[bookmark: _GoBack]CSSE 575
Project Work - Your Journal

Due date – Mondays of class weeks, 7 AM (tentative). Put it in the Moodle drop box, to make it easy for me to grade all of these.

Here's what we are looking, generally, for in a Weekly turn-in about your project:

1. Entries are dated and consecutive, so I can grade what you did each week.
2. It applies what we discussed in class, the previous week, and any prior material.
3. It specifically describes examples of or changes you made to your code, in the project you chose.
4. Try to apply as many of the concepts we discussed as you can.
5. Include a couple coding examples, for key principles discussed this week.
6. Explain how the principles discussed in class drove those changes / enhancements.
7. Describe related changes to design and testing of the system.
8. Describe changes made to related documents, such as design documents. If you don't have any of these (!), describe in the journal what would change in the design.

Include in the discussion, what worked and what didn't, and why. Or, why you chose some things to try and not others. (Kindly avoid making your whole entry a litany of why nothing we discussed in class could possibly be applied to the project.)

Turn in cumulative journal each time.

Size - Maybe 2 -3 pages / week of description, not counting the coding or other examples.

What you do in your journal will lead to class discussion:

· Each week, be ready to describe in class how you applied / tried to apply the topics from the prior week.

Example: There's a sample journal out under Resources. It differs in detail, and it's for a different class. However, it shows very well the level of technical sophistication I'm looking for. Something that shows you really thought about applying the concepts, and aren't just doing this for a grade.

Special entries for certain weeks:

Week 1:

1. Please start by describing why you picked this project, and some general description of it. Include how familiar you are with it, and how "big" and complex it is in some sense.

2. Be sure to include something about "bad smells" you analyze in your system (the major topic for Week 1):

· Go through your system looking for examples of as many of the "smells" as you can.
· For learning these systematically, it's good to go through some goodly amount of code, one smell at a time.
· For each smell:

a. Cite one or more places where you believe fixing it would be a good idea, and say why.
b. Try to find one place where you wouldn't fix it, and say why.
c. On at least a reasonable number of these that you would fix, describe what you might do (using as a guideline the discussion of the smells on the slides).

Note – If I revise the schedule, then the special notes about content expected for those weeks, shown below, could change!

Week 2:

· Blog about working on Milestone 2.
· Add to an entry about how you could use test-first (or plans to do that, or what it would take to do that).
· Read about Shu Ha Ri, at http://c2.com/cgi/wiki?ShuHaRi and discuss where you think you are on this, about refactoring.

Week 3:

· Blog about working on Milestone 3.
· Include anticipated refactorings considered this week
· What you tried and abandoned, etc.
· How you planned what to do, and implemented it, as you did it
· If we also talk about topics from software evolution (Week 9), wait till Week 9 to include the suggested topics from those lectures.

Week 4:

· Make actual changes to your code, and record how these went, making observations about the process you use, and the changes themselves.
· See the Milestone 4 topic list, for things to consider as you make these changes!

Week 5:

· As you make a sample of changes to your system, write about why someone might reengineer this part of your system later, and what they’d have to do!
· Try to make a few different kinds of changes, like additional features as well as fixes.
· Add what events you expect could impact these changes, requiring them to change again. Are these likely to occur?
· Describe how these changes “ripple,” impacting other parts of your system?

Week 6:

This week it's all about making changes recommended by Feathers in his book. See the Milestone for suggestions on what to try and what to journal about.

Week 7:

Ok, this week some of the class application is speculative. But, still try to think about it as you are working on your project! Some of course does directly apply to your project, like questions about how well your maintenance process and model work. See the Milestone for specific points to cover.

Week 8:

This week, more of the ideas likely have practical application, things you can compare against your own project without having to imagine too much. See the Milestone for points to cover.

Week 9:

We may have talked about these topics earlier, but, by agreement, include them in your entries for week 9. Please note that, since most people are doing the journal and milestone together, I've included in here some things that you may prefer to cover once, versus journal about during the week:

· What impact have Lehman’s Laws had on your system already?
· Look at the video of Eclipse evolution at http://www.vimeo.com/1130828, and say what you think the purpose of the video was, and whether it was successful.
· How often has your system needed major changes to its underlying design?
· What areas has this been in? Is it predictable?
· What are the “intermediate level” changes that you have made periodically?
· What metrics you use in maintenance
· Are these done automatically?
· How would metrics have rated your refactoring activity?
· How do you know what the metrics “mean”?
· What’s the most recent thing you changed in your process, based on analyzing the statistics from maintenance?

