
Preparing a
REST API

Rules of REST APIs, API patterns, Typical
CRUD operations

Rules for a REST API
• Recall:

o REST – Representational State Transfer

o REST is stateless—it has no idea of any current user state or history

o API – Application Programming Interface

o REST API – stateless interface to your application

• Standards:
REST APIs have an associated set of standards
o Generally best to stick to them

o You’re doing things the right way if you decide to make your API public

Request URLs
• Request URLs for a REST API have a simple standard

o Think about your DB collections

o Will typically have a set of URLs for each collection

o May also have a set of URLs for each set of subdocuments

o Each URL in a set will have the same basic path, and some may have
additional parameters

o Within a set of URLs you need to cover a number of actions, generally
based around the standard CRUD operations

Common actions
• Create a new item

• Read a list of several items

• Read a specific item

• Update a specific item

• Delete a specific item

URL paths and params for
an API

Action URL path Parameters Example

Create new contact /contacts /api/contacts

Read list of contact /contacts /api/contacts

Read specific contact /contacts contactid /api/contacts/123abc

Update specific contact /contacts contactid /api/contacts/123abc

Delete specific contact /contacts contactid /api/contacts/123abc

Request methods used in
a REST API

Request method Use Response

GET Read data from DB Data object answering request

POST Create new data in DB New data object as seen in DB

PUT Update a doc in DB Updated data object as seen in DB

DELETE Delete an object from DB Null

Request method links URL to
desired action

Action Method URL path Parameters Example

Create new
contact POST /contacts /api/contacts
Read list of
contact GET /contacts /api/contacts
Read specific
contact GET /contacts contactid /api/contacts/123abc
Update specific
contact PUT /contacts contactid /api/contacts/123abc
Delete specific
contact DELETE /contacts contactid /api/contacts/123abc

API URLs for
subdocuments

• Subdocuments are treated in a similar way, but
require an additional parameter

• E.g.:
o Action: Create a new review for a product

o Method: POST

o URL path: /products/productId/reviews/reviewId

o Parameters: productId, reviewId

o URL: /api/products/123/reviews/abd

Responses and status
code

• If you make a request, a good API will always respond
and not leave you hanging

• Every single API request should return a response

• For a successful REST API, standardizing the responses is
just as important as standardizing the request format.

• There are two key components to a response:
o The returned data

o The HTTP status code

Returning data from an
API

• Your API should return a consistent data format

• Typical formats for a REST API are XML and JSON

• Our API will return one of three things for each
request:
o A JSON object containing data answering the request query

o A JSON object containing error data

o A null response

10 Most popular status
codes

• A good REST API should return the correct HTTP
status code

Status Code Name Use case
200 OK A successful GET or PUT request
201 Created A successful POST request
204 No Content A successful DELETE request

400 Bad Request
n unsuccessful GET, PUT, or POST
request due to invalid content

401 Unauthorized
Requesting a restricted URL with invalid
credentials

403 Forbidden Making a request that isn't allowed

404 Not Found
Unsuccessful request due to invalid
parameter in URL

405 Method not allowed
Request method not allowed for given
URL

409 Conflict

Unsuccessful POST request when
another object with the same data
already exists

500 Internal server error Problem with the server or DB server

Setting up API in express
• We’ve already got a good idea about the actions

we want our API to perform, and the URL paths
needed to do so

• We need to setup controllers and routes to cause
express to do something with an incoming URL
o Controllers will do the actions

o Routes will map incoming requests to appropriate controllers

o Need to require the routes in app.js

o Need to tell application when to use the routes

o Define actions in the controllers

Next steps
• Either in the routes or controllers file, specify the

following:
o The request method

o The required URL parameters

o The definition of the full API routes

• In controller:
o Return JSON and response status code from an Express request

o Use Mongoose model to read data from mongoDB

o Use Postman REST client to test requests to the API

Reading data from
MongoDB

• Mongoose models have several methods available
to them to help with querying the database.

• Here are some of the key ones:
o find - General search based on a supplied query object

o findById - Look for a specific ID

o findOne - Get the first document to match the supplied query

o It’s good to run query with exec()

o Be sure to catch errors and return appropriate response

Limiting return paths
• Limiting the data being passed around is better for

bandwidth consumption and speed

• Mongoose does this through a select method chained
to the model query

Product
.findById(req.params.productid)
.select('name reviews')
.exec(

function(err, product) { // do error checking-product
var review;
review = product.reviews.id(req.params.reviewid);
// do error checking for review

});

Resources
• http://www.restapitutorial.com/httpstatuscodes.html

• Getting MEAN with Mongo, Express, Angular, and Node
Simon Holmes
November 2015
ISBN 9781617292033
440 pages printed in black & white

