
MULTI-PROCESS DESIGN
IN ERLANG

Curt Clifton
Rose-Hulman Institute of Technology

SVN Update ErlangInClass



PROGRAMMING FOR
MULTICORE

Use lots of processes

Avoid side effects

Eliminate sequential bottlenecks

Write “small messages, big computations” code



USE LOTS OF PROCESSES

Want all CPUs busy all the time

Most easily achieved # of processes >> # of CPUs

Want processes to do comparable amounts of work

Q1



AVOID SIDE EFFECTS

Use process loop arguments to maintain “state”

Don’t use process dictionary if you can avoid it

Be very careful with ETS tables

Avoid public tables

Be careful with protected tables

Favor private tables

Q2



WATCH OUT FOR 
SEQUENTIAL BOTTLENECKS

Some things are 
intrinsically sequential

Like disk I/O

Registered processes 
are a warning sign

Often need to find a 
distributed algorithm

Q3



EXERCISE

Design an n-body 
simulation

What processes do we 
need?

What messages should 
they respond to?

Remember:

Use lots of processes

Avoid side effects

Eliminate sequential 
bottlenecks

Write “small messages, 
big computations” 
code

Q4



RESONANCE

It’s really hard to control the frequency, actually.



WRITE “SMALL MESSAGES,
BIG COMPUTATIONS” CODE

Example: open ErlangInClass/pmap.erl

Study pmap implementation

Look at various sample tests

If you’ve got multiple cores, use erl +S 2 to use 
two of them.



PMAP WITH MULTIPLE CORES
Sp

ee
du

p

0

4

8

12

16

Number of CPUs

0 5 10 15 20 25 30 35

Fib

Sort

Programming Erlang, Fig. 20.1


