
INTRO. TO
OBJECT-ORIENTED

PROGRAMMING IN PYTHON
Curt Clifton

Rose-Hulman Institute of Technology

Check out PythonOOIntro from SVN

TODAY’S PLAN

Some notes on scope

Brief introduction to syntax for objects in Python

Remember:

Milestone 1 due tomorrow night

Don’t forget Team/Language survey

Project Friday tomorrow, no class

PREPARATION

In Eclipse, check out
the PythonOOIntro
project from your
individual repository
for the course

Open the file scope.py

http://icanhascheezburger.com/category/loldog/page/3/

SCOPE IN PYTHON

See code and comments in scope.py to answer quiz
questions 1 and 2

Q1,2

BUT I WANT TO ASSIGN TO
THE TOP-LEVEL VARIABLE!

You can prevent Python from creating a shadowing,
local variable using global

Example:
def fn3():
 global x
 print("x in fn3:", x)
 x = 15
 print("x in fn3:", x)

Q3

MUTATION != ASSIGNMENT

Look at fn4 and quiz
question 4

Q4

IMPORT AND ALIASING

See scope_user.py

Quiz questions 5 and 6

Q5,6

BUILT-IN SCOPE

Python doesn’t keep you from assigning to built-in
names

Try this:

Add this code to scope.py:

Run scope.py

Add print(str(1)) to scope_user.py and run it

Definition of str in scope.py shadows the built-in!

print(str(1))
def str(n):
 return 'boo'
print(str(1))

def scope_test():
 def do_local():
 spam = "local spam"
 def do_nonlocal():
 nonlocal spam
 spam = "nonlocal spam"
 def do_global():
 global spam
 spam = "global spam"
 spam = "test spam"
 do_local()
 print("After local assignment:", spam)
 do_nonlocal()
 print("After nonlocal assignment:", spam)
 do_global()
 print("After global assignment:", spam)

scope_test()
print("In global scope:", spam)

Q7

SCOPE
SUMMARY

IN UR REALITY
HEY, AT LEAST I RAN OUT OF STAPLES.

ht
tp

://
xk

cd
.c

om
/2

62
/

OBJECTS IN PYTHON

Class definitions

Class attributes

Instantiation

“Fields” and “methods”

Code for coming
examples is in
class_examples.py

CLASS DEFINITIONS

class ClassName:
 """Doc string."""
 # 0 or more additional statements

CLASS INSTANTIATION

class MakeMe:
 """Example for instantiation."""
 def __init__(self, x):
 self._x = x

one = MakeMe(1)
two = MakeMe(2)
print("One-two punch:", one._x, two._x)

FIELDS AND METHODS

Fields

Like local variables,
they’re created by
assignment

Methods

Functions that
“belong to” objects

class CountDown:
 def __init__(self, n):
 self._n = n
 def tick(self, count=1):
 self._n -= count
 if self._n <= 0:
 print('BOOM!')

counter = CountDown(5)
for i in range(8):
 counter.tick()

Q8

CLASSES ARE NAMESPACES

class Attrib:
 """Example of class attributes."""
 x, y = 2, 13

print("Attrib:", Attrib.x, Attrib.y)

WATCH FOR COLLISIONS

Q9

class Point:
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y
 def x(self):
 return self.x
 def y(self):
 return self.y

p = Point(5,6)
print('p.x() = {}'.format(p.x())) Error!

Why?

STATIC, CLASS, AND
INSTANCE METHODS

class MyClass:
 """Sample class with static and class methods."""
 def __init__(self, label):
 self._label = label
 @staticmethod
 def staticFoo():
 return "static method"
 @classmethod
 def classFoo(cl):
 return "class method bound to {}".format(cl)
 def instanceFoo(self):
 return "instance method bound to {}".format(self)
 def __str__(self):
 return 'MyClass({!s})'.format(self._label)

Q10

