CSSE 575
Project Work - Milestone 8

[bookmark: _GoBack]Due Mon, 7 AM. Put it in the Moodle drop box, to make it easy for me to grade all of these.

Here's what we are looking for in this eighth milestone your project - in a document "Milestone 8" that summarizes what you did this time. Try to summarize any of the following topics, from this week, that are appropriate to the work you just did. Try to find six good points out of this list to cover well:
1. How does your organization (or project) use "product lines," or how could you? How do you decide what goes into some central version of some of the software, and what goes into branches or separate products? I.e., what's the process?
2. Describe a possible product that could "branch off" from your project, and how you would decide what part of the current product is common to both.
3. Often, we do the product line thing in a different way - a common vendor supplies software to others who develop products using their starting point. What issues have you had recently, in the usual situation where you don't have much control over what that common vendor does, because they supply so many organizations?
4. Describe a situation where you have been "forced to duplicate code because of the limitations of the programming language being used."
5. Koschke argues that customizing cloned software to do something different is often as good as trying to generalize the original code. Give an example, from your own code, where one or the other choice here would be better.
6. Does the code you are working on use cloning as the "first try" at adding similar features, leaving refactoring for later? If so, has this worked well?
7. How do you decide the "evolvability" of the systems you work on? Like, how is the decision made, when a significant number of new features will be needed, whether to keep the current product alive, or do some reengineering?
8. What efforts have been made to analyze the data in your repositories (source code, problem reporting, team email for a project, etc.)?
9. What logical analyses could be done on your team's repositories, which would have the highest payoffs?
10. There is folklore that the developers who network the most effectively are the ones who create the most important code for a system. How could you prove or disprove this in your organization? Do you think it's true?
11. D'Ambros set up his RHDB research model (Slide set 8-2, slides 9-14) as very general, so as to be able to explore different relationships. In doing that, he had to make some assumptions, such as that developers who submitted code the most often had the biggest impact on that code. What assumptions are made about the repositories in your work? Are they valid?
12. In your own system, where are the most important dependencies, and what kinds of problems do these dependencies present?
13. How do you know that QA time on your project is being spent where it's needed?
14. The studies of Zimmerman et al defined "domains" of a software system, as ways of categorizing different parts of the code in that system. E.g., for Eclipse, "compiler internals" versus "user interfaces." In your own software, what would be some logical domains to study, to see if more bugs & problems occur in one versus another?
15. In the different ways to show "complexity" (Slide set 803, slide 6), which one would be the most useful for categorizing complexity in your system? And, do you think this categorization would predict software bugs?
16. It's common wisdom in software that "churn" creates bugs. Has this been the case in your system? E.g., is there one place where changes have to be made over and over, followed in each case by lots of fixes? Would there be any way to resolve that problem?
17. Which is more important in your system - the number of bugs, or bug fix time? Or, are these the same variable stated in different ways? Explain your answer!

As before, the rest of this milestone is really the work you put in your journal. See the comments at the end of that document, specifically about Week 8.
