a result of
comparing the in-degree and out-degree of a vertex. If
there exist vertices with a large difference in out-degree
and in-degree, then they can be considered to be candi-
dates for module drivers. Thus, the vertex (procedure) and
all of its calls can be abstracted into higher-level modules.
Based on this criterion, MainWinProc and all of the func-



tions it calls were abstracted into the Main Window Process
module of the medium-level model.

The final cue that was used to abstract procedures
into higher-level modules was provided by the informa-
tion obtained from creating the high-level concept models.
Using this information, all child window event handlers
such as ListWinProc, DecodeWinProc, DebugWinProc,
and HexDumpWinProc were abstracted into the Children
Window Process module of the medium-level model.

The recovery of a design using reverse engineering tech-
niques can facilitate many software maintenance activi-
ties, including the modification of systems to incorporate
new requirements. Using the techniques described in Sec-
tion 4.2, the development team found that the recovered
design formed a solid basis for the next step of the reengi-
neering process, the design modification phase.

5.2 Design Modification

This section describes the modifications needed to add
the application layer protocols to the decode ability of the
PACKRAT system. The technique used to introduce modi-
fications into the system was based on a two-step process.
First, the recovered models described in Section 5.1 were
analyzed to determine what modifications, if any, could be
made in order to facilitate the extension of system func-
tionality. In essence, the models were analyzed in order
to determine if any system restructuring could be used to
increase system extensibility. Second, the recovered mod-
els were analyzed to determine the impact of changes due
to the new decoding requirements. The impact analysis
involved determining what parts of high-level, medium-
level, and low-level models that needed modification in or-
der to provide the newly requested functionality.

The proposed modifications, specifically, the addition of
routines to support the SNMP, DNS, and Telnet protocols,
presented two major design challenges. First, a bridge be-
tween the old and new systems that facilitated the use of
the old system as a “black box” was desired. It was deter-
mined that the existence of such a bridge would facilitate
the separation of new functionality from previous function-
ality both in concept and in the implementation. The sec-
ond design challenge was to find a mechanism for incorpo-
rating several new application layer protocols to the decod-
ing ability of PACKRAT that was extensible and minimized
the modifications to the structure of the system. The re-
mainder of this section discusses each of these challenges
in detail.

5.2.1 Addressing the Design Challenges

The PACKRAT system uses a three step process for
translating and displaying network frame information to
users. First, frame data is captured from the network via
the NDIS interface and placed into a global list, known as

the Frame List. Next, the frame is decoded according to
the protocol embedded in the frame. Finally, the decoded
frame data is displayed to the user.

As shown in Figure 6, the original PACKRAT system re-
lied heavily on the use of global variables and direct access
to a buffer for storing raw (undecoded) frames, a technique
for encapsulating the old system was needed in order to
avoid affecting previously implemented functionality. As
such, an object-oriented wrapper was created in the form
of a list that encapsulated frame-related information.

The wrapper, called the Decode List, is essentially an
ordered aggregation of Decode Information nodes, each
of which contains all of the data (decoded and otherwise)
pertaining to a particular captured frame. The Decode
List, shown in Figure 9, would is instantiated whenever a
new set of frames is loaded into the Frame List class of the
old system. Each node is an individual object whose struc-
ture is based on the TCP/IP protocol stack. That is, each
node is an aggregate of structures that correspond to the
layers of abstraction present in the TCP/IP protocol stack.
The instances of the structures were designed as subclasses
and thus the exact composition of each node is dependent
on the protocol sequence used by the frame to which it cor-
responds. The structures that correspond to the Data Link,
Network, and Transport layers contain all of the decoded
information relating to those layers. The Application In-
formation class encapsulates information about the appli-
cation layer and contains general information about the ap-
plication portion of a frame. This information is used by
the application decode modules in their individual decode
processes. In Figure 9, the Frame class corresponds to the
physical layer and has a direct relationship to the frames in
the Frame List in Figure 6. Specifically, this class serves
as a high level interface to the Frame List class of Figure 6
and makes the Frame List an implicit part of the Decode
List shown in Figure 9. In this respect the Decode List
replaces the original function of the Frame List, because
it mediates any interaction with the Frame List once the
Decode List has been initialized.

Another design challenge in the system was to sup-
port system extensibility so that new application protocols
could be decoded by the PACKRAT system. By construct-
ing the Decode List class as described above, all future
extensions could access data in a uniform manner, thus
separating the functionality of the old system, the current
modifications, and all future modifications.

5.2.2 Adding Application Layer Functionality

Based on the requirements, the addition of application
layer decoding was of primary importance. Figure 10 de-
tails the upper levels of the application decode modules
and their place within the Decode Module. The nature of
the interaction between the system and the decode modules
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is based on the Decode List and the output format used by
the display windows. A particular decode submodule is
passed a node in the Decode List that corresponds to the
frame currently being displayed in the display windows.
Once a frame has been decoded, the submodule returns a
text buffer that contains a formatted set of decode informa-
tion. The text buffers from each decode module are then
concatenated and displayed.

The Decode Module of the new system contains four
separate decode modules. Each of these decode modules
are modified versions of the original decode module and
correspond to three application layer protocols: Telnet,
DNS, and SNMP. The fourth module, Determine Applica-
tion Protocol, is used to identify the application frame type,
like DNS, SNMP, and Telnet, before the decoding process
begins.
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Figure 10: Application Decode Data Flow Diagram

Due to space constraints, we focus on the design of the
SNMP module. Descriptions of the remaining modules are

contained in a design document constructed by the devel-
opment team [16]. The SNMP protocol is defined in such
a way that each SNMP message is an ordered collection of
Type/Length/Value (TLV) encoded fields. While the mean-
ing and order of each field is dependent upon the message
type, all fields are TLV encoded. One of the challenges
this presented is that by definition all TLV encodings are
of variable length. This means that each variable length
message is made up a variable number of variable length
fields.

Figure 11 shows the object model of the SNMP Encod-
ing class. The SNMP Encoding Object is an aggregation
of one or more TLV Encoding Objects. Each TLV Value
subclass represents the different formats of an SNMP En-
coding object, thus allowing the software to facilitate the
issue of variable length TLV encodings. The advantages of
this design include encapsulation, extensibility, and strict
adherence to the SNMP standards [17]. The design cur-
rently handles only SNMP version one packets, but could
be extended to handle version two of future versions with
minor modifications to the model.
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Figure 11: SNMP Object Model

5.3 Implementation

The implementation phase for the changes to the sys-
tem, including testing, occurred over a period of approx-
imately four weeks. The primary challenges in introduc-
ing the required modifications were related specifically to
the language and environment constraints placed on the
project. For instance, the language constraint placed upon
the development team was that the system be built using
the C programming language. As such, since the devel-
opment team chose to perform an object-oriented analy-
sis and design of the modifications, an object-based im-
plementation using the C programming language was re-
quired.

Another explicit constraint placed on the project was
that the system be developed for the Windows 95 envi-
ronment, which was natural since the original PACKRAT

system was a Windows 95 application. This presented a
particularly significant challenge to the development team
since their primary experiences had been limited to a Unix



environment.
The final system consisted of approximately 11,500

lines of code, a size that doubles that of the original PACK-
RAT. This fact is attributed to the complexity and number
of modifications required by the customers. The project
was completed well within the schedule for project deliv-
erables and received positive feedback from the customers
at Texas Instruments.

5.4 Lessons Learned

Several lessons were learned by the reengineering de-
velopers of the PACKRAT system. This section highlights
several of those lessons.
� The adoption of and adherence to a systematic pro-

cess for performing reengineering yielded many ben-
efits and was the primary factor in the success of the
project. Specifically,

– The design recovery step facilitated gaining an
understanding of how the required modifications
fit into the context of the original system.

– The design recovery step was useful for gaining
an in-depth understanding of the PACKRAT sys-
tem in a short amount of time. The recovered
design artifacts such as call graphs, object mod-
els, and data flow diagrams, provided a mecha-
nism for discovering information about system
structure and provided context for the individual
source code procedures.

– The design recovery phase made the code imple-
mentation step much more straightforward and
less prone to errors than trying to re-implement
the system without understanding the design
first.

� A reverse engineering technique that combines the
use of an OO design methodology and a SA/SD de-
sign methodology can facilitate the transition of a
system from a procedural style to an object-oriented
style.

� Use of systematic reengineering methods facilitated
the completion of the overall project well within the
schedule for project deliverables.

� The lack of detailed documentation for the original
system posed significant challenges in the design re-
covery step, particularly, given the time constraints.

� Overall, the lack of software tools to support the
reengineering process made the process more diffi-
cult, time-consuming, and error-prone. In particular,
source code analysis tools for generating call graphs
would have expedited the design recovery stage. To
address this concern, we are in the process of devel-
oping a suite of tools that support informal and formal
reverse engineering techniques.

� The development team emphasized the need for a sys-
tematic process to recover and document the design
prior to re-implementation. The development team
found that the design recovery process and the by-
products significantly reduced the amount of time it
took to re-implement and test the system.

� Software reengineering is a very attractive method for
making enhancements to an existing system. How-
ever, the learning curve for software reengineering is
too high to perform and learn at the same. Users of the
software reengineering process must be knowledge-
able about the techniques and tools before applying
them to a software system.

6 Related Work

Several reengineering efforts have been reported in the
literature. Neighbors [18] described an approach for con-
structing reusable components from large existing systems
by identifying the tightly coupled subsystems contained in
the system. The approach is primarily based on the use of
informal and experimental methods and the main objective
was to make observations about the experiences encoun-
tered with a few large systems. Lewis and McConnell [19]
describe a reengineering process and its application to a
real-time embedded system. The seven step process de-
scribes high-level milestones that range from reverse engi-
neering and reengineering to retargeting and final test. The
reporting of our case study investigation differs from each
of these in that we describe the reverse engineering and
reengineering activity in detail while Neighbors describes
observations that resulted from performing a reengineering
activity, and Lewis and McConnell describe a high-level
process that includes reverse engineering and reengineer-
ing as a step, but do not emphasize the experiences of per-
forming the step.

7 Conclusion and Future Investigations

The ability to analyze software project requirements
in order to identify a process model for the subsequent
development of the software is an invaluable tool for
any software developer. For traditional software develop-
ment, identification of the appropriate process is straight-
forward as there are several well-documented development
methodologies available. For software reengineering, the
identification of a process is more difficult since the suite of
available reengineering methodologies has not been stan-
dardized. However, there have been investigations into the
generation of project-specific software reengineering pro-
cess models [20].

The value of case studies is in their ability to provide a
data point for assessing currently available techniques and
for providing motivation for new techniques and tools. In
this paper, several interesting and validating lessons were



learned: (1) a systematic process for reengineering is a
fruitful activity, (2) a combined OO and SA/SD approach
to reverse engineering can facilitate the transition of a sys-
tem from a procedural style to an object-oriented style, and
(3) the lack of tools to support reengineering can be inhibit-
ing. In order to address the tools issue, we are investigat-
ing the creation of a maintenance workbench that incorpo-
rates the use of several classes of support tools including
those that produce and verify structural abstractions [15]
and functional abstractions [10, 21].

Software engineering courses in a typical undergradu-
ate program focus mainly upon the construction compo-
nent of the software development lifecycle. In order to bet-
ter prepare the undergraduates with the inevitable software
maintenance activity, we are investigating the creation of
software maintenance courses that emphasize the use of
reengineering techniques.
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