Preparing a
REST API

Rules of REST APIs, APl patterns, Typical
CRUD operations

Rules for a REST API

« Recall:
o REST - Representational State Transfer

o RESTis stateless—it has no idea of any current user state or history
o APl - Application Programming Interface

o REST API - stateless interface to your application

 Standards:

REST APIs have an associated set of standards
o Generally best to stick to them

o You're doing things the right way if you decide to make your API public

a Someone or something
sends a request to the API.

REST AP \
' Application
Request
O L
Response t

' \ L\.
) \

1/ .“'
| |
l |
o The API processes 0 The API always
the request, talking sends a response
to a database if back to the

necessary. requester.

Request URLs

« Request URLs for a REST APl have a simple standard

O

Think about your DB collections
Will typically have a set of URLs for each collection
May also have a set of URLs for each set of subdocuments

Each URL in a set will have the same basic path, and some may have
additional parameters

Within a set of URLs you need to cover a number of actions, generally
based around the standard CRUD operations

Common actions

Create a new item

Read a list of several items
Read a specific item
Update a specific item

Delete a specific item

URL paths and params for
an API

Action URL path Parameters Example
Create new contact /contacts /api/contacts
Read list of contact /contacts /api/contacts
Read specific contact /contacts contactid /api/contacts/123abc
Update specific contact /contacts contactid /api/contacts/123abc
Delete specific contact /contacts contactid /api/contacts/123abc

Request methods used in
a REST API

Request method Use Response
GET Read data from DB Data object answering request
POST Create new data in DB [New data object as seen in DB
PUT Update a doc in DB Updated data object as seen in DB
DELETE Delete an object from DB |Null

Request method links URL to
desired action

Action Method URL path |Parameters Example
Create new
contact POST /contacts /api/contacts
Read list of
contact GET /contacts /api/contacts
Read specific
contact GET /contacts contactid | /api/contacts/123abc
Update specific
contact PUT /contacts contactid | /api/contacts/123abc
Delete specific
contact DELETE /contacts contactid | /api/contacts/123abc

API URLs for
subdocuments

« Subdocuments are freated in a similar way, but
require an addifional parameter

- E.Q.:
o Action: Create a new review for a product
o Method: POST
o URL path: /products/productld/reviews/reviewld

o Parameters: productld, reviewld

o URL: /api/products/123/reviews/abd

Responses and status
code

If you make a request, a good APl will always respond
and not leave you hanging

Every single APl request should return a response

For a successful REST API, standardizing the responses is
just as iImportant as standardizing the request format.

There are two key components to a response:
o The returned data

o The HTIP status code

Returning data from an
API

Your APl should return a consistent data format
Typical formats for a REST APl are XML and JSON

Our APl will return one of three things for each

request:
o A JSON object containing data answering the request query

o A JSON object containing error data

o A null response

10 Most popular status
codes

A good REST API should return the correct HTTP

status code

Status Code Name Use case
200 OK A successful GET or PUT request
201 Created A successful POST request
204 No Content A successful DELETE request
n unsuccessful GET, PUT, or POST
400 Bad Request request due to invalid content
Requesting a restricted URL with invalid
401 Unauthorized credentials
403 Forbidden Making a request that isn't allowed
Unsuccessful request due toinvalid
404 Not Found parameterin URL
Request method not allowed for given
405 Method not allowed URL
Unsuccessful POST request when
another object with the same data
409 Conflict already exists

500
°

Infernal server error

Problem with the server or DB server
@

Setting up APl in express

« We've dlready got a good idea about the actions
we want our APl to perform, and the URL paths
needed 1o do so

« We need to setup conftrollers and routes to cause

express to do something with an incoming URL
o Conftrollers will do the actions

o Routes will map incoming requests to appropriate conftrollers
o Need to require the routes in app.js
o Need to tell application when to use the routes

o Define actions in the controllers

Next steps

« Eitherin the routes or controllers file, specify the

following:
o Therequest method

o Therequired URL parameters

o The definition of the full API routes

* |In controller:
o Return JSON and response status code from an Express request

o Use Mongoose model to read data from mongoDB

o Use Postman REST client to test requests to the API

Reading data from
MongoDB

 Mongoose models have several methods available
to them to help with querying the database.

 Here are some of the key ones:
o find - General search based on a supplied query object
o findByld - Look for a specific ID
o findOne - Get the first document to match the supplied query
o It's good to run query with exec()

o Be sure to catch errors and return appropriate response

Limiting return paths

* Limiting the data being passed around is better for
bandwidth consumpftion and speed

 Mongoose does this through a select method chained
to the model query

Product
findByld(reqg.params.productid)
.select('name reviews')
.exec(
function(err, product) {// do error checking-product

var review;
review = product.reviews.id(reqg.params.reviewid);

// do error checking for review

)

Resources

e http://www.restapitutorial.com/httpstatuscodes.html

« Getting MEAN with Mongo, Express, Angular, and Node
Simon Holmes
November 2015
ISBN 9781617292033
440 pages printed in black & white

