
Getting Started with MongoDB

Import Example Dataset
Overview

The examples in this guide use the restaurants collection in the test database.
The following is a sample document in the restaurants collection:

{

 "address": {

 "building": "1007",

 "coord": [-73.856077, 40.848447],

 "street": "Morris Park Ave",

 "zipcode": "10462"

 },

 "borough": "Bronx",

 "cuisine": "Bakery",

 "grades": [

 { "date": { "$date": 1393804800000 }, "grade": "A", "score": 2 },

 { "date": { "$date": 1378857600000 }, "grade": "A", "score": 6 },

 { "date": { "$date": 1358985600000 }, "grade": "A", "score": 10 }
,

 { "date": { "$date": 1322006400000 }, "grade": "A", "score": 9 },

 { "date": { "$date": 1299715200000 }, "grade": "B", "score": 14 }

],

 "name": "Morris Park Bake Shop",

 "restaurant_id": "30075445"

}

	 -	2	-	

Use the following procedure to populate the restaurants collection.

Prerequisites

You must have a running mongod instance in order to import data into the database.

Procedure

1

Retrieve the restaurants data.
Retrieve the dataset from https://raw.githubusercontent.com/mongodb/docs-
assets/primer-dataset/dataset.json and save to a file named primer-dataset.json.

2

Import data into the collection.
In the system shell or command prompt, use mongoimport to insert the documents
into therestaurants collection in the test database. If the collection already exists
in the test database, the operation will drop the restaurants collection first.

mongoimport --db test --collection restaurants --drop --file <pathTo>/prim

er-dataset.json

The mongoimport connects to a mongod instance running on localhost on port
number 27017.

To import data into a mongod instance running on a different host or port, specify the
hostname or port by including the --host and the --port options in
your mongoimport command.

	 -	3	-	

MongoDB Shell (mongo)
The mongo shell is an interactive JavaScript interface to MongoDB and is a component
of the MongoDB package. You can use the mongo shell to query and update data as
well as perform administrative operations.

Start mongo

Once you have installed and have started MongoDB, connect the mongo shell to your
running MongoDB instance. Ensure that MongoDB is running before attempting to
launch the mongo shell.

On the same system where the MongoDB is running, open a terminal window (or a
command prompt for Windows) and run the mongo shell with the following command:

mongo

On Windows systems, add .exe as follows:

mongo.exe

You may need to specify the path as appropriate.

When you run mongo without any arguments, the mongo shell will attempt to connect to
the MongoDB instance running on the localhost interface on port 27017. To specify a
different host or port number, as well as other options, see mongo Shell Reference
Page.

Help in mongo Shell

Type help in the mongo shell for a list of available commands and their descriptions:

help

	 -	4	-	

The mongo shell also provides <tab> key completion as well as keyboard shortcuts
similar to those found in the bash shell or in Emacs. For example, you can use the <up-
arrow> and the <down-arrow> to retrieve operations from its history.

Insert Data with the mongo Shell
Overview

You can use the insert() method to add documents to a collection in MongoDB. If
you attempt to add documents to a collection that does not exist, MongoDB will create
the collection for you.

Prerequisites

In the mongo shell connected to a running mongod instance, switch to the test database.

use test

Insert a Document

Insert a document into a collection named restaurants. The operation will create the
collection if the collection does not currently exist.

db.restaurants.insert(

 {

 "address" : {

 "street" : "2 Avenue",

 "zipcode" : "10075",

 "building" : "1480",

 "coord" : [-73.9557413, 40.7720266],

 },

 "borough" : "Manhattan",

 "cuisine" : "Italian",

	 -	5	-	

 "grades" : [

 {

 "date" : ISODate("2014-10-01T00:00:00Z"),

 "grade" : "A",

 "score" : 11

 },

 {

 "date" : ISODate("2014-01-16T00:00:00Z"),

 "grade" : "B",

 "score" : 17

 }

],

 "name" : "Vella",

 "restaurant_id" : "41704620"

 }

)

The method returns a WriteResult object with the status of the operation.

WriteResult({ "nInserted" : 1 })

If the document passed to the insert() method does not contain the _id field,
the mongo shell automatically adds the field to the document and sets the field’s value
to a generated ObjectId.

	
	

	 -	6	-	

Find or Query Data with the mongo Shell
Overview

You can use the find() method to issue a query to retrieve data from a collection in
MongoDB. All queries in MongoDB have the scope of a single collection.

Queries can return all documents in a collection or only the documents that match a
specified filter or criteria. You can specify the filter or criteria in a document and pass
as a parameter to the find() method.

The find() method returns query results in a cursor, which is an iterable object that
yields documents.

Prerequisites

The examples in this section use the restaurants collection in the test database. For
instructions on populating the collection with the sample dataset, see Import Example
Dataset.

In the mongo shell connected to a running mongod instance, switch to the test database.

use test

Query for All Documents in a Collection

To return all documents in a collection, call the find() method without a criteria
document. For example, the following operation queries for all documents in
the restaurants collection.

db.restaurants.find()

The result set contains all documents in the restaurants collection.

	 -	7	-	

Specify Equality Conditions

The query condition for an equality match on a field has the following form:

{ <field1>: <value1>, <field2>: <value2>, ... }

If the <field> is a top-level field and not a field in an embedded document or an array,
you can either enclose the field name in quotes or omit the quotes.

If the <field> is in an embedded document or an array, use dot notation to access the
field. With dot notation, you must enclose the dotted name in quotes.

Query by a Top Level Field
The following operation finds documents whose borough field equals "Manhattan".

db.restaurants.find({ "borough": "Manhattan" })

The result set includes only the matching documents.

Query by a Field in an Embedded Document
To specify a condition on a field within an embedded document, use the dot notation.
Dot notation requiresquotes around the whole dotted field name. The following
operation specifies an equality condition on thezipcode field in the address embedded
document.

db.restaurants.find({ "address.zipcode": "10075" })

The result set includes only the matching documents.

For more information on querying on fields within an embedded document,
see Embedded Documents.

Query by a Field in an Array
The grades array contains embedded documents as its elements. To specify a
condition on a field in these documents, use the dot notation. Dot
notation requires quotes around the whole dotted field name. The following queries for

	 -	8	-	

documents whose grades array contains an embedded document with a
field gradeequal to "B".

db.restaurants.find({ "grades.grade": "B" })

The result set includes only the matching documents.

For more information on querying on arrays, such as specifying multiple conditions on
array elements, seeArrays and $elemMatch.

Specify Conditions with Operators

MongoDB provides operators to specify query conditions, such as comparison
operators. Although there are some exceptions, such as the $or and $and conditional
operators, query conditions using operators generally have the following form:

{ <field1>: { <operator1>: <value1> } }

For a complete list of the operators, see query operators.

Greater Than Operator ($gt)
Query for documents whose grades array contains an embedded document with a
field score greater than 30.

db.restaurants.find({ "grades.score": { $gt: 30 } })

The result set includes only the matching documents.

Less Than Operator ($lt)
Query for documents whose grades array contains an embedded document with a
field score less than10.

db.restaurants.find({ "grades.score": { $lt: 10 } })

The result set includes only the matching documents.

	 -	9	-	

Combine Conditions

You can combine multiple query conditions in logical conjunction (AND) and logical
disjunctions (OR).

Logical AND
You can specify a logical conjunction (AND) for a list of query conditions by separating
the conditions with a comma in the conditions document.

db.restaurants.find({ "cuisine": "Italian", "address.zipcode": "10075" }

)

The result set includes only the documents that matched all specified criteria.

Logical OR
You can specify a logical disjunction (OR) for a list of query conditions by using
the $or query operator.

db.restaurants.find(

 { $or: [{ "cuisine": "Italian" }, { "address.zipcode": "10075" }] }

)

The result set includes only the documents that match either conditions.

Sort Query Results

To specify an order for the result set, append the sort() method to the query. Pass
to sort() method a document which contains the field(s) to sort by and the
corresponding sort type, e.g. 1 for ascending and -1for descending.

For example, the following operation returns all documents in
the restaurants collection, sorted first by the borough field in ascending order, and
then, within each borough, by the "address.zipcode" field in ascending order:

db.restaurants.find().sort({ "borough": 1, "address.zipcode": 1 })

	 -	10	-	

The operation returns the results sorted in the specified order.

Update Data with the mongo Shell
Overview

You can use the update() method to update documents of a collection. The method
accepts as its parameters:

• a filter document to match the documents to update,
• an update document to specify the modification to perform, and
• an options parameter (optional).

To specify the filter, use the same structure and syntax as the query conditions.
See Find or Query Data with the mongo Shell for an introduction to query conditions.

By default, the update() method updates a single document. Use the multi option to
update all documents that match the criteria.

You cannot update the _id field.

Prerequisites

The examples in this section use the restaurants collection in the test database. For
instructions on populating the collection with the sample dataset, see Import Example
Dataset.

In the mongo shell connected to a running mongod instance, switch to the test database.

use test

	 -	11	-	

Update Specific Fields

To change a field value, MongoDB provides update operators, such as $set to modify
values. Some update operators, such as $set, will create the field if the field does not
exist. See the individual update operatorsreference.

Update Top-Level Fields
The following operation updates the first document with name equal to "Juni", using
the $set operator to update the cuisine field and the $currentDate operator to update
the lastModified field with the current date.

db.restaurants.update(

 { "name" : "Juni" },

 {

 $set: { "cuisine": "American (New)" },

 $currentDate: { "lastModified": true }

 }

)

The update operation returns a WriteResult object which contains the status of the
operation.

Update an Embedded Field
To update a field within an embedded document, use the dot notation. When using the
dot notation, enclose the whole dotted field name in quotes. The following updates
the street field in the embedded addressdocument.

db.restaurants.update(

 { "restaurant_id" : "41156888" },

 { $set: { "address.street": "East 31st Street" } }

)

The update operation returns a WriteResult object which contains the status of the
operation.

	 -	12	-	

Update Multiple Documents
By default, the update() method updates a single document. To update multiple
documents, use themulti option in the update() method. The following operation
updates all documents that haveaddress.zipcode field equal
to "10016" and cuisine field equal to "Other", setting the cuisinefield
to "Category To Be Determined" and the lastModified field to the current date.

db.restaurants.update(

 { "address.zipcode": "10016", cuisine: "Other" },

 {

 $set: { cuisine: "Category To Be Determined" },

 $currentDate: { "lastModified": true }

 },

 { multi: true}

)

The update operation returns a WriteResult object which contains the status of the
operation.

Replace a Document

To replace the entire document except for the _id field, pass an entirely new
document as the second argument to the update() method. The replacement
document can have different fields from the original document. In the replacement
document, you can omit the _id field since the _id field is immutable. If you do include
the _id field, it must be the same value as the existing value.

IMPORTANT

After the update, the document only contains the field or fields in the replacement
document.

After the following update, the modified document will only contain
the _id field, name field, the addressfield. i.e. the document will not contain
the restaurant_id, cuisine, grades, and the borough fields.

	 -	13	-	

db.restaurants.update(

 { "restaurant_id" : "41704620" },

 {

 "name" : "Vella 2",

 "address" : {

 "coord" : [-73.9557413, 40.7720266],

 "building" : "1480",

 "street" : "2 Avenue",

 "zipcode" : "10075"

 }

 }

)

The update operation returns a WriteResult object which contains the status of the
operation.

