
 26

The Relevance of Software
Documentation, Tools and Technologies: A Survey

Andrew Forward
University of Ottawa

800 King Edward
Ottawa, Ontario, Canada K1N 6N5

+ 1 613 255 3492

aforward@site.uottawa.ca

Timothy C. Lethbridge
University of Ottawa

800 King Edward
Ottawa, Ontario, Canada K1N 6N5

+ 1 613 562 5800 x 6685

tcl@site.uottawa.ca

ABSTRACT
This paper highlights the results of a survey of software profes-
sionals. One of the goals of this survey was to uncover the
perceived relevance (or lack thereof) of software documentation,
and the tools and technologies used to maintain, verify and
validate such documents. The survey results highlight the prefer-
ences for and aversions against software documentation tools.
Participants agree that documentation tools should seek to better
extract knowledge from core resources. These resources include
the system’s source code, test code and changes to both. Resulting
technologies could then help reduce the effort required for
documentation maintenance, something that is shown to rarely
occur. Our data reports compelling evidence that software profes-
sionals value technologies that improve automation of the docu-
mentation process, as well as facilitating its maintenance.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]: Docu-
mentation

General Terms
Documentation, Experimentation, Human Factors, Measurement

Keywords
Software documentation, documentation technologies, software
engineering, software maintenance, program comprehension,
documentation relevance, documentation survey

1. INTRODUCTION
This paper presents the results of a survey of professionals in the
software industry. The survey was conducted in April and May of
2002. This survey was constructed to uncover, among other
things:

• The current industrial application of documentation in
software projects.

• The likes and dislikes of software practitioners regarding
documentation-related technologies as well as their opinions
about potential improvements.

The documentation we consider in this research includes any
artifact whose purpose is to communicate information about the
software system to which it belongs, to individuals involved in the
production of that software. Such individuals include managers,
project leaders, developers and customers.

The forms of documentation we consider therefore include
requirements, specifications, architectural documents, detailed
design documents, as well as low level design information such as
source code comments.

In this paper we will discuss various documentation attributes.
These describe information about a document beyond the content
provided within. Example attributes include the document’s
writing style, grammar, extent to which it is up to date, type,
format, visibility, etc. Documentation artifacts are entities that
communicate information about the software system; they include
whole documents or elements within a document such as tables,
examples, diagrams, etc.

1.1 Motivation
During our interactions with software professionals and managers,
we first observed that some large-scale software projects had an
abundance of documentation. These individuals agreed that little
was understood about the organization, maintenance and rele-
vance of these documents.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’02, November 8-9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-594-7/02/0011…$5.00.

 27

A second observation was that several small to medium-scale
software projects had little to no software documentation. Indi-
viduals in these groups said they believed in the importance of
documentation, but timing, budget and scheduling constraints left
few resources for these individuals to adequately document their
work.

The primary questions arising from the above interactions are:

• How is software documentation used in a project?

• How does that set of documents favorably contribute to the
software project (such as improving program comprehen-
sion)?

• How can technology improve the use and usefulness of
such documentation?

One of the large-scale projects sought practical solutions to
organizing and maintaining document information. Meanwhile,
the smaller projects were looking for the benefits of documenta-
tion from both a value-added and a maintenance perspective.

In search of answers, we performed a systematic survey to ques-
tion the thoughts of software practitioners and managers. Our
approach is to build theories based on empirical data; possibly
uncovering evidence that questions our intuition and common
sense about documentation and its role in software engineering.

1.2 Related Work
Curtis et al [5] interviewed personnel from 17 large software
projects. Their analysis was focused on the problems of designing
large software systems, but many results report directly about the
use (and mis-use) of documentation in a software project.

Our work provides statistical data that affirm some of the docu-
mentation issues Curtis identified.

Abdulaziz Jazzar [10] conducted an empirical investigation using
a comparative case study research method. The basis for the work
was concerned with the requirements for information system
documentation.

Jazzar's work resulted in eight hypotheses that attempt to model
the requirements for achieving effective, high quality documenta-
tion products and processes.

Our work complements Jazzar's as we focused on the attributes of
quality documents, whereas Jazzar focused on the process of
quality documentation.

In addition, our work contributes knowledge about several other
facets of documentation including the current use and perception
of software documentation tools and technologies.

1.3 Background
Before conducting the main survey described in this paper, we
conducted a pilot study to help develop and refine the questions.
The pilot-study participants were sampled from a fourth year
software engineering course offered at the University of Ottawa in
January and March 2002. Half of the 32 participants had over one
year experience in the software industry.

The official survey, conducted in April 2002, featured fewer and
more concise questions with an improved sampling approach. All

participants had at least one year of experience in the software
industry; several had over ten years experience.

A summary of the survey data as used in this paper, as well as a
more detailed account of the results is available on-line [7].
Individual responses and identifying information have been
withheld to protect confidentiality. The University of Ottawa’s
Human Subjects Research Ethics Committee approved the
conducting of the survey.

1.4 Importance
The survey results presented in this paper are important for
various reasons and to several audiences:

• Individuals interested in documentation technologies can
use the data to better understand which existing technolo-
gies may be more appropriate than others, and why.

• This same information can be used to design tools and
support features that improve the documentation process.

• Software decision makers can use the data to justify the use
and selection of certain documentation technologies to best
serve the information needs of the team.

1.5 Outline
The remainder of this paper is organized as follows:

Section 2 describes the method under which the survey was
conducted and the way in which we categorized participants based
on their responses.

Section 3 highlights several interesting findings from the gathered
data.

Section 4 summarizes the participants’ demographics based on
professional experience in the software industry.

2. SURVEY METHOD
2.1 Question Topics
The survey consisted of 50 questions of various types including
multiple-choice, short answer, ratings, and free-form questions.

The question topics included, among others:

• The role of software team members in the process of writ-
ing, maintaining and verifying documentation.

• The participant’s personal preference for different types of
documentation, and their effectiveness.

• The ability of a document’s attributes, as opposed to its
content, to promote (or hinder) effective communication.

• The state of software documentation in the participant’s
organization.

• Comparison of past projects to current ones.

• The effectiveness of documentation tools and technologies.

• Demographics of the participants.

 28

2.2 Participants
Participants were solicited in three main ways. The members of
the research team approached:

• Management and human resource individuals of several
high-tech companies. They were asked to approach employ-
ees and colleagues to participate.

• Peers in the software industry.

• Members of software e-mail lists. They were sent a generic
invitation to participate in the survey.

Most participants completed the survey using the Internet. A few
replied directly via email.

There were a total of 48 participants that provided responses that
were complete and contained valid data.

The participants were categorized in several ways based on
software process, employment duties and development process as
outlined below.

We divided the participants into two groups based on the individ-
ual’s software process as follows:

• Agile. Twenty-five individuals that somewhat (4) to strongly
(5) agree that they practice (or are trying to practice) agile
software development techniques, according to Question 29
of the survey.

• Conventional. Seventeen individuals that somewhat (2) to
strongly (1) disagree that they practice agile techniques, or
indicated that they did not know about the techniques by
marking ‘n/a’ for not applicable, according to Question 29
of the survey.

Our rationale for the above division is that the proponents of agile
techniques promote somewhat different documentation practices
from those recommended in conventional software engineering
methodologies [1]. [2].

In addition, we divided the participants based on current employ-
ment duties as follows:

• Manager. Twelve individuals that selected manager as one
of their current job functions, according to Question 44.

• Developers. Seventeen individuals that are non-managers
and selected either senior or junior developer as one of their
current job functions, according to Question 44.

Finally, we divided the participants based on management’s
recommended development process as follows:

• Waterfall. Thirteen individuals that selected waterfall as the
recommended development process, according to Question
46 of the survey.

• Iterative. Fourteen individuals that are non-waterfall partici-
pants and who selected either iterative or incremental devel-
opment process, according to Question.

3. SURVEY RESULTS
3.1 Technologies in Practice
This section highlights several documentation tools with which
the participants have had experience. The participants listed
technologies they found useful, and ones not so useful.

Question 36 asked which software tools the participants find most
helpful to create, edit, browse and / or generate software docu-
mentation.

Table 1 outlines the most frequently cited technologies based on
the 41 responses to question 36.

Table 1: Useful Documentation Technologies

 Documentation Technology Frequency Percentage of
Participants

 MS Word
(and other word processors)

22 54 %

 Javadoc and similar tools
(Doxygen, Doc++)

21 51 %

 Text Editors 9 22 %
 Rational Rose 5 12 %
 Together (Control Centre, IDE) 3 7 %

Other technologies that participants found useful include Ar-
goUML, Visio, FrameMaker, Author-IT, whiteboards and digital
cameras, JUnit and XML editors.

Question 37 asked which tools the participant finds the least
helpful.

Several of the tools listed as most helpful by many participants
were selected as least helpful by a few. These tools included MS
Word and word processors (15% said they were least useful),
JavaDoc and similar tools (12%), text editors (7%) and Rational
Rose (2%).

In general, there is evidence that two types of technologies
emerged as the most helpful for software documentation:

• Word and text processors. Although perhaps not the most
efficient means of communication, these processors are
flexible and in general easy to use.

• Automated documentation tools. These tools improve
document maintenance by removing the need for this type of
maintenance altogether.

An interesting comment from one of the participants about
documentation technologies (extracted from question 37) was:

"The purpose of documentation is communication. Some
tools are overapplied and the communication factor is
lost. For example, a low level design tool should be easy
to use in a brainstorming type of scenario when develop-
ers are hashing out the way to do something (currently,
whiteboards are very effective for such interactions). If a
low level design tool thinks its artifacts are an essential
part of the software documentation to be maintained rig-
orously beyond that collaboration session, then that tool
has an unwelcome fault."

 29

This individual believes strongly in the purpose of documentation
being that of communication. As such, some documentation
efforts have a finite lifetime; such as the artifacts resulting from a
low-level design tool. The participant believes that low-level
design tools which over-emphasize maintenance are severely
faulted. The ideas of document lifetime and over-emphasis on
maintenance will be further explored in this paper.

3.2 Is Documentation Maintained?
This section illustrates the extent to which documentation is
maintained. The data presented below substantiates the claim that
software documentation is rarely, if ever, updated. This informa-
tion will serve as the basis for several other sections in this paper.

Question 4 asked the participants from personal experience how
long it takes for supporting documentation to be updated when
changes in the system occur. The documents we considered
include: requirements, specifications, detailed design, low level
design, architectural, and testing / quality documents

The participants selected from fixed values ranging between
‘updates are never made’ (score of 1) and ‘updates are made
within a few days of the changes’ (score of 5).

Table 2 illustrates the preferred (mode) score, the percentage of
responses of that score as well as the textual meaning of the score.

Table 2: How often is documentation updated when changes
occur in a software system?

 Document Type Mode % of Mode In Words
 Requirements 2 52 % Rarely
 Specifications 2 46 % Rarely
 Detailed Design 2 42 % Rarely
 Low Level Design 2 50 % Rarely
 Architectural 2 40 % Rarely

Testing / Quality
Documents 5 41 % Within days

Simlarly, question 20 asked if the participants agreed that docu-
mentation is always outdated.

Many participants somewhat agreed (43%) with that statement,
and a considerable number of individuals strongly agreed (25%).

The fact that documentation is infrequently updated does not
imply that our sample participants work on projects of lower
quality or that proper software engineering practices are not in
place. In fact, another part of our survey indicates that software
quality seems to be improving despite little to no improvement in
the quality of software documentation [6].

The evidence that documentation is rarely updated is important
from a technology perspective. Since our results imply that usage
of tools that support documentation maintenance will be sporadic
at best, such tools must enable users unfamiliar with a document
to quickly comprehend its structure and content so they can make
consistent and correct changes. The tools must also be efficient
from a task perspective, helping users to quickly accomplish what
they intended to achieve.

3.3 Evolving Documentation Needs
This section affirms the fact that the information needs of software
professionals evolve over the lifetime of a project [1], [4].

Question 27 asked to what extent participants agreed that docu-
mentation useful during inception / construction differs from that
which is useful during maintenance and testing.

The participants rated the question as follows: (1) strongly
disagree, (2) somewhat disagree, (3) indifferent, (4) somewhat
agree, and (5) strongly agree.

Overall, many participants strongly (32%) and somewhat (46%)
agreed that their needs for different types of documentation
change throughout a project’s lifecycle. Only a small portion of
participants strongly disagreed (7%) with the statement. The
results are consistent among all participant categories outlined in
Section 2.2.

Question 22 asked the participants if they agreed that most
software documents have a finite useful lifetime and should
subsequently be discarded or removed.

Table 3 compares the percentage of individuals that disagreed
(score of 1 or 2) with those that agreed (score of 4 or 5) with
question 22 based on the categories outlined in Section 2.2.

Table 3: Does documentation have a finite lifetime?

 Participant
Category

Percentage
Disagree (%)

Percentage
Agree (%)

Sample Size

 All 50 % 45 % 46
 Agile 52 % 44 % 25
 Conventional 59 % 41% 17
 Manager 50 % 42 % 12
 Developer 47 % 47 % 17
 Waterfall 54 % 46 % 13
 Iterative 46 % 54 % 13
It is important to note that few participants had neutral opinions
about this question and in general there was a strong split of
opinion. Another interesting point of analysis is that question 22
contains two sub-questions asking

• Do documents have a finite useful lifetime?

• If so, should they be discarded afterwards?

As mentioned, from Question 27 we observe that the document
needs of most participants changes over time. This suggests that
these individuals would also agree that a document has a finite
useful lifetime. If this is true, then the disagreement in question 22
most likely stems from how these documents should be treated
once they are no longer used, either archived or discarded. The
fear to discard documents may be the result of not knowing
whether, how, or when others might use a particular document.
There may also be a reluctance to discard documentation due to
the effort and resources required to produce it. It has been shown
that archiving all documents and related artifacts has proved to be
unsuccessful [8] – it tends to be impossible to search and use such
a collection.

If few resources were expended to produce a document, then
perhaps individuals would be less hesitant to discard such docu-

 30

mentation. If this hypothesis is true, then a potentially important
niche for lightweight documentation tools may emerge. We will
further describe the concepts of lightweight documentation, with
future work set to determine its relevance to the documentation
engineering community.

As well, if archiving documentation could be based on usage, and
its management somewhat automated, then improved navigation
would be possible, improving efforts to retrieve pertinent and
hence better documentation [11]. In later sections, we will provide
additional insight into a document’s useful lifetime.

3.4 Documentation Usage
This section highlights which types of documents are most used
and by whom.

Question 6 asked how often the participant personally consulted
the available software documentation between never (1) and
always (5).

In general and as expected, the results were diverse varying from
never to always. Overall, the most popular document was the
specification document, whereas quality and low-level documents
were the least consulted (mean of 2.96, st. dev 1.31).

Table 4 lists the most used documents based on the categories
outlined in Section 2.2.

Table 4: Extent to which the most consulted document type is
typically consulted

 Participant
Category

Document Type most
consulted

Mean Consulta-
tion

 All Specifications 3.85
 Waterfall Testing / QA 3.88
 Iterative Specifications 4.50
 Agile Specifications 3.47
 Conventional Specifications 4.38
 Manager Requirements 3.60
 Developer Architectural 4.33

Most categories referenced specification documents most often,
even though these documents are rarely updated as shown in
Section 3.1. Although one would not argue that up-to-date
documents are preferred, is it a requirement for useful and rele-
vant documentation?

3.5 Relevant document attributes
This section discusses how certain attributes contribute to a
document’s effectiveness.

Question 9 asked the participants how important particular
document attributes contribute to its overall effectiveness. Partici-
pants gave rating between 1 (least important) and 5 (most impor-
tant).

Table 5 lists the attributes considered in Question 9 in descending
order based on the attributes perceived contribution to a docu-
ment’s effectiveness.

Table 5: Document attributes and effectiveness

 Document Attribute Mean of
Q9

Std.
dev.

% Rate
5

% Rate
1 or 2

 Content – the document’s
information

4.85 1.57 85 % 0 %

 Up-to-date 4.35 0.89 46 % 0 %
 Availability 4.19 0.79 41 % 4 %
 Use of examples 4.19 0.85 37 % 4 %
 Organization – sections /

subsections
3.85 0.64 30 % 4 %

 Type – req, spec, design,
etc.

3.78 0.63 26 % 11 %

 Use of diagrams 3.44 0.60 15 % 22 %
 Navigation – quality of

internal / external links
3.26 0.44 19 % 33 %

 Structure – arrangement of
text, diagrams, figures

3.26 0.60 11 % 22 %

 Writing Style – sentence /
paragraph structure,
grammar

3.26 0.67 7 % 19 %

 Length – not too long or
short

3.15 0.64 7 % 22 %

 Spelling and grammar 2.93 0.85 0 % 22 %
 Author 2.63 0.41 7 % 48 %
 Influence to use it 2.62 0.48 12 % 50 %
 Format – pdf,, doc, txt,

xml, etc.
2.42 0.58 0 % 54 %

For a more comprehensive analysis of the perceived relevance of
certain documentation attributes, please refer to [6]. Specifically
relating to documentation engineering, the data suggests that
technologies and processes should:

• Focus on content and allow the author to easily create and
maintain content rich documents.

• Focus on availability and allow for comprehensive publish-
ing capabilities.

• Focus on examples and allow for better integration of
examples within a document.

3.6 Support for document automation
This section describes two viable approaches to improve docu-
mentation maintenance technology.

Question 24 asked if participants agree that software documenta-
tion contains a lot of information that can be extracted directly
from the system’s source code itself.

Question 30 asked if participants agree that automated testing
(such as J-Unit) helps exhibit the true state of a system and is a
useful tool for software documentation.

Overall, many participants strongly (22%) or somewhat (37%)
agreed with the statement that a lot of information can be ex-
tracted directly from the source code. As well, 23% strongly and
49% somewhat agreed that automated testing provides resources

 31

that serve as useful documentation. Few participants (11% and 5%
respectively) were strongly against the ideas above.

The evidence suggesting that test code contains a lot of useful
data has important implications. For instance,

• It may be useful for information extraction tools to consider
analyzing test source code for the purpose of documentation.

• Documenting results of automated system testing may better
communicate the true features of a system.

Participants generally support the idea of improving document
automation, and more research is required to determine what data
should be extracted, and by what means.

3.7 Improving documentation through track-
ing
Although more information should be extracted from the source
code (as shown above), the process cannot be entirely automated.
As one participant described “they [automated documentation
tools] don’t collect the right information.”

This section describes the concept of tracking software dynamics
(changes in a software project) for the purpose of documentation
maintenance. For instance, as changes are made to a system’s
source code, then all relevant documentation that refers to that
code would be marked as potentially requiring updating.

Question 31 asked participants if they agreed that a tool to track
changes in software system for the purpose of document mainte-
nance would be useful.

An overwhelming number of participants strongly (42%) and
somewhat (40%) agreed with that statement, whereas only a few
(7%) disagreed.

Based on the data from this survey, we believe the following
requirements are justified for any technology relating to a docu-
mentation tracking mechanism as described above.

First, the technology should complement existing documentation
tools to aid tool adoption and project integration. We feel it is
important the technology focus on project dynamics (changes to
software and related document artifacts) as opposed to documen-
tation maintenance. From Section 3.1, we see that a variety of
tools are already employed for documentation tasks and it is
unlikely that individuals will adopt new technologies if it means
they must abandon current ones.

Second, we suggest the technology support traceability among
documents as well as between source code. As such, the technol-
ogy could apply concepts similar to that of authoritativeness in
hyperlinked environments [11]. This concept suggests that
documents that reference (as well as are referenced by) by the
most authoritative sources are also likely to be relevant and
worthy of attention. Using proven techniques such as authorita-
tiveness, the technology could improve its ability to rank and
recommend relevant documents to its audience.

Third, it is important that the technology be able to report possible
discrepancies and suggest the order in which maintenance should
occur based on user feedback and the relative importance of the
document.

We believe that such a technology would improve document
quality and maintenance for the following two important, yet
distinctive reasons:

• First, possible inconsistencies between documents and
source code are highlighted for the user, helping to provide a
maintenance map when updating documentation.

• Second, maintenance can be prioritized. Based on the notion
that out-dated documentation can still be a useful [6], one
can then base maintenance on user feedback and necessity
regarding document inconsistencies as opposed to solely on
the fact that a document may be outdated.

3.8 Supporting Lightweight Documents
This section brings together several key pieces of information to
present a foundation in support of lightweight [1], everyday
documentation.

Key features of lightweight technologies include supporting

• Content creation over maintenance. Documents are rarely
maintained. Technologies should be easy to use and support
the creation of information as opposed to its maintenance.

• Ideas over accuracy. There is evidence to support the claim
that documentation functions best as a communication me-
dium (which need not always be accurate or up-to-date to be
useful) [6]. Tools should facilitate the communication of
ideas, and prompt feedback. For example, a whiteboard and
digital camera can create effective documentation [4].

• Simplified features. The tools most preferred for documenta-
tion include word processors and text editors (see Section
3.1). These technologies provide extensive freedom to users
and should be a role model for most documentation tools.

• Automated archiving. As seen in Section 3.3, many indi-
viduals are unlikely to discard documentation. However, too
much documentation can decrease the usefulness of the en-
tire repository [8]. Archiving based on user preferences and
usage could reduce the total number of visible documents
without actually having to discard any.

• Reader feedback. Feedback is an important tool of commu-
nication [1], [4]. As a consequence, the easier the reader can
provide feedback, the more attuned the writer can become at
providing useful content.

3.9 Project Size Independence
This section provides evidence that the conclusions drawn in
previous sections appear to be independent from the project size
(based in thousands of lines of code, KLOCs).

Question 41 asked what for the size of the participants’ current
project in thousands of lines of code (KLOCS). The available
sizes were less than 1, 1-5, 5-20, 20-50, 50-100, over 100 KLOCS
or N/A.

Table 6 illustrates the project size distribution for all categories
outlined in Section 2.2.

 32

Table 6: Participants Project Size in KLOCs

 Participant
Category

Percent of
projects between
1 and 20 KLOCS

Percent of
projects >=
50 KLOCS

Number of
Individuals
considered

 All 29 % 35 % 45
 Waterfall 36 % 44 % 13
 Iterative 31 % 39 % 13
 Agile 36 % 44 % 25
 Conventional 24 % 18 % 16
 Manager 33 % 50 % 12
 Developer 35 % 35 % 17

It is interesting to point out that a larger then expected portion of
agile participants are working on large projects (agile develop-
ment is typically associated with small projects). Our phrasing of
practicing agile techniques helps explain this high percentage. In
the context of our research, individuals were asked if they practice
agile techniques. Agreement with this statement does not neces-
sarily imply that the project itself is agile. As such, it is not
unfounded to have such a large portion of agile techniques applied
to large projects.

Using Spearman's Rank Correlation [9], the correlation between
project size and the individual’s software techniques (ranging
from highly conventional to highly agile) was very low (-0.09).
Similarly, the correlation of project size to the individual’s role
(ranging from highly managerial to highly developmental) was
quite low (0.19).

The low correlation above, and the fair representation of the
software categories outlined in Section 2.2 suggest that the results
cited in previous sections should hold regardless of project size.

4. DEMOGRAPHICS
In this section, we will describe the participants’ demographics.
The divisions separate individuals based on software experience,
current project size and software duties. The purpose of this
section is to show that the survey was broad-based, and therefore
more likely to be valid in a wide variety of contexts.

Table 7 illustrates the participant’s experience in the software
field (based on number of years in the industry).

Table 7: Participants’ Software Experience

 Software Experience (years) Number of
Participants

Percentage

 < 1 0 0 %
 1 to 4 11 23 %
 5 to 10 14 30 %
 > 10 22 47 %
Table 8 indicates the current job functions held by the partici-
pants. Please note that one individual can have several functions.

Table 8: Participants’ Employment in the Software Field*

 Job Functions Number of
Participants

Percentage

 Sr. Software Developer 19 40 %
 Software Architects. 17 36 %
 Project Leader 14 30 %
 Manager 12 26 %
 Technical Writers 10 21 %
 Quality Assurance 9 19 %
 Jr. Software Developers 5 11 %
 Other 4 9 %
 Software Support 3 6 %
 None of the above 3 6 %
 Student 1 2 %

* Note that many participants performed one or more function.

It appears from the data above that most employment areas in the
software field have been well represented. The two somewhat
under-represented categories are Junior Developers and Software
Support. This survey was not directed at students since they
probably would have lacked the experience to provide useful
results.

5. SUMMARY
The data from the April 2002 survey of software professionals can
be helpful in guiding the design of software documentation
technologies including tools, notations and methodologies that
will more promptly satisfy the needs of real software projects. As
well, decision makers will be able to choose more appropriate
documentation strategies and technologies based on needs as
opposed to generic expectations.

In regards to documentation engineering, the following observa-
tions and suggestions can be drawn from this paper:

• Document content can be relevant even if it is not up to
date. (However, keeping it up to date is still a good objec-
tive). As such, technologies should strive for easy to use,
lightweight and disposable solutions for documentation.

• Documentation is an important tool for communication and
should always serve a purpose. Technologies should enable
quick and efficient means to communicate ideas as opposed
to providing strict validation and verification rules for build-
ing facts.

Learning to cope with the fact that documentation is almost
always out-dated and inconsistent, we can then appreciate and
utilize it as a tool of communication. Documentation, like com-
munication, can then be judged based on its ability to impart
knowledge in its audience; something which need not be up-to-
date and consistent (just good enough to serve its purpose) [4].

5.1 Future Work
Based on these findings as well as the additional questions raised
from this survey, the list below provides some possible avenues
for continued research in this field.

• Conducting a second, much larger survey on this topic, or a
derivative depending on the focus of the research.

 33

• Developing technologies that help track changes in a soft-
ware system for the purpose of documentation maintenance.

• Developing technologies to rank and recommend documen-
tation based on factors beyond readability, such as authorita-
tive techniques and usage statistics.

• Developing technologies to extract documentation from test
code.

As we learn more about how technology can improve documenta-
tion, we hope for improved techniques to communicate informa-
tion about a software system in a clear and concise manner.
Research in this area could widen our definition of documenta-
tion beyond just documents.

ACKNOWLEDGMENTS
Our thanks to all participants and participating companies (who
must remain anonymous). Thank you to members of the Knowl-
edge Based Reverse Engineering (KBRE) group at the University
of Ottawa. Your support has been greatly appreciated. A sincere
thank you to Jayne Forward for helping edit this paper.

REFERENCES
[1] Ambler, Scott and Ron Jeffries. Agile Modelling: Effective

Practices for Extreme Programming and the Unified Proc-
ess, John Wiley & Sons, 2002, chapter 14.

[2] Ambler, Scott. The Fragile Manifesto, Software Develop-
ment, August 2002.

[3] Berglund E. (2000) Writing for Adaptable Documentation,
IPCC/SIGDOC 2000, September 24-27, Cambridge, Massa-
chusetts, p497 – 508.

[4] Cockburn, A. Agile Software Development, Addison-Wesley
Pub Co, 2001.

[5] Curtis Bill, et al. A field study of the software design process
for large systems. Communications of the ACM, Volume
31, Number 11, November 1988, p1268 – 1287.

[6] Forward, A. Software Documentation – Building and
Maintaining Artefacts of Communication. Thesis submission
available online at [7]

[7] Forward, A. Survey data website available at
www.site.uottawa.ca/~aforward/docsurvey/

[8] Glass, R. Software maintenance documentation, SIGDOC
'89, Pittsburg, Pennsylvania, USA, ACM Press, p18 – 23.

[9] Institute of Phonetic Sciences (IFA).
http://fonsg3.let.uva.nl/Service/Statistics/RankCorrelation_co
efficient.html

[10] Jazzar, Abdulaziz and Walt Scacchi. Understanding the
requirements for information system documentation: an em-
pirical investigation, COOCS `95, Sheraton Silicon Valley,
California, USA, ACM Press, p268 – 279.

[11] Kleinberg, J. Authoritative sources in a hyperlinked envi-
ronment. Proc. 9th ACM-SIAM Symposium on Discrete Al-
gorithms, 1998.

[12] Medina, Enrique Arce. Some aspects of software documenta-
tion, SIGDOC '84, Mexico City, Mexico, p57 – 59.

[13] Ouchi, Miheko L. Software Maintenance Documentation,
SIGDOC’85, New York, USA, ACM Press, p18 – 23.

[14] Scheff, Benson H. and Tom Georgon. Letting software
engineers do software engineering or freeing software engi-
neers from the shackles of documentation. SIGDOC '88, Ann
Arbor, Michigan, USA, ACM Press, p81 – 91.

[15] Thomas, Bill and Scott Tilley. Documentation for software
engineers: what is needed to aid system understanding?, SI-
GODC '01, Sante Fe, New Mexico, USA, p 235 – 236.

	INTRODUCTION
	Motivation
	Related Work
	Background
	Importance
	Outline

	SURVEY METHOD
	Participants

	SURVEY RESULTS
	Is Documentation Maintained?
	Evolving Documentation Needs
	Documentation Usage
	Relevant document attributes
	Support for document automation
	Improving documentation through tracking
	Supporting Lightweight Documents
	Project Size Independence

	DEMOGRAPHICS
	SUMMARY
	Future Work

	ACKNOWLEDGMENTS
	REFERENCES

