
Kenny Gao, Mike Lester, Eric Reed

• Based on Forth (Team “May the Forth Be With
You”)

• Created in 2003 by Slava Pestov a genius

• Stack-based

• Concatenative

• Currently at version 0.94 (and in constant
development)

Q1

Stack Programming Basics

• Arguments are pushed onto the stack
implicitly

• Stack is used to pass arguments and results
around

• Operations modify the stack

– Stack effects describe the changes that occur

• notation Postfix !

Concatenative Programming Basics

• Everything is a function

• Juxtaposition defines function composition
a b = a ◦ b

• load-image process-image display-image

Getting Started with Factor

• Functions in Factor are called words

– Typically very short and concise

• Modules in Factor are called vocabularies

– Only used for namespacing and organization

– Think Java packages

• Words are defined from other words

– primitives = base case

Q2

Examples

• 3 .

• "hello world" .

• 6 7 *

• 3 +

• drop

• 10 sq 5 - .

Q3

Anatomy of a Word

: square (x -- x) dup * ;

colon begins definition of a
word

name of the word stack effect declaration

definition (a series of concatenated
words)

semicolon ends definition of a word

Stack Effect Declarations

• Exactly what it sounds like !

• Example !

– swap (x y -- y x)

http://elasticdog.com/2008/12/beginning-factor-shufflers-and-combinators/
Q4, 5

Quotations

• Quotations are bits of code pushed onto the
stack for delayed execution

• Like LISP/Scheme quotations!

• Form: [code later to run]

• You can nest quotations too

• Useful for higher-order words

• Code as data! You can build up quotations
dynamically (again like LISP)

Combinators

• A word that takes code as input

• Examples (top of the stack is on the right):
3 5 [1 +] dip

dip applies a quotation to the second thing on the stack, ignoring the top

{ 1 2 3 } [sum] [length] bi /

bi applies two quotations to the same value and places both results on
the stack. Here we use it for a mean operation. >:[

3 10 < [“Math OK” print] [“Math FUBAR” print] if

if takes a boolean, a quotation for the true case, and a quotation for the
false case.

