HASKELL MONADS

Curt Clifton
Rose-Hulman Institute of Technology




MONADS

® Ooh, scary!
)L
* Not really, just an ¢ "eme
[
example of R
generalization

® Goal: recognize
monads as a general
solution to lots of
problems

Lon Chaney, Jr. as The Wolf Man

Ql




el A BRER AR e

® Haskell is a pure, functional language

® Consider: random ::Int




RANDOM NUMBER

{in’c get RondomNumber ()
return 4. // chosen by fair dice roll.
/| Quaranteed to be random.
3

RFC 1149.5 specifies 4 as the standard
|IEEE-vetted random number.




R TR R i

® Haskell is a pure, functional language
® Consider: random :Int
® Solution: Pass along an object to be “mutated”
® random :: GeneratorState — (Int, GeneratorState)

Original “Must e
5 tat
State Monads generalize B
this pattern

Q2




THREADING STATE

® Haskell’s lazy, so...

® Infinite lists

» randomlList :: GeneratorState -> [Int]
randomlList state = X : randomlList nextState
where (X, nextState) = random state

» Benefits: Soylemez calls this
: “threading state”

® Can “go back in time’ to earlier random numbers

® Can pass the same sequence to multiple functions




Thought

WHAT ABOUT IO) experimentil

s getChar :: Char
® getChar :: Universe -> (Char, Universe)

® twoChars :: Universe -> (Char, Char, Universe)
twoChars worldO = (cl, c2, world2)
where (cl, worldl) = getChar worldO
(c2, worldR) = getChar world1l

» gstrangeDays :: Universe -> (Result, Result) :
strangeDays world = (c1, c) Threading the

where (rl, ) = killCat world state of the
(rg, _) = freeCat world universe leads

to paradoxes




MOTIVATION

® Can we generalize this idea of passing state around
without doing it directly!?




EXAMPLE

® Integer square root




EXAMPLES

isqrt :: Integer -> Maybe Integer
isgrt x =isqrt' x (0,0)

where isqrt' X (s,r)
s>x =Nothing Maybe computation

Si =dJustr
otherwise =isqrt'x(s +2*r+ 1, r+l)

i4throot :: Integer -> Maybe Integer
i4throot x = case isqrt x of

Nothing -> Nothing
Justy ->isqrty

Maybe computation made of

Maybe computations




EXAMPLES

isqrtL :: Integer -> [Integer]

isqrtL x = isqrt' x (0,0
where isqrt' x (s,r)

s>x =[] List computation

Sire X el iy

etherwise = isqrt' X(s +2*r+ 1, r+l)

i4throotL :: Integer -> [Integer]
i4throotL x = case isqrtL x of

[t i
[y, ] ->1sqriLy

List computation made of

List computations




GENERAL |IDEA

® A computation with a certain type of result
® e.g., Integer

® A certain type of structure in its result

Monads let us build up
these computations as
static entities without

® e.g.,, Nothing, [], [2, -2]

® Need to pass the result of one
of these computations to another

necessarily running
them

Q3




MONAD TYPECLASS

return takes a value of the

inner type and wraps it in a

¢ class Monad m where ;
computation

return :: a ->m a,
(>>=) I g a e (a ->II1b) ->mb

binding operator and feeds its value B that makes a another

takes a computation to a function computation




MAYBE AS A MONAD

o class Monad m where
return::a->ma

(>>=) mma->(a->mb)->mb EEEA R CHEREI[Ne)i
the inner type and wraps
It In 2 computation

» instance Monad Maybe where
return x = Just x

Nothing >>= f = Nothing
Justx >>=f=fx

that makes a another
binding operator

and feeds its value computation

takes a computation to a function




LIST ASA MONAD

o class Monad m where
return::a->ma

(>>=) mma->(a->mb)->mb EEEA R CHEREI[Ne)i
the inner type and wraps
It In 2 computation

» instance Monad [] where
return x = [x]

xs >>=f = concat (map f xs)
that makes a another

computation
and feeds its value

binding operator
to a function

takes a computation

[10,20,40] >>=\x -> [x+1, x+3]




NEXT TIME

® Monads for combining computations that use state




