
HASKELL MONADS
Curt Clifton

Rose-Hulman Institute of Technology

MONADS

Ooh, scary!

Not really, just an
example of
generalization

Goal: recognize
monads as a general
solution to lots of
problems

Lon Chaney, Jr. as The Wolf Man

extremelyuseful

Q1

CAN WE BE JUST
A LITTLE BIT IMPURE?

Haskell is a pure, functional language

Consider: random :: Int

RANDOM NUMBER

RFC 1149.5 specifies 4 as the standard
IEEE-vetted random number.

CAN WE BE JUST
A LITTLE BIT IMPURE?

Haskell is a pure, functional language

Consider: random :: Int

Solution: Pass along an object to be “mutated”

random :: GeneratorState → (Int, GeneratorState)
Original
State

“Mutated”
StateMonads generalize

this pattern Q2

THREADING STATE

Haskell’s lazy, so…

Infinite lists
randomList :: GeneratorState -> [Int]
randomList state = x : randomList nextState
 where (x, nextState) = random state

Benefits:

Can “go back in time” to earlier random numbers

Can pass the same sequence to multiple functions

Söylemez calls this
“threading state”

WHAT ABOUT IO?

getChar :: Char

getChar :: Universe -> (Char, Universe)

twoChars :: Universe -> (Char, Char, Universe)
twoChars world0 = (c1, c2, world2)
 where (c1, world1) = getChar world0
 (c2, world2) = getChar world1

strangeDays :: Universe -> (Result, Result)
strangeDays world = (c1, c2)
 where (r1, _) = killCat world
 (r2, _) = freeCat world

Thought
experiment

Threading the
state of the

universe leads
to paradoxes

MOTIVATION

Can we generalize this idea of passing state around
without doing it directly?

EXAMPLE

Integer square root

EXAMPLES

isqrt :: Integer -> Maybe Integer
isqrt x = isqrt' x (0,0)
 where isqrt' x (s,r)
 | s > x = Nothing
 | s == x = Just r
 | otherwise = isqrt' x (s + 2*r + 1, r+1)

i4throot :: Integer -> Maybe Integer
i4throot x = case isqrt x of
 Nothing -> Nothing
 Just y -> isqrt y

Maybe computation

Maybe computation made of
Maybe computations

EXAMPLES

isqrtL :: Integer -> [Integer]
isqrtL x = isqrt' x (0,0)
 where isqrt' x (s,r)
 | s > x = []
 | s == x = [r, -r]
 | otherwise = isqrt' x (s + 2*r + 1, r+1)

i4throotL :: Integer -> [Integer]
i4throotL x = case isqrtL x of
 [] -> []
 [y, _] -> isqrtL y

List computation

List computation made of
List computations

GENERAL IDEA

A computation with a certain type of result

e.g., Integer

A certain type of structure in its result

e.g., Nothing, [], [2, -2]

Need to pass the result of one
of these computations to another

Monads let us build up
these computations as
static entities without

necessarily running
them

Q3

MONAD TYPECLASS

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

return takes a value of the
inner type and wraps it in a

computation

binding operator
takes a computation

and feeds its value
to a function

that makes a another
computation

MAYBE AS A MONAD

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

instance Monad Maybe where
 return x = Just x

 Nothing >>= f = Nothing
 Just x >>= f = f x

return takes a value of
the inner type and wraps

it in a computation

binding operator
takes a computation

and feeds its value
to a function

that makes a another
computation

LIST AS A MONAD

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

instance Monad [] where
 return x = [x]

 xs >>= f = concat (map f xs)

return takes a value of
the inner type and wraps

it in a computation

binding operator
takes a computation

and feeds its value
to a function

that makes a another
computation

[10,20,40] >>= \x -> [x+1, x+2]

NEXT TIME

Monads for combining computations that use state

