
The QualOSS Open Source Assessment Model
Measuring the Performance of Open Source Communities

Martín Soto and Marcus Ciolkowski
Fraunhofer Institute for Experimental Software Engineering (IESE)

Kaiserslautern, Germany
{soto, ciolkows}@iese.fraunhofer.de

Abstract

Open Source Software (OSS) has an increasing
importance for the software industry. Similar to
traditional (closed) software acquisition, OSS
acquisition requires an assessment of whether its
quality is sufficient for the intended purpose, and
whether the chances of being maintained and
supported in the future, as well as of keeping certain
quality standards over time, are sufficiently high. In
this paper, we present an approach toward a
comprehensive measurement framework for OSS
projects, developed in the EU project QualOSS. This
approach takes into account product quality as well as
process maturity and sustainability of the underlying
OSS community.

1. Introduction

Free and Open Source Software (F/OSS) plays and
increasingly important role in companies and organiza-
tions of all types and sizes. Clearly, the potentially
large benefits offered by F/OSS are appealing to deci-
sion makers in charge of software acquisition. In many
situations, F/OSS offers valuable functionality with
zero licensing costs, while simultaneously allowing for
independence from particular software vendors. 

The fact that F/OSS software is free of licensing
costs, however, does not make its adoption completely
cost-free. Indeed, the implementation of F/OSS sys-
tems in an organization, as well as their use as compo-
nents in larger systems, are accompanied by all manner
of risks and uncertainties. A wrong decision regarding
the choice of F/OSS applications or components for a
particular purpose may have serious negative conse-
quences for the organization involved.

For this reason, the EU Project QualOSS has
worked on developing a model framework for evaluat-
ing F/OSS projects in order to support procurement de-
cisions. Given the variety of potential use cases for
F/OSS in organizations, supporting this type of deci-
sions is not an easy task. On the one hand, the decision
to use a particular F/OSS application or component
may be related to product characteristics, such as its

particular functionality, its resource consumption un-
der particular types of load, or the size and structure of
its code, among many others. On the other hand, acqui-
sition decisions are often related to the chances a soft-
ware product has of being maintained and supported in
the future, as well as of keeping certain quality stan-
dards over time. The QualOSS Model is therefore in-
tended to be comprehensive, covering both the robust-
ness of the evaluated product as such, as well as its
evolvability; that is, its ability to thrive and keep grow-
ing over time.

The measurement strategies corresponding to these
two aspects are widely different from each other. For
the most part, product aspects of F/OSS software can
be measured using the same techniques available for
other types of software. Indeed, F/OSS often offers an
advantage in this respect, because the source code is
always available and can be readily analyzed. In fact,
in recent years, F/OSS has often been the target of
quantitative code quality analysis for both research and
industrial purposes. [2]

Quality aspects related to evolvability, on the other
hand, cannot usually be analyzed using existing tech-
niques. In fact, evolvability is .mainly associated with
the community behind a F/OSS component, which can
be seen as its supplier. In the case of commercial soft-
ware, supplier companies are normally evaluated using
process assessment methods such as those defined by
the CMMI-DEV [3] or SPICE [4] standards, which, for
a number of reasons, can hardly be applied in their
original form to a F/OSS community. Fortunately, the
open nature of F/OSS projects provides us with plenty
of information sources, such as source code, mailing
lists, bug tracking systems, and versioning systems. By
analyzing these information repositories, it is possible
to investigate many quality aspects related to a F/OSS
community in a systematic and reliable way.

This paper concentrates on the subset of the
QualOSS Model that contains specialized metrics for
analyzing the performance of F/OSS communities. The
main questions addressed by these metrics is whether a
community is likely to survive in the long term (sus-
tainability) and whether it will be able to consistently
produce high quality software over time (maturity). In

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE  
498



the following, we provide a general description of the
QualOSS model, discuss its community-related aspects
in some more detail, and outline our approach for eval-
uating these aspects.

2. Related Work: OSS Assessment

In recent years, Open Source Software has often
been used as the target of quantitative analyses of code
quality, mostly due to the fact that large code reposito-
ries are available for analysis. Many publications exist
on (semi-)automatic analysis of code, mailing lists, bug
tracking, and versioning systems. Contrary to what
happens with code and repository analysis, few publi-
cations have addressed OSS processes so far. A paper
by Michlmayr [2] is one notable exception, providing
evidence of disciplined processes in OSS projects and
relating it with project success.

As a reaction to the insight that software quality is
not restricted to code aspects, assessment models for
OSS projects have emerged, whose aim is to support
potential OSS users in making decisions regarding the
selection of OSS products. The most prominent exam-
ples are the Qualification and Selection of Open
Source Software (QSOS) model [9], two different
models called Open Source Maturity Model (OSMM)
�one from CapGemini [7] and one from Navica [8]�
and the Open Business Readiness Rating (OpenBRR)
model [6]. Although these models take the OSS prod-
uct into account (i.e., code, documentation), as well as
the community that produces it, they only have a rudi-
mentary process perspective, if any. This lack of cov-
erage for the process perspective constitutes one of our
main motivations for proposing the more comprehen-
sive approach discussed here.

3. The QualOSS Model

As already mentioned, the QualOSS model was
originally designed to support the quality evaluation of
F/OSS projects, with a focus on evolvability and ro-
bustness. It is composed of three types of interrelated
elements: quality characteristics, metrics, and indica-
tors. Quality characteristics correspond to the attributes
of a product or community that we consider relevant
for evaluation. Metrics correspond to concrete aspects
we can measure�on a product or on its associated
community assets�which we expect to be correlated
with our targeted quality characteristics. Finally, indi-
cators interpret a set of measurement values related to
one quality characteristic; that is, they define how to
aggregate and evaluate the measurement values in or-
der to obtain a consolidated value that can be readily
used by decision makers when performing an evalua-
tion.

The quality characteristics in the model are orga-
nized in a hierarchy of two levels that we call charac-

teristics and subcharacteristics. The subcharacteristics
are considered to contribute in some way or another to
the main characteristic they belong to. In order to de-
fine our hierarchy of quality characteristics, we relied
mainly on three sources: (1) Related work on F/OSS
quality models, (2) general standards for software
quality, such as ISO 9126 [5], and (3) expert opinion;
that is, we conducted interviews among industry stake-
holders to initially derive relevant criteria for the
QualOSS model

Table 1: Product-related quality characteristics in QualOSS

Char. Definition

Maintain-
ability

The degree to which the software product can be
modified. Modifications may include corrections,
improvements, or adaptation of the software to
changes in the environment, and in requirements
and functional specifications.

Reliability The degree to which the software product can
maintain a specified level of performance when
used under specified conditions.

Transferability
(Portability)

The degree to which the software product can be
transferred from one environment to another.

Operability The degree to which the software product can be
understood, learned, used and is attractive to the
user, when used under specified conditions.

Performance The degree to which the software product provides
appropriate performance, relative to the amount of
resources used, under stated conditions.

Functional
Suitability

The degree to which the software product provides
functions that meet stated and implied needs when
the software is used under specified conditions.

Security The ability of system items to protect themselves
from accidental or malicious access, use,
modification, destruction, or disclosure.

Compatibility The ability of two or more systems or components
to exchange information and/or to perform their
required functions while sharing the same
hardware or software environment.

Given our emphasis on covering not only F/OSS
products but the communities behind them, we have
grouped the quality characteristics into two groups:
those that relate to the product, and those that relate to
the community. On the product side, the QualOSS
model covers the top-level quality characteristics listed
in Table 1. The community side of the model, in turn,
covers the characteristics listed in Table 2.

The remainder of this article provides more details
about this second group of quality characteristics.

Table 2: Community-related quality charact. in QualOSS

Charact. Definition

Maintenance
capacity

The ability of a community to provide the resources
necessary for maintaining its product(s) (e.g.,
implement changes, remove bugs, provide support)
over a certain period of time 

Sustainability The likelihood that a F/OSS community remains
able to maintain the product or products it develops
over an extended period of time.

Process
Maturity

The ability of a developer community to
consistently achieve development-related goals

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE  
499



Charact. Definition

(e.g., quality goals) by following established
processes. Additionally, the level to which the
processes followed by a development community
are able to guarantee that certain desired product
characteristics will be present in the product.

4. Community Measures

Contrary to what happens in the product domain,
development communities are the main differencing
aspect between commercial and F/OSS products. It is
not only that development happens in a loose commu-
nity of (often volunteer) peer developers with almost
no hierarchy, but that many important assets of the
community are also open for inspection. This way,
mailing lists, discussion forums, version management
repositories, bug tracking systems, and a number of
other resources are available on the Internet for inter-
ested parties to study and contribute to.

Our approach to F/OSS community evaluation is
based on looking at such open community assets in or-
der to assess relevant community quality characteris-
tics. Our base assumption regarding community quality
is twofold. On the one hand, certain characteristics of
the community strongly influence product quality, es-
pecially when observed over an extended period of
time. On the other hand, the ability of a F/OSS com-
munity to remain active over time is obviously very
important for product survival, and thus very relevant
when considering sustainability. In the following, we
discuss these characteristics in some more detail.

 4.1. Maintenance Capacity

Two aspects are particularly relevant to mainte-
nance capacity, namely, the number of contributors to
a project, and the amount of time they are able and
willing to contribute to the development effort. The
QualOSS model attempts to create a general profile of
the contributor community and its level of activity by
aggregating data coming from the analysis of mailing
list, forum, and bug tracking system archives, as well
as from versioning system logs.

Versioning logs, for example, provide data about
the number of code contributors, as well as about the
size and frequency of their individual contributions.
This data can be related to the measures such as the
project code size and the number of open problem re-
ports to evaluate the capacity of the community for
maintaining the software. Similarly, the activity of
mailing lists and discussion forums, as well as the fre-
quency of the contributions to the bug report system,
can be used to produce a similar picture of a product's
user community.

 4.2. Sustainability

Community sustainability is affected by factors
such as the composition of a community, and its ability
to grow or regenerate (i.e., engage new members to
take the place of those leaving the community). For in-
stance, if a community is mainly composed of employ-
ees of a particular company, there is a higher risk of
the project becoming stalled if the company decides to
cut its financial support. On the other hand, a commu-
nity that is composed only of volunteers may be less
likely to disappear suddenly, but may also have less re-
sources available to keep the project running over
time. Consequently, heterogeneity in a F/OSS commu-
nity is expected to enhance sustainability. Heterogene-
ity can be evaluated with relatively simple methods,
such as looking at the contributors' email or web ad-
dresses in order to guess their affiliations. Although
this technique is not 100% reliable, it can provide a
general idea of a community's composition.

With regard to grow and regeneration, a communi-
ty's history in this respect can be a good predictor of its
future behavior. Past regeneration can be observed, for
example, by analyzing contributions to the version
management system or to the mailing lists over time.
For example, regeneration of the developer community
can be observed by looking at the first and last contri-
butions of each individual developer over the project's
history. If the same core group of developers have
been active along the project history, this does not re-
flect significant regeneration. On the other hand, if the
number of developers remained stable or tended to
grow despite of individual developers leaving the
project at times�as evidenced by their lack of activity
after a certain point in time�there is a clear tendency
of community regeneration. A regenerating community
can be considered more sustainable since it is more
likely to survive the lost of important contributors over
time.

 4.3. Process Maturity

It is a common belief that F/OSS communities oper-
ate in an ad-hoc, chaotic way. Evidence shows, how-
ever, that this is far from being the case for many suc-
cessful F/OSS communities. Indeed, there is evidence
of good practices being applied in an established and
disciplined fashion by a variety of F/OSS communities
and with regard to different areas of the software de-
velopment process. Examples of disciplined good
practices can be observed in prominent F/OSS commu-
nities in areas such as Version and Configuration Man-
agement, Release Management, and Requirements
Management. We are convinced that many of these
practices correspond to the spirit, if not directly to the
letter, of the practices and goals specified by well-

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE  
500



known process assessment standards such as CMMI-
DEV.
In its current form, our Open Source process
evaluation framework covers a number of basic
software development tasks. Each of these tasks is
evaluated with respect to five main questions, which
constitute a simplified form of the sort of assessment a
standard maturity model would require:
1) Is there a documented process for the task?
2) Is there an established process for the task?
3) If there is an established process, is it executed

consistently?
4) If both an established, consistent process, and a

documented process could be found, do they
match?

5) Is the process adequate for its intended purpose?
In order to address these questions for each of our

selected tasks, we have already defined simple evalua-
tion procedures. These procedures use data from public
data sources such as mailing lists, bug/issue tracking
systems and version management systems, among oth-
ers. The basic processes currently covered by the
QualOSS process assessment are listed in Table 3.

Table 3: Processes covered by QualOSS

Process Description

Change
submission and
review

Submit changes (e.g., defect corrections,
enhancements) to the project for potential
inclusion. Also, review changes submitted by
community members.

Peer review of
changes

In some projects, changes proposed by
developers with direct commit rights are also
subject to review by other community members.
This type of peer reviews can significantly
contribute to code quality.

Propose
significant
enhancements

Some projects have disciplined processes that
allow community members to formally propose
enhancements for discussion by the community.

Report and
handle issues
with the product

For obvious reasons, this process is present in
almost all Open Source projects in some form or
another.

Test the
program(s)
produced by the
project

Most projects doing repeatable testing do it by
defining an automated test suite. If no test suite is
available, there may be explicitly defined manual
test cases, but this is much less likely to happen. 

Plan releases Either releases are done on a time-based fashion
or based on a feature �road map�.

Release new
versions of the
product

Release processes in Open Source often include
the creation of a number of alpha, beta and
release-candidate versions that are delivered by
the developers in order to obtain feedback from
the community (active users of an OSS system
are often willing to test these versions and report
about problems they may find). Release processes
also often include running a test suite or
performing other forms of formal testing.

Backport
corrections in
the current
release to
previous stable

When a stable and an unstable (development)
branch of a project are maintained
simultaneously, so-called backports are often
necessary that move corrections or selected
improvements made to the development branch

Process Description

releases into the stable branch.

5. Evaluation and Calibration

At the time of this writing (June 2009) we are con-
ducting the final evaluation of the QualOSS model.
The evaluation targets up to 20 F/OSS projects, which
will be assessed by applying the complete QualOSS
model to them. Projects selected for the evaluation in-
clude projects that, according to expert judgment, are
considered successful, together with projects that are
considered unsuccessful. By comparing results for
these two project groups, we expect to be able to corre-
late measurement results with the overall quality of a
project and, in particular, of the community behind it.
We plan to utilize this comparison for adjusting the in-
dicators and weights used for aggregating indicators, to
make sure that the QualOSS model is able to discrimi-
nate between successful and unsuccessful projects.

Additional aspects of the evaluation include the ef-
fort required for conducting an assessment. Some of
the community measures can be automatically com-
puted, and their collection requires only setting up
measurement tools. Other measures, for example the
ones related to process maturity, require more manual
effort. Current results indicate that performing the full
QualOSS requires less than five person-days for large
projects.

ACKNOWLEDGMENTS

This work was supported in part by the EU
QualOSS project (grant number: 033547, IST-2005-
2.5.5). We would like to thank Sonnhild Namingha,
from Fraunhofer IESE, for proofreading this paper.

REFERENCES

[1] Marcus Ciolkowski and Martín Soto: Towards a
Comprehensive Approach for Assessing Open Source
Projects. MetriKon 2008, Munich, Germany.

[2] Martin Michlmayr. Software Process Maturity and the Success
of Free Software Projects. In: Zieli ski,� K., Szmuc, T. (Eds.),
Software Engineering: Evolution and Emerging Technologies.

[3] Software Engineering Institute (SEI): Capability Maturity
Model Integration (CMMI) for Development, Version 1.2,
2006.

[4] ISO/IEC 15504-5:2006, Software Process Improvement and
Capability Determination, Part 5.

[5] ISO/IEC 9126 International Standard, Software engineering �
Product quality, Part 1: Quality model, 2001.

[6] Business Readiness Rating. Information available from http://
www.openbrr.org/.  Last checked 2009-03-09.

[7] Cap Gemini: OSS Partner Portal. Internet address:
http://www.osspartner.com/. Last checked 2009-03-09.

[8] Navica Software Web Site. Internet address:
http://www.navicasoft.com/.  Last checked 2009-03-09.

[9] Qualification and Selection of Open Source software (QSOS)
Web Site. Internet address: http://www.qsos.org/. Last
checked 2009-03-09.

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE  
501


