
AngularJS
Unit Testing AngularJS Directives with

Karma & Jasmine

Directives
• Directives are different from other components

o they aren’t used as objects in the JavaScript code
o They are used in HTML templates of the application

• We write directives to perform DOM manipulations
o we can’t ignore them in unit tests as they play an important role
o They directly affect the usability of the application

• Directives are the most important and most
complex components in AngularJS

About Testing Directives
• Testing directives is tricky

o They are not called like a function
o They are declaratively applied on the HTML template
o Their actions are executed when the template is compiled and a user

interacts with the directive

• When performing unit tests
o We need to automate the user actions
o We need to manually compile the HTML in order to test the functionality of

the directives

Set up Objects to test
Directive

• Need to get references to objects needed before
starting to test a directive

• The key object to create is an element containing
the directive to be tested

• We need to compile a piece of HTML with the
directive specified in it to get the directive into
action
o On compilation of the HTML, the lifecycle of the directive is kicked in

Directive life cycle
• In a directive’s life cycle, there are four distinct

functions that can execute if they are defined

• Each enables the developer to control and
customize the directive at different points of the life
cycle.

• The compile function allows the directive to
manipulate the DOM before it is compiled and
linked thereby allowing it to add/remove/change
directives, as well as, add/remove/change other
DOM elements.

Directive life cycle (2)
• The controller function facilitates directive

communication. Sibling and child directives can
request the controller of their siblings and parents to
communicate information.

• The pre-link function allows for private $scope
manipulation before the post-link process begins.

• The post-link method is the primary workhorse
method of the directive.

Getting Ready to test
• Compile HTML Template containing directive

o Inject $compile service
o Use $compile service to manually compile HTML
o Compilation triggers directive life cycle

• Initiate next digest cycle
o After next cycle, directive object would be in the same state as it appears

on a page
o Will want to initiate a digest cycle after making changes to the DOM or

model

Things to test in Directive
• Testing Directive’s Template

• Testing Link Function
o DOM Manipulation
o Watchers
o DOM Events

• Testing Directive’s Scope

• Testing Require

• Testing Replace

Setting up Karma
• install karma for development purposes

$ npm install --save-dev karma

• Install preprocessor to load html templates
$ npm install karma-ng-html2js-preprocessor --save-dev

• Install karma plug-ins to enable us to use Jasmine
test framework and Google Chrome as target
browser

$ npm install jasmine-core karma-jasmine
karma-chrome-launcher --save-dev

Configuring Test Runner
• Create a configuration file for the karma settings

$ karma init karma.conf.js

• You will be asked several questions

• Accept the defaults to as many as you can
• Answer NO for the RequireJS question
• Will fill in the source and test files section manually

• The config file called karma.conf.jswill be created

• Will use cofig file to run run tests from the terminal

angular-mocks to mock
services

• Install angular-mocks to inject and mock Angular
services into your unit tests

$ npm install angular-mocks --save-dev

Files section of config file
// list of files / patterns to load in the browser
files: [

// Libraries
'node_modules/jquery/dist/jquery.min.js',
'node_modules/angular/angular.js',
'node_modules/angular-mocks/angular-mocks.js',
'node_modules/angular-route/angular-route.js',
'node_modules/angular-resource/angular-resource.js',
'node_modules/angular-messages/angular-messages.js',

// Our app
'src/app.js',
'src/js/*.js',

// tests
'tests/*Spec.js',

// Templates
'views/*.html'

],

Preporcessor section of
config file

preprocessors: {
// Generate js files from html templates
'views/*.html': 'ng-html2js'

},

Running unit tests
• Start test runner by issuing following command

$ karma start karma.conf.js

• Expect tests to fail (none written) & fix fixable errors

• Optimization: update the package.json manifest
with scripts section to run karma

$ npm test

Scripts section of manifest

"scripts": {
"test": "karma start karma.conf.js”

},

Testing AngularJS
directives

• Create a test suite with describe.
o The string parameter should include the name of the directive being

tested.
o The function parameter is the block of code that implements the suite

• Use beforeEach to load the module that contains
the directive being tested and the HTML templates.

• Inject the $compile and $rootScope services in a
beforeEach block
o That allows you to create a new $scope and access the $compile service.
o Compile an element containing the directive to be tested
o Initiate the digest cycle of the $scope

Testing AngularJS
directives (2)

• Now that everything is setup, we can spec out tests
using the it function.
o String parameter is title of spec or description of what the spec is testing
o Function parameter is the spec or test.

• Test functionality of code that we write
o See slide entitled “Things to test in Directive”

• Each test should have 1 or more expectations
o Might be wise to follow this testing paradigm: setup à run code à assert

Examples
• Walk through process of creating and running

directive tests for sample application.

Resources
• http://www.sitepoint.com/angular-testing-tips-testing-directives/

• https://docs.angularjs.org/guide/directive

• http://www.toptal.com/angular-js/angular-js-demystifying-
directives

• https://docs.angularjs.org/api/ng/function/angular.element

• http://stackoverflow.com/questions/15753009/how-to-inject-a-
service-in-a-directive-unit-test-in-angularjs

• https://github.com/vojtajina/ng-directive-testing

